Citation: | XU Kexin, LI Guozhuang, WU Zhihong, ZHANG Jianguo, DISCO(Deciphering Disorders Involving Scoliosis & Comorbidities) Study Group, WU Nan. Progress in Clinical Diagnosis and Management of Short Stature in Ehlers-Danlos Syndromes[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 163-170. DOI: 10.12290/xhyxzz.2024-0173 |
Ehlers-Danlos syndromes (EDS) are a group of rare hereditary connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Short stature is defined as a height that is two standard deviations or more below the average height for individuals of the same age, sex, and race. The etiopathogenesis of short stature is complicated. Early detection and appropriate intervention are essential in disease treatment. However, short stature is not common among all EDS subtypes. It is frequently observed in patients with rare subtypes, such as spondylodysplastic EDS, dermatosparaxis EDS, and musculo-contractural EDS. Besides, height may be affected by other factors including spinal curvature and malnutrition. Deep phenotyping and multidisciplinary team approaches are recommended for the diagnosis and management. Short stature in patients with EDS has not been sufficiently acknowledged in China. There is currently a lack of high-level evidence for the treatment of EDS-related short stature. Therefore, this review aims to present recent progress of diagnosis and management of short stature in patients with EDS. Further studies focusing on short stature in rare subtypes are necessary to advance precision medicine and enhance patient care.
[1] |
中国Ehlers-Danlos综合征多学科诊疗协作组. 中国Ehlers-Danlos综合征诊疗指南[J]. 罕见病研究, 2023, 2(4): 554-588.
Chinese Multi-Disciplinary Working Group on the Ehlers-Danlos Syndromes. Chinese guidelines for diagnosis and treatment of the Ehlers-Danlos syndromes[J]. J Rare Dis, 2023, 2(4): 554-588.
|
[2] |
徐可欣, 李国壮, 邱贵兴, 等. 埃勒斯-当洛综合征临床诊疗的研究进展[J]. 中华骨与关节外科杂志, 2022, 15(11): 838-844. DOI: 10.3969/j.issn.2095-9958.2022.11.04
Xu K X, Li G Z, Qiu G X, et al. Progress in clinical diagnosis and management of Ehlers-Danlos syndromes[J]. Chin J Bone Joint Surg, 2022, 15(11): 838-844. DOI: 10.3969/j.issn.2095-9958.2022.11.04
|
[3] |
Malfait F, Castori M, Francomano C A, et al. The Ehlers-Danlos syndromes[J]. Nat Rev Dis Primers, 2020, 6(1): 64. DOI: 10.1038/s41572-020-0194-9
|
[4] |
El Mouzan M I, Al Herbish A S, Al Salloum A A, et al. Prevalence of short stature in Saudi children and adolescents[J]. Ann Saudi Med, 2011, 31(5): 498-501. DOI: 10.4103/0256-4947.84628
|
[5] |
Storr H L, Freer J, Child J, et al. Assessment of childhood short stature: a GP guide[J]. Br J Gen Pract, 2023, 73(729): 184-186. DOI: 10.3399/bjgp23X732525
|
[6] |
Saltarelli M A, Quarta A, Chiarelli F. Growth plate extracellular matrix defects and short stature in children[J]. Ann Pediatr Endocrinol Metab, 2022, 27(4): 247-255. DOI: 10.6065/apem.2244120.060
|
[7] |
Fan X, Zhao S, Yu C X, et al. Exome sequencing reveals genetic architecture in patients with isolated or syndromic short stature[J]. J Genet Genomics, 2021, 48(5): 396-402. DOI: 10.1016/j.jgg.2021.02.008
|
[8] |
Danowitz M, Grimberg A. Clinical indications for growth hormone therapy[J]. Adv Pediatr, 2022, 69(1): 203-217. DOI: 10.1016/j.yapd.2022.03.005
|
[9] |
Cleemann Wang A, Hagen C P, Nedaeifard L, et al. Growth and adult height in girls with turner syndrome following IGF-1 titrated growth hormone treatment[J]. J Clin Endocrinol Metab, 2020, 105(8): dgaa274.
