Citation: | LIU Runzhu, LONG Xiao. Evolution of Facial Measurement Technology and Its Prospects with the Development of Artificial Intelligence[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1242-1252. DOI: 10.12290/xhyxzz.2024-0585 |
Facial anthropometry has profound importance in clinical diagnosis and the recognition of abnormal facial features. With the development of anthropometry, facial anthropometry has emerged as an independent research field and is widely applied in disciplines such as plastic surgery and cranio-maxillofacial surgery. This paper reviews the evolution of facial anthropometry and discusses its future trends in the context of artificial intelligence (AI). Currently, 3D facial imaging technology can accurately capture and reconstruct the three-dimensional morphology of facial soft tissues, and enhance the precision and objectivity of measurements, thus becoming the new "gold standard" for facial anthropometry. It not only provides reference for disease diagnosis and surgical planning but also plays a crucial role in evaluating cosmetic outcomes and aging research. In recent years, AI technology has developed rapidly, enabling direct recognition of abnormal facial features. Although facial recognition systems based on two-dimensional images are relatively mature, they have to struggle to fully capture facial features as they are limited by the dimensionality of information. While three-dimensional image-based recognition boasts high accuracy, it faces challenges in the recognition and classification of abnormal facial features due to limitations in the number of training samples. The integration of AI and facial anthropometry has effectively promoted automatic recognition technology for facial landmarks, thus providing more precise and interpretable methods for assessing disease-related facial features. Future research should focus on building reliable three-dimensional facial databases to further improve the accuracy of facial recognition. Additionally, developing facial recognition systems based on small sample sizes is necessary to provide robust support for the recognition of facial features associated with rare and special diseases.
[1] |
Houle D, Govindaraju D R, Omholt S. Phenomics: the next challenge[J]. Nat Rev Genet, 2010, 11(12): 855-866. DOI: 10.1038/nrg2897
|
[2] |
Baynam G, Bauskis A, Pachter N, et al. 3-Dimensional facial analysis-facing precision public health[J]. Front Public Health, 2017, 5: 31.
|
[3] |
Hammond P, Hannes F, Suttie M, et al. Fine-grained facial phenotype-genotype analysis in Wolf-Hirschhorn syndrome[J]. Eur J Hum Genet, 2012, 20(1): 33-40. DOI: 10.1038/ejhg.2011.135
|
[4] |
Farkas L G, Posnick J C, Hreczko T M. Anthropometric growth study of the head[J]. Cleft Palate Craniofac J, 1992, 29(4): 303-308. DOI: 10.1597/1545-1569_1992_029_0303_agsoth_2.3.co_2
|
[5] |
Farkas L G, Katic M J, Forrest C R, et al. International anthropometric study of facial morphology in various ethnic groups/races[J]. J Craniofac Surg, 2005, 16(4): 615-646. DOI: 10.1097/01.scs.0000171847.58031.9e
|
[6] |
Farkas L G, Hajnis K. Faciometer[J]. Panminerva Med, 1969, 11(4): 165-169.
|
[7] |
Venkatadri G, Farkas L G, Kooiman J. Multipurpose anthropometric facial anglemeter[J]. Plast Reconstr Surg, 1992, 90(3): 507-510. DOI: 10.1097/00006534-199209000-00027
|
[8] |
Farkas L G, Feiglová B, Klásková O. Several data of the analysis of 1, 000 etiopathological questionnaires in patients with cleft lips and palates[J]. Panminerva Med, 1969, 11(1): 59-63.
|
[9] |
Farkas L G, Munro I R, Kolar J C. Abnormal measurements and disproportions in the face of Down's syndrome patients: preliminary report of an anthropometric study[J]. Plast Reconstr Surg, 1985, 75(2): 159-169. DOI: 10.1097/00006534-198502000-00002
|
[10] |
Zhuang Z Q, Landsittel D, Benson S, et al. Facial anthropometric differences among gender, ethnicity, and age groups[J]. Ann Occup Hyg, 2010, 54(4): 391-402.
|
[11] |
Du L L, Zhuang Z Q, Guan H Y, et al. Head-and-face anthropometric survey of Chinese workers[J]. Ann Occup Hyg, 2008, 52(8): 773-782.
