Zhaoyun Jiang, Yulan lU, Le Yu, Mengchun Gong, Wenzhao Shi, Shuyang Zhang, Wenhao Zhou. Progress and Application of Medical Informatics in the Diagnosis and Treatment of Rare Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(2): 165-171. doi: 10.3969/j.issn.1674-9081.2018.02.012
Citation: Zhaoyun Jiang, Yulan lU, Le Yu, Mengchun Gong, Wenzhao Shi, Shuyang Zhang, Wenhao Zhou. Progress and Application of Medical Informatics in the Diagnosis and Treatment of Rare Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(2): 165-171. doi: 10.3969/j.issn.1674-9081.2018.02.012

Progress and Application of Medical Informatics in the Diagnosis and Treatment of Rare Diseases

doi: 10.3969/j.issn.1674-9081.2018.02.012
More Information
  • Corresponding author: ZHANG Shu-yang   ZHANG Shu-yang, Email:shuyangzhang103@163.com; ZHOU Wen-hao   Tel; 021-64931016, Email:zwhchfu@126.com
  • Received Date: 2017-12-27
  • Publish Date: 2018-03-30
  • Rare diseases have a wide variety, complicated manifestations, and genetic and clinical heterogeneity, which make the diagnosis highly challenging.Moreover, many of the diseases lack effective therapies.The research in medical informatics technologies, such as clinical semantic system, genomic data analysis, imaging data analysis, and multi-omics data fusion analysis, has been greatly improved with the development of precision medical informatics, which is gradually breaking the restrictions of rare disease in data sharing and scientific research of rare diseases. Integrating and studying the shared data of rare diseases from different sources is conducive to the discovery of more pathogenic loci and the development of orphan drugs, which will promote the diagnosis and treatment of rare diseases. This review aims to introduce recent research progresses and applications of medical informatics technologies on rare diseases, in order to promote the development of medical informatics in the diagnosis and treatment of rare disease.
  • loading
  • [1] Fung KW, Richesson R, Bodenreider O. Coverage of rare disease names in standard terminologies and implications for patients, providers, and research [J]. AMIA Annu Symp Proc, 2014: 564-572. http://www.ncbi.nlm.nih.gov/pubmed/25954361?dopt
    [2] Boycott KM, Dyment DA, Sawyer SL, et al. Identification of genes for childhood heritable diseases [J]. Annu Rev Med, 2014, 65: 19-31. doi:  10.1146/annurev-med-101712-122108
    [3] Schieppati A, Henter JI, Daina E, et al. Why rare diseases are an important medical and social issue [J]. Lancet, 2008, 371: 2039-2041. doi:  10.1016/S0140-6736(08)60872-7
    [4] Boycott KM, Rath A, Chong JX, et al. International cooperation to enable the diagnosis of all rare genetic diseases [J]. Am J Hum Genet, 2017, 100: 695-705. doi:  10.1016/j.ajhg.2017.04.003
    [5] Liang J, Wei K, Meng Q, et al. Development of medical informatics in China over the past 30 years from a conference perspective and a Sino-American comparison [J]. Peer J, 2017, 5: e4082.
    [6] Roos M, López Martin E, Wilkinson MD. Preparing data at the source to foster interoperability across rare disease resources [J]. Adv Exp Med Biol, 2017, 1031: 165-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9bcbb0af08c4b5d2a45f67db0ca063df
    [7] Ma'ayan A, Rouillard AD, Clark NR, et al. Lean big data integration in systems biology and systems pharmacology [J]. Trends Pharmacol Sci, 2014, 35: 450-460. doi:  10.1016/j.tips.2014.07.001
    [8] He Z, Chen Y, de Coronado S, et al. Topological-pattern-based recommendation of UMLS concepts for national cancer institute thesaurus [J]. AMIA Annu Symp Proc, 2016: 618-627. http://europepmc.org/abstract/MED/28269858
    [9] Köhler S, Vasilevsky NA, Engelstad M, et al. The human phenotype ontology in 2017 [J]. Nucleic Acids Res, 2017, 45: D865-D876. http://www.ncbi.nlm.nih.gov/pubmed/27899602
    [10] Köhler S, Doelken SC, Mungall CJ, et al. The human phenotype ontology project: linking molecular biology and disease through phenotype data [J]. Nucleic Acids Res, 2014, 42: D966-D974. doi:  10.1093/nar/gkt1026
    [11] Greene D, BioResource N, Richardson S, et