|
[10] |
Marzin P, Cormier-Daire V. New perspectives on the treatment of skeletal dysplasia[J]. Ther Adv Endocrinol Metab, 2020, 11: 2042018820904016. DOI: 10.1177/2042018820904016
|
[11] |
Murton M C, Drane E L A, Goff-Leggett D M, et al. Burden and treatment of achondroplasia: a systematic literature review[J]. Adv Ther, 2023, 40(9): 3639-3680. DOI: 10.1007/s12325-023-02549-3
|
[12] |
Kim H Y, Ko J M. Clinical management and emerging therapies of FGFR3-related skeletal dysplasia in childhood[J]. Ann Pediatr Endocrinol Metab, 2022, 27(2): 90-97. DOI: 10.6065/apem.2244114.057
|
[13] |
Tanaka T. History of GH treatment in Japan[J]. Clin Pediatr Endocrinol, 2022, 31(1): 1-9. DOI: 10.1297/cpe.2021-0044
|
[14] |
Jin H S, Song H Y, Cho S Y, et al. Acromicric dysplasia caused by a novel heterozygous mutation of FBN1 and effects of growth hormone treatment[J]. Ann Lab Med, 2017, 37(1): 92-94. DOI: 10.3343/alm.2017.37.1.92
|
[15] |
Shen R, Feng J H, Yang S P. Acromicric dysplasia caused by a mutation of fibrillin 1 in a family: a case report[J]. World J Clin Cases, 2023, 11(9): 2036-2042. DOI: 10.12998/wjcc.v11.i9.2036
|
[16] |
Bai X, Zhou D, Brown J R, et al. Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase Ⅱ, the sixth member of the beta 1, 3-galactosyltransferase family (beta 3GalT6)[J]. J Biol Chem, 2001, 276(51): 48189-48195. DOI: 10.1074/jbc.M107339200
|
[17] |
Wight T N, Kinsella M G, Qwarnström E E. The role of proteoglycans in cell adhesion, migration and proliferation[J]. Curr Opin Cell Biol, 1992, 4(5): 793-801. DOI: 10.1016/0955-0674(92)90102-I
|
[18] |
Junqueira L C, Montes G S. Biology of collagen-proteoglycan interaction[J]. Arch Histol Jpn, 1983, 46(5): 589-629. DOI: 10.1679/aohc.46.589
|
[19] |
Bin B H, Hojyo S, Ryong Lee T, et al. Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and the mutant zinc transporter ZIP13[J]. Rare Dis, 2014, 2(1): e974982. DOI: 10.4161/21675511.2014.974982
|
[20] |
Giunta C, Elçioglu N H, Albrecht B, et al. Spondylo-cheiro dysplastic form of the Ehlers-Danlos syndrome--an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13[J]. Am J Hum Genet, 2008, 82(6): 1290-1305. DOI: 10.1016/j.ajhg.2008.05.001
|
[21] |
Malfait F, Francomano C, Byers P, et al. The 2017 international classification of the Ehlers-Danlos syndromes[J]. Am J Med Genet C Semin Med Genet, 2017, 175(1): 8-26. DOI: 10.1002/ajmg.c.31552
|
[22] |
Delbaere S, Van Damme T, Syx D, et al. Hypomorphic zebrafish models mimic the musculoskeletal phenotype of β4GalT7-deficient Ehlers-Danlos syndrome[J]. Matrix Biol, 2020, 89: 59-75. DOI: 10.1016/j.matbio.2019.12.002
|
[23] |
Delbaere S, De Clercq A, Mizumoto S, et al. b3galt6 Knock-out zebrafish recapitulate β3GalT6-deficiency disorders in human and reveal a trisaccharide proteoglycan linkage region[J]. Front Cell Dev Biol, 2020, 8: 597857. DOI: 10.3389/fcell.2020.597857
|
[24] |
Caraffi S G, Maini I, Ivanovski I, et al. Severe peripheral joint laxity is a distinctive clinical feature of spondylodysplastic-Ehlers-Danlos syndrome (EDS)-B4GALT7 and spondylodysplastic-EDS-B3GALT6[J]. Genes (Basel), 2019, 10(10): 799. DOI: 10.3390/genes10100799
|
[25] |
Coetzer K C, Dieckerhoff J, Wollnik B, et al. B3GALT6- linkeropathy: three illustrative patients spanning the disease spectrum[J]. Eur J Med Genet, 2023, 66(10): 104829. DOI: 10.1016/j.ejmg.2023.104829
|
[26] |
Agrawal P, Kaur H, Kondekar A, et al. A case of Ehlers-Danlos syndrome presenting as short stature: a novel mutation in SLC39A13 causing spondylodysplastic Ehlers-Danlos syndrome[J]. Oxf Med Case Reports, 2023, 2023(1): omac107. DOI: 10.1093/omcr/omac107
|
[27] |
Kumps C, Campos-Xavier B, Hilhorst-Hofstee Y, et al. The connective tissue disorder associated with recessive variants in the SLC39A13 zinc transporter gene (spondylo-dysplastic Ehlers-Danlos syndrome type 3): insights from four novel patients and follow-up on two original cases[J]. Genes (Basel), 2020, 11(4): 420. DOI: 10.3390/genes11040420
|
[28] |
Malfait F, Kariminejad A, Van Damme T, et al. Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder[J]. Am J Hum Genet, 2013, 92(6): 935-945. DOI: 10.1016/j.ajhg.2013.04.016
|
[29] |
Guo M H, Stoler J, Lui J, et al. Redefining the progeroid form of Ehlers-Danlos syndrome: report of the fourth patient with B4GALT7 deficiency and review of the literature[J]. Am J Med Genet A, 2013, 161A(10): 2519-2527.