|
[12] |
DiBernardo B E, Adams R L, Krause J, et al. Photographic standards in plastic surgery[J]. Plast Reconstr Surg, 1998, 102(2): 559-568. DOI: 10.1097/00006534-199808000-00045
|
[13] |
Yavuzer R, Smirnes S, Jackson I T. Guidelines for standard photography in plastic surgery[J]. Ann Plast Surg, 2001, 46(3): 293-300. DOI: 10.1097/00000637-200103000-00016
|
[14] |
Lin C S, Shaari R, Alam M K, et al. Photogrammetric analysis of nasolabial angle and mentolabial angle norm in Malaysian adults[J]. Bangladesh J Med Sci, 2013, 12(2): 209-219. DOI: 10.3329/bjms.v12i2.14951
|
[15] |
Packiriswamy V, Kumar P, Rao K G M. Photogrammetric analysis of palpebral fissure dimensions and its position in Malaysian South Indian ethnic adults by gender[J]. N Am J Med Sci, 2012, 4(10): 458-462. DOI: 10.4103/1947-2714.101984
|
[16] |
Kook M S, Jung S, Park H J, et al. A comparison study of different facial soft tissue analysis methods[J]. J Craniomaxillofac Surg, 2014, 42(5): 648-656. DOI: 10.1016/j.jcms.2013.09.010
|
[17] |
Ghoddousi H, Edler R, Haers P, et al. Comparison of three methods of facial measurement[J]. Int J Oral Maxillofac Surg, 2007, 36(3): 250-258. DOI: 10.1016/j.ijom.2006.10.001
|
[18] |
Dindaroğlu F, Kutlu P, Duran G S, et al. Accuracy and reliability of 3D stereophotogrammetry: a comparison to direct anthropometry and 2D photogrammetry[J]. Angle Orthod, 2016, 86(3): 487-494. DOI: 10.2319/041415-244.1
|
[19] |
Bannister J J, Wilms M, Aponte J D, et al. Comparing 2D and 3D representations for face-based genetic syndrome diagnosis[J]. Eur J Hum Genet, 2023, 31(9): 1010-1016. DOI: 10.1038/s41431-023-01308-w
|
[20] |
Van Vlijmen O J C, Maal T, Bergé S J, et al. A comparison between 2D and 3D cephalometry on CBCT scans of human skulls[J]. Int J Oral Maxillofac Surg, 2010, 39(2): 156-160. DOI: 10.1016/j.ijom.2009.11.017
|
[21] |
Anas I Y, Bamgbose B O, Nuhu S. A comparison between 2D and 3D methods of quantifying facial morphology[J]. Heliyon, 2019, 5(6): e01880. DOI: 10.1016/j.heliyon.2019.e01880
|
[22] |
Sforza C, Laino A, D'Alessio R, et al. Soft-tissue facial characteristics of attractive and normal adolescent boys and girls[J]. Angle Orthod, 2008, 78(5): 799-807. DOI: 10.2319/091207-431.1
|
[23] |
Wang D, Qian G, Zhang M, et al. Differences in horizontal, neoclassical facial canons in Chinese (Han) and North American Caucasian populations[J]. Aesthetic Plast Surg, 1997, 21(4): 265-269. DOI: 10.1007/s002669900123
|
[24] |
De Coster P, De Pauw G, Martens L, et al. Craniofacial structure in Marfan syndrome: a cephalometric study[J]. Am J Med Genet A, 2004, 131A(3): 240-248. DOI: 10.1002/ajmg.a.30393
|
[25] |
Ting B L, Mathur D, Loeys B L, et al. The diagnostic value of the facial features of Marfan syndrome[J]. J Child Orthop, 2010, 4(6): 545-551. DOI: 10.1007/s11832-010-0295-1
|
[26] |
Sutton V R, Hopkins B J, Eble T N, et al. Facial and physical features of Aicardi syndrome: infants to teenagers[J]. Am J Med Genet A, 2005, 138A(3): 254-258. DOI: 10.1002/ajmg.a.30963
|
[27] |
Maclean K, Smith J, St Heaps L, et al. Axenfeld-Rieger malformation and distinctive facial features: clues to a recognizable 6p25 microdeletion syndrome[J]. Am J Med Genet A, 2005, 132A(4): 381-385. DOI: 10.1002/ajmg.a.30274
|
[28] |
Moore E S, Ward R E, Wetherill L F, et al. Unique facial features distinguish fetal alcohol syndrome patients and controls in diverse ethnic populations[J]. Alcohol Clin Exp Res, 2007, 31(10): 1707-1713. DOI: 10.1111/j.1530-0277.2007.00472.x
|
[29] |