|
[30] |
Salter C G, Davies J H, Moon R J, et al. Further defining the phenotypic spectrum of B4GALT7 mutations[J]. Am J Med Genet A, 2016, 170(6): 1556-1563. DOI: 10.1002/ajmg.a.37604
|
[31] |
Ritelli M, Dordoni C, Cinquina V, et al. Expanding the clinical and mutational spectrum of B4GALT7-spondylodysplastic Ehlers-Danlos syndrome[J]. Orphanet J Rare Dis, 2017, 12(1): 153. DOI: 10.1186/s13023-017-0704-3
|
[32] |
Sandler-Wilson C, Wambach J A, Marshall B A, et al. Phenotype and response to growth hormone therapy in siblings with B4GALT7 deficiency[J]. Bone, 2019, 124: 14-21. DOI: 10.1016/j.bone.2019.03.029
|
[33] |
Colige A, Sieron A L, Li S W, et al. Human Ehlers-Danlos syndrome type Ⅶ C and bovine dermatosparaxis are caused by mutations in the procollagen Ⅰ N-proteinase gene[J]. Am J Hum Genet, 1999, 65(2): 308-317. DOI: 10.1086/302504
|
[34] |
Van Damme T, Colige A, Syx D, et al. Expanding the clinical and mutational spectrum of the Ehlers-Danlos syndrome, dermatosparaxis type[J]. Genet Med, 2016, 18(9): 882-891. DOI: 10.1038/gim.2015.188
|
[35] |
Desai A, Connolly J J, March M, et al. Systematic data-querying of large pediatric biorepository identifies novel Ehlers-Danlos Syndrome variant[J]. BMC Musculoskelet Disord, 2016, 17: 80. DOI: 10.1186/s12891-016-0936-8
|
[36] |
Colige A, Nuytinck L, Hausser I, et al. Novel types of mutation responsible for the dermatosparactic type of Ehlers-Danlos syndrome (Type ⅦC) and common polymorphisms in the ADAMTS2 gene[J]. J Invest Dermatol, 2004, 123(4): 656-663. DOI: 10.1111/j.0022-202X.2004.23406.x
|
[37] |
Simon R, Kiener S, Thom N, et al. Identification of an ADAMTS2 frameshift variant in a cat family with Ehlers-Danlos syndrome[J]. G3 (Bethesda), 2023, 13(9): jkad152. DOI: 10.1093/g3journal/jkad152
|
[38] |
Mizumoto S, Yamada S. An overview of in vivo functions of chondroitin sulfate and dermatan sulfate revealed by their deficient mice[J]. Front Cell Dev Biol, 2021, 9: 764781. DOI: 10.3389/fcell.2021.764781
|
[39] |
Nitahara-Kasahara Y, Mizumoto S, Inoue Y U, et al. A new mouse model of Ehlers-Danlos syndrome generated using CRISPR/Cas9-mediated genomic editing[J]. Dis Model Mech, 2021, 14(12): dmm048963. DOI: 10.1242/dmm.048963
|
[40] |
Kosho T. CHST14/D4ST1 deficiency: new form of Ehlers-Danlos syndrome[J]. Pediatr Int, 2016, 58(2): 88-99. DOI: 10.1111/ped.12878
|
[41] |
Yoshizawa T, Mizumoto S, Takahashi Y, et al. Vascular abnormalities in the placenta of Chst14-/-fetuses: implications in the pathophysiology of perinatal lethality of the murine model and vascular lesions in human CHST14/D4ST1 deficiency[J]. Glycobiology, 2018, 28(2): 80-89. DOI: 10.1093/glycob/cwx099
|
[42] |
Schirwani S, Metcalfe K, Wagner B, et al. DSE associated musculocontractural EDS, a milder phenotype or phenotypic variability[J]. Eur J Med Genet, 2020, 63(4): 103798. DOI: 10.1016/j.ejmg.2019.103798
|
[43] |
Lautrup C K, Teik K W, Unzaki A, et al. Delineation of musculocontractural Ehlers-Danlos Syndrome caused by dermatan sulfate epimerase deficiency[J]. Mol Genet Genomic Med, 2020, 8(5): e1197. DOI: 10.1002/mgg3.1197
|
[44] |