Cai X X, Chen Y, Li Q, et al. Anthropometric analysis on the ocular region morphology of children and young adults in Chinese Han population[J]. Ophthalmic Plast Reconstr Surg, 2019, 35(4): 326-332. DOI: 10.1097/IOP.0000000000001245
|
[30] |
Wen Y F, Wong H M, McGrath C P. A longitudinal study of facial growth of Southern Chinese in Hong Kong: comprehensive photogrammetric analyses[J]. PLoS One, 2017, 12(10): e0186598. DOI: 10.1371/journal.pone.0186598
|
[31] |
Aynechi N, Larson B E, Leon-Salazar V, et al. Accuracy and precision of a 3D anthropometric facial analysis with and without landmark labeling before image acquisition[J]. Angle Orthod, 2011, 81(2): 245-252. DOI: 10.2319/041810-210.1
|
[32] |
Sforza C, Dellavia C, Tartaglia G M, et al. Morphometry of the ear in Down's syndrome subjects: a three-dimensional computerized assessment[J]. Int J Oral Maxillofac Surg, 2005, 34(5): 480-486. DOI: 10.1016/j.ijom.2004.10.005
|
[33] |
Bhatia G, Vannier M W, Smith K E, et al. Quantification of facial surface change using a structured light scanner[J]. Plast Reconstr Surg, 1994, 94(6): 768-774. DOI: 10.1097/00006534-199411000-00003
|
[34] |
Aung S C, Ngim R C K, Lee S T. Evaluation of the laser scanner as a surface measuring tool and its accuracy compared with direct facial anthropometric measurements[J]. Br J Plast Surg, 1995, 48(8): 551-558. DOI: 10.1016/0007-1226(95)90043-8
|
[35] |
Ras F, Habets L L, Van Ginkel F C, et al. Quantification of facial morphology using stereophotogrammetry--demonstration of a new concept[J]. J Dent, 1996, 24(5): 369-374. DOI: 10.1016/0300-5712(95)00081-X
|
[36] |
Moss J P, Linney A D, Grindrod S R, et al. A laser scanning system for the measurement of facial surface morphology[J]. Opt Lasers Eng, 1989, 10(3/4): 179-190.
|
[37] |
Gibelli D, Pucciarelli V, Caplova Z, et al. Validation of a low-cost laser scanner device for the assessment of three-dimensional facial anatomy in living subjects[J]. J Craniomaxillofac Surg, 2018, 46(9): 1493-1499. DOI: 10.1016/j.jcms.2018.06.009
|
[38] |
Cao R K, Chen B B, Xu H, et al. Accuracy of three-dimensional optical devices for facial soft-tissue measurement in clinical practice of stomatology: a PRISMA systematic review[J]. Medicine (Baltimore), 2022, 101(47): e31922. DOI: 10.1097/MD.0000000000031922
|
[39] |
Kovacs L, Zimmermann A, Brockmann G, et al. Three-dimensional recording of the human face with a 3D laser scanner[J]. J Plast Reconstr Aesthet Surg, 2006, 59(11): 1193-1202. DOI: 10.1016/j.bjps.2005.10.025
|
[40] |
Al-Anezi T, Khambay B, Peng M J, et al. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D)[J]. Int J Oral Maxillofac Surg, 2013, 42(1): 9-18. DOI: 10.1016/j.ijom.2012.10.035
|
[41] |
Ma L L, Xu T M, Lin J X. Validation of a three-dimensional facial scanning system based on structured light techniques[J]. Comput Methods Programs Biomed, 2009, 94(3): 290-298. DOI: 10.1016/j.cmpb.2009.01.010
|
[42] |
Ye H Q, Lv L W, Liu Y S, et al. Evaluation of the accuracy, reliability, and reproducibility of two different 3D face-scanning systems[J]. Int J Prosthodont, 2016, 29(3): 213-218. DOI: 10.11607/ijp.4397
|
[43] |
Hajeer M Y, Millett D T, Ayoub A F, et al. Applications of 3D imaging in orthodontics: part Ⅰ[J]. J Orthod, 2004, 31(1): 62-70. DOI: 10.1179/146531204225011346
|
[44] |
Gibelli D, Pucciarelli V, Cappella A, et al. Are portable stereophotogrammetric devices reliable in facial imaging? A validation study of VECTRA H1 device[J]. J Oral Maxillofac Surg, 2018, 76(8): 1772-1784. DOI: 10.1016/j.joms.2018.01.021
|
[45] |
Camison L, Bykowski M, Lee W W, et al. Validation of the Vectra H1 portable three-dimensional photogrammetry system for facial imaging[J]. Int J Oral Maxillofac Surg, 2018, 47(3): 403-410. DOI: 10.1016/j.ijom.2017.08.008
|
[46] |
Pellitteri F, Scisciola F, Cremonini F, et al. Accuracy of 3D facial scans: a comparison of three different scanning system in an in vivo study[J]. Prog Orthod, 2023, 24(1): 44. DOI: 10.1186/s40510-023-00496-x
|
[47] |
Chong Y M, Liu X Y, Shi M, et al. Three-dimensional facial scanner in the hands of patients: validation of a novel application on iPad/iPhone for three-dimensional imaging[J]. Ann Transl Med, 2021, 9(14): 1115. DOI: 10.21037/atm-21-1620
|
[48] |
Yi C R, Kim M J, Kim S C, et al. Comparison of facial proportions between eastern and western attractive young women[J]. J Craniofac Surg, 2020, 31(3): e303-e306. DOI: 10.1097/SCS.0000000000006196
|
[49] |
Kim Y C, Kwon J G, Kim S C, et al. Comparison of periorbital anthropometry between beauty pageant contestants and ordinary young women with Korean ethnicity: a three-dimensional photogrammetric analysis[J]. Aesthetic Plast Surg, 2018, 42(2): 479-490. DOI: 10.1007/s00266-017-1040-7
|
[50] |
Chong Y M, Li J Y, Liu X Y, et al. Three-dimensional anthropometric analysis of eyelid aging among Chinese women[J]. J Plast Reconstr Aesthet Surg, 2021, 74(1): 135-142. DOI: 10.1016/j.bjps.2020.08.010
|
[51] |
Modabber A, Peters F, Galster H, et al. Three-dimensional evaluation of important surgical landmarks of the face during aging[J]. Ann Anat, 2020, 228: 151435. DOI: 10.1016/j.aanat.2019.151435
|
[52] |
Lambros V. Facial aging: a 54-year, three-dimensional population study[J]. Plast Reconstr Surg, 2020, 145(4): 921-928. DOI: 10.1097/PRS.0000000000006711
|
[53] |
Kim B R, Kim M, Kim J W, et al. Efficacy and safety of the micro-insulated needle radiofrequency device for reduction of submental fat[J]. Dermatol Surg, 2023, 49(4): 389-394. DOI: 10.1097/DSS.0000000000003723
|
[54] |
Nikolis A, Bertucci V, Solish N, et al. An objective, quantitative assessment of flexible hyaluronic acid fillers in lip and perioral enhancement[J]. Dermatol Surg, 2021, 47(5): e168-e173. DOI: 10.1097/DSS.0000000000002917
|
[55] |
Mailey B, Baker J L, Hosseini A, et al. Evaluation of facial volume changes after rejuvenation surgery using a 3-dimensional camera[J]. Aesthet Surg J, 2016, 36(4): 379-387. DOI: 10.1093/asj/sjv226
|
[56] |
Dolci C, Sansone V A, Gibelli D, et al. Distinctive facial features in Andersen-Tawil syndrome: a three-dimensional stereophotogrammetric analysis[J]. Am J Med Genet A, 2021, 185(3): 781-789. DOI: 10.1002/ajmg.a.62040
|
[57] |
Jayaratne Y S N, Elsharkawi I, Macklin E A, et al. The facial morphology in Down syndrome: a 3D comparison of patients with and without obstructive sleep apnea[J]. Am J Med Genet A, 2017, 173(11): 3013-3021. DOI: 10.1002/ajmg.a.38399
|
[58] |
Ji C, Yao D, Li M Y, et al. A study on facial features of children with Williams syndrome in China based on three-dimensional anthropometric measurement technology[J]. Am J Med Genet A, 2020, 182(9): 2102-2109. DOI: 10.1002/ajmg.a.61750
|
[59] |
Lin H C, Le Hoang P, Hutchinson A, et al. Alagille syndrome in a Vietnamese cohort: mutation analysis and assessment of facial features[J]. Am J Med Genet A, 2012, 158A(5): 1005-1013. DOI: 10.1002/ajmg.a.35255
|
[60] |
Guo X P, Meng T, Huang J Z, et al. 3D facial analysis in acromegaly: gender-specific features and clinical correlations[J]. Front Endocrinol (Lausanne), 2018, 9: 722. DOI: 10.3389/fendo.2018.00722
|
[61] |
Wang M H, Lin J D, Chang C N, et al. Acromegaly determination using discriminant analysis of the three-dimensional facial classification in Taiwanese[J]. Neuro Endocrinol Lett, 2017, 38(4): 301-309.