Maccarana M, Kalamajski S, Kongsgaard M, et al. Dermatan sulfate epimerase 1-deficient mice have reduced content and changed distribution of iduronic acids in dermatan sulfate and an altered collagen structure in skin[J]. Mol Cell Biol, 2009, 29(20): 5517-5528. DOI: 10.1128/MCB.00430-09
|
[45] |
Morlino S, Micale L, Ritelli M, et al. COL1-related overlap disorder: a novel connective tissue disorder incorporating the osteogenesis imperfecta/Ehlers-Danlos syndrome overlap[J]. Clin Genet, 2020, 97(3): 396-406. DOI: 10.1111/cge.13683
|
[46] |
Ayoub S, Ghali N, Angwin C, et al. Clinical features, molecular results, and management of 12 individuals with the rare arthrochalasia Ehlers-Danlos syndrome[J]. Am J Med Genet A, 2020, 182(5): 994-1007. DOI: 10.1002/ajmg.a.61523
|
[47] |
Colman M, Vroman R, Dhooge T, et al. Kyphoscoliotic Ehlers-Danlos syndrome caused by pathogenic variants in FKBP14: further insights into the phenotypic spectrum and pathogenic mechanisms[J]. Hum Mutat, 2022, 43(12): 1994-2009. DOI: 10.1002/humu.24456
|
[48] |
Semyachkina A N, Nikolaeva E A, Galeeva N M, et al. Ehlers-Danlos syndrome kyphoscoliotic type 2 caused by mutations in the FKBP14 gene: an analysis of five cases[J]. F1000Res, 2021, 10: 502. DOI: 10.12688/f1000research.52268.1
|
[49] |
Nishiyama Y, Nejima J, Watanabe A, et al. Ehlers-Danlos syndrome type Ⅳ with a unique point mutation in COL3A1 and familial phenotype of myocardial infarction without organic coronary stenosis[J]. J Intern Med, 2001, 249(1): 103-108. DOI: 10.1046/j.1365-2796.2001.00761.x
|
[50] |
Junkiert-Czarnecka A, Pilarska-Deltow M, Bąk A, et al. New variants in COL5A1 gene among Polish patients with Ehlers-Danlos syndrome: analysis of nine cases[J]. Postepy Dermatol Alergol, 2019, 36(1): 29-33. DOI: 10.5114/ada.2018.79440
|
[51] |
Ritelli M, Dordoni C, Venturini M, et al. Clinical and molecular characterization of 40 patients with classic Ehlers-Danlos syndrome: identification of 18 COL5A1 and 2 COL5A2 novel mutations[J]. Orphanet J Rare Dis, 2013, 8: 58. DOI: 10.1186/1750-1172-8-58
|
[52] |
Guarnieri V, Morlino S, Di Stolfo G, et al. Cardiac valvular Ehlers-Danlos syndrome is a well-defined condition due to recessive null variants in COL1A2[J]. Am J Med Genet A, 2019, 179(5): 846-851. DOI: 10.1002/ajmg.a.61100
|
[53] |
Dhooge T, Van Damme T, Syx D, et al. More than meets the eye: expanding and reviewing the clinical and mutational spectrum of brittle cornea syndrome[J]. Hum Mutat, 2021, 42(6): 711-730. DOI: 10.1002/humu.24199
|
[54] |
Ritelli M, Cinquina V, Venturini M, et al. Expanding the clinical and mutational spectrum of recessive AEBP1-related classical-like Ehlers-Danlos syndrome[J]. Genes (Basel), 2019, 10(2): 135. DOI: 10.3390/genes10020135
|
[55] |
Nimkarn S, Gangishetti P K, Yau M, et al. 21-Hydroxylase-deficient congenital adrenal hyperplasia[M/OL]//Adam M P, Feldman J, Mirzaa G M, et al. GeneReviews®. Seattle: University of Washington, 1993: NBK1171[2024-03-01]. https://pubmed.ncbi.nlm.nih.gov/20301350/.
|
[56] |
Marino R, Garrido N P, Ramirez P, et al. Ehlers-Danlos syndrome: molecular and clinical characterization of TNXA/TNXB chimeras in congenital adrenal hyperplasia[J]. J Clin Endocrinol Metab, 2021, 106(7): e2789-e2802. DOI: 10.1210/clinem/dgab033
|
[57] |
李国壮, 徐可欣, 吴志宏, 等. 深度表型评估在罕见骨病精准医疗中的作用[J]. 罕见病研究, 2023, 2(4): 469-475.