|
[62] |
Du F Z, Chen Q, Wang X J, et al. Long-term facial changes and clinical correlations in patients with treated acromegaly: a cohort study[J]. Eur J Endocrinol, 2021, 184(2): 231-241. DOI: 10.1530/EJE-20-0962
|
[63] |
Botticelli S, Pedersen T K, Küseler A, et al. Novel 3-D analysis for the assessment of cleft dimensions on digital models of infants with unilateral cleft lip and palate[J]. Cleft Palate Craniofac J, 2019, 56(1): 127-133. DOI: 10.1177/1055665618770795
|
[64] |
Desmedt D J, Maal T J, Kuijpers M A, et al. Nasolabial symmetry and esthetics in cleft lip and palate: analysis of 3D facial images[J]. Clin Oral Investig, 2015, 19(8): 1833-1842. DOI: 10.1007/s00784-015-1445-0
|
[65] |
Ganske I M, Langa O C, Mulliken J B. Philtral ridge projection in repaired unilateral cleft lip: Three-Dimensional anthropometry[J]. Plast Reconstr Surg, 2021, 147(1): 141-147. DOI: 10.1097/PRS.0000000000007460
|
[66] |
Gurovich Y, Hanani Y, Bar O, et al. Identifying facial phenotypes of genetic disorders using deep learning[J]. Nat Med, 2019, 25(1): 60-64. DOI: 10.1038/s41591-018-0279-0
|
[67] |
Cornejo J Y R, Pedrini H, Machado-Lima A, et al. Down syndrome detection based on facial features using a geometric descriptor[J]. J Med Imaging (Bellingham), 2017, 4(4): 044008.
|
[68] |
Zhao Q, Rosenbaum K, Okada K, et al. Automated down syndrome detection using facial photographs[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2013, 2013: 3670-3673.
|
[69] |
Dhanamjayulu C, Nizhal U N, Maddikunta P K R, et al. Identification of malnutrition and prediction of BMI from facial images using real-time image processing and machine learning[J]. IET Image Process, 2022, 16(3): 647-658. DOI: 10.1049/ipr2.12222
|
[70] |
Song W A, Lei Y, Chen S, et al. Multiple facial image features-based recognition for the automatic diagnosis of turner syndrome[J]. Comput Ind, 2018, 100: 85-95. DOI: 10.1016/j.compind.2018.03.021
|
[71] |
Meng T, Guo X P, Lian W, et al. Identifying facial features and predicting patients of acromegaly using three-dimensional imaging techniques and machine learning[J]. Front Endocrinol (Lausanne), 2020, 11: 492. DOI: 10.3389/fendo.2020.00492
|
[72] |
Guarin D L, Yunusova Y, Taati B, et al. Toward an automatic system for computer-aided assessment in facial palsy[J]. Facial Plast Surg Aesthet Med, 2020, 22(1): 42-49. DOI: 10.1089/fpsam.2019.29000.gua
|
[73] |
Guarin D L, Dusseldorp J, Hadlock T A, et al. A machine learning approach for automated facial measurements in facial palsy[J]. JAMA Facial Plast Surg, 2018, 20(4): 335-337. DOI: 10.1001/jamafacial.2018.0030
|
[74] |
Pan Z X, Shen Z, Zhu H J, et al. Clinical application of an automatic facial recognition system based on deep learning for diagnosis of Turner syndrome[J]. Endocrine, 2021, 72(3): 865-873. DOI: 10.1007/s12020-020-02539-3
|
[75] |
Latorre-Pellicer A, Ascaso Á, Trujillano L, et al. Evaluat-ing Face2Gene as a tool to identify Cornelia de Lange syndrome by facial phenotypes[J]. Int J Mol Sci, 2020, 21(3): 1042. DOI: 10.3390/ijms21031042
|
[76] |
Wilamowska K, Shapiro L, Heike C. Classification of 3D face shape in 22Q11.2 deletion syndrome[C]//Proceedings of the Sixth IEEE international conference on Symposium on Biomedical Imaging: From Nano to Macro. Piscataway, NJ: IEEE Press, 2009: 534-537.
|
[77] |
Hartmann T J, Hartmann J B J, Friebe-Hoffmann U, et al. Novel method for three-dimensional facial expression recognition using self-normalizing neural networks and mobile devices[J]. Geburtshilfe Frauenheilkd, 2022, 82(9): 955-969. DOI: 10.1055/a-1866-2943
|
[78] |
Yang Y Y, Zhang M Y, Jin L, et al. Gender- and age-related characterization of lip morphology: a three-dimensi-onal analysis in a Chinese population[J]. Aesthet Surg J, 2023, 43(12): NP990-NP1000. DOI: 10.1093/asj/sjad270
|
[79] |
Bannister J J, Crites S R, Aponte J D, et al. Fully automatic landmarking of syndromic 3D facial surface scans using 2D images[J]. Sensors (Basel), 2020, 20(11): 3171. DOI: 10.3390/s20113171
|
[80] |
Chong Y M, Xiao Y D, Li Z M, et al. Introduction and validation of an automatic and low-cost three-dimensional facial imaging system: a comparison to direct anthropometry and Vectra H1[J]. Quant Imaging Med Surg, 2023, 13(5): 2922-2932. DOI: 10.21037/qims-22-900
|
[81] |
Fu Z Y, Jiao J B, Suttie M, et al. Facial anatomical landmark detection using regularized transfer learning with application to fetal alcohol syndrome recognition[J]. IEEE J Biomed Health Inform, 2022, 26(4): 1591-1601. DOI: 10.1109/JBHI.2021.3110680
|
[82] |
Chong Y M, Du F Z, Ma X D, et al. Automated anatomical landmark detection on 3D facial images using U-NET-based deep learning algorithm[J]. Quant Imaging Med Surg, 2024, 14(3): 2466-2474. DOI: 10.21037/qims-22-1108
|
[83] |
Jiang C, Jiang F L, Xie Z K, et al. Evaluation of automated detection of head position on lateral cephalometric radiographs based on deep learning techniques[J]. Ann Anat, 2023, 250: 152114. DOI: 10.1016/j.aanat.2023.152114
|
[84] |
Hsieh T C, Bar-Haim A, Moosa S, et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors[J]. Nat Gene, 2022, 54(3): 349-357. DOI: 10.1038/s41588-021-01010-x
|
[85] |
Bannister J J, Wilms M, Aponte J D, et al. A Deep Invertible 3D Facial Shape Model For Interpretable Genetic Syndrome Diagnosis[J]. IEEE J Biomed Health Inform, 2022, 26(7): 3229-3239. DOI: 10.1109/JBHI.2022.3164848
|
[86] |
Rouxel F, Yauy K, Boursier G, et al. Using deep-neural-network-driven facial recognition to identify distinct Kabuki syndrome 1 and 2 gestalt[J]. Eur J Hum Genet, 2022, 30(6): 682-686. DOI: 10.1038/s41431-021-00994-8
|
[87] |
Yang Y Y, Zhang M Y, An Y C, et al. Automated 3D perioral landmark detection using high-resolution network: artificial intelligence-based anthropometric analysis[J]. Aesthet Surg J, 2024, 44(8): NP606-NP612. DOI: 10.1093/asj/sjae103
|
[88] |
Meintjes E M, Douglas T S, Martinez F, et al. A stereo-photogrammetric method to measure the facial dysmorphology of children in the diagnosis of fetal alcohol syndrome[J]. Med Eng Phys, 2002, 24(10): 683-689. DOI: 10.1016/S1350-4533(02)00114-5
|
[89] |
Gross M M, Trotman C A, Moffatt K S. A comparison of three-dimensional and two-dimensional analyses of facial motion[J]. Angle Orthod, 1996, 66(3): 189-194.