Li G Z, Xu K X, Wu Z H, et al. The role of deep phenotyping of precision medicine for rare bone diseases[J]. J Rare Dis, 2023, 2(4): 469-475.
|
[58] |
Katarina B, Tatjana M, Srđan P, et al. First report on growth hormone treatment response in a patient with spondylodysplastic type of Ehlers-Danlos syndrome with normal growth hormone secretion[J]. Zdravstvena Zaštita, 2021, 50(1): 47-56. DOI: 10.5937/zdravzast50-30794
|
[59] |
Maghnie M, Ranke M B, Geffner M E, et al. Safety and efficacy of pediatric growth hormone therapy: results from the full KIGS cohort[J]. J Clin Endocrinol Metab, 2022, 107(12): 3287-3301. DOI: 10.1210/clinem/dgac517
|
[60] |
Haidar R K, Nasrallah M P, Der-Boghossian A H, et al. Orthopedic complications related to growth hormone therapy in a pediatric population[J]. J Pediatr Orthop B, 2011, 20(1): 57-61. DOI: 10.1097/BPB.0b013e32833ed967
|
[1] | LIU Qingyang, LIU Xin, WANG Shaohong, SHANG Junmei, TANG Yan, ZHANG Bo. Research of Accessibility of Rare Disease Drugs Based on the China's First List of Rare Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1208-1216. DOI: 10.12290/xhyxzz.2023-0163 |
[2] | ZHANG Lu, LI Jian. Castleman Disease in China: State-of-the-art Technology Before the Era of IL-6 Targeted Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 911-914. DOI: 10.12290/xhyxzz.2023-0227 |
[3] | ZHOU Qi, LI Qinyuan, LIU Yali, LUO Zhengxiu, ZHANG Weishe, CHEN Tong, LI Guobao, SHANG Hongcai, YANG Kehu, ZHANG Bo, CHEN Yaolong, ZHANG Shuyang. The Development of Guidelines for Rare Diseases: Past, Present and Future[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 621-628. DOI: 10.12290/xhyxzz.2022-0360 |
[4] | CHEN Chen, HAN Xiaohong. Clinical Trials of Rare Diseases in China over One Decade: Based on the Chinese First List of Rare Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 1028-1035. DOI: 10.12290/xhyxzz.2022-0010 |
[5] | HE Shan, GAO Shiqi, HE Xinyue, LIU Peng, JIN Ye, LI Xiangyan, ZHU Yicheng, CHEN Limeng, ZHU Weiguo, ZHANG Shuyang. Advances in Rare Diseases in China (2020—2021)[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 39-45. DOI: 10.12290/xhyxzz.2021-0248 |
[6] | YU Songlin, WANG Danchen, ZOU Yutong, MA Xiaoli, QIU Ling. The Clinical Application of Liquid Chromatography-Tandem Mass Spectrometry in the Diagnosis of Rare Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 450-455. DOI: 10.12290/xhyxzz.2021-0324 |
[7] | Shi CHEN, Xi BAI, Hui PAN, Hui-juan ZHU. Training of Clinical Thinking about Rare Diseases from a Case of Hypothalamic and Pituitary Mass[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 343-346. DOI: 10.3969/j.issn.1674-9081.20200057 |
[8] | Liang SHI, Ya-zhou CUI, Jin-xiang HAN. Models of Rare Diseases Based on Induced Pluripotent Stem Cells and Their Applications[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(3): 261-270. DOI: 10.3969/j.issn.1674-9081.2018.03.014 |
[9] | Zhaoyun Jiang, Yulan lU, Le Yu, Mengchun Gong, Wenzhao Shi, Shuyang Zhang, Wenhao Zhou. Progress and Application of Medical Informatics in the Diagnosis and Treatment of Rare Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(2): 165-171. DOI: 10.3969/j.issn.1674-9081.2018.02.012 |
[10] | Hao-peng XU, Chong ZHU, Meng-chun GONG, Shu-yang ZHANG. Research of Rare Diseases in China: from the Past to the Future[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 5-9. DOI: 10.3969/j.issn.1674-9081.2018.01.002 |