|
[90] |
Goos M I M, Alberink I B, Ruifrok A C C. 2D/3D image (facial) comparison using camera matching[J]. Forensic Sci Int, 2006, 163(1/2): 10-17.
|
[91] |
Berssenbrügge P, Berlin N F, Kebeck G, et al. 2D and 3D analysis methods of facial asymmetry in comparison[J]. J Craniomaxillofac Surg, 2014, 42(6): e327-e334. DOI: 10.1016/j.jcms.2014.01.028
|
[92] |
Gašparović B, Morelato L, Lenac K, et al. Comparing direct measurements and three-dimensional (3D) scans for evaluating facial soft tissue[J]. Sensors (Basel), 2023, 23(5): 2412. DOI: 10.3390/s23052412
|
[1] | XU Kexin, LI Guozhuang, WU Zhihong, ZHANG Jianguo, DISCO(Deciphering Disorders Involving Scoliosis & Comorbidities) Study Group, WU Nan. Progress in Clinical Diagnosis and Management of Short Stature in Ehlers-Danlos Syndromes[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 163-170. DOI: 10.12290/xhyxzz.2024-0173 |
[2] | ZHANG Shan, LIU Jie. Interpretation of NCCN Clinical Practice Guidelines for Primary Cutaneous Lymphomas (Version 1.2024) Based on the Current Diagnosis and Treatment Status of China[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1029-1037. DOI: 10.12290/xhyxzz.2024-0605 |
[3] | QIANG Jiaqi, HUANG Jiuzuo, TANG Xin, PAN Hui, LONG Xiao, CHEN Shi. Applications of Three-dimensional Facial Features in Disease Diagnosis and Treatment[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0717 |
[4] | WANG Pu, ZHANG Wenyang, WANG Yongfeng, XIA Yin. Predictive Value of Intraoperative Facial Nerve Response Thresholds on the Recovery Effect After Facial Nerve Decompression[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1246-1250. DOI: 10.12290/xhyxzz.2023-0161 |
[5] | XU Zhiqin. The Strategy of Facial Nerve Preservation in Acoustic Neuroma Surgery via Suboccipital Retrosigmoid Approach[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 1004-1008. DOI: 10.12290/xhyxzz.2021-0569 |
[6] | ZHANG Liqin, ZHAO Yang, TIAN Xu, GAO Zhiqiang, FENG Guodong. Analysis of the Effect of Facial Nerve Processing in the Surgery of Paraganglioma of the Lateral Skull Base Area[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 946-951. DOI: 10.12290/xhyxzz.2021-0576 |
[7] | Rare Diseases Society of Chinese Research Hospital Association, National Rare Diseases Committee, Beijing Rare Disease Diagnosis, Treatment and Protection Society, Gitelman Syndrome Consensus Working Group. Expert Consensus for the Diagnosis and Treatment of Gitelman Syndrome in China (2021)[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 902-912. DOI: 10.12290/xhyxzz.2021-0555 |
[8] | Wei-qing HUANG. Plastic Surgery for Facial Hemiatrophy with Facial Paralysis[J]. Medical Journal of Peking Union Medical College Hospital, 2015, 6(5): 348-351. DOI: 10.3969/j.issn.1674-9081.2015.05.007 |
[10] | Zhi-lan MENG, Liang GAO, Jian-gang GU, Yu-feng LUO, Tao-ling ZHONG, Chen-yan ZHU. Application of Automatic DNA Image Cytometry in Diagnosis of Pleural Effusion[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 36-40. DOI: 10.3969/j.issn.1674-9081.2012.01.009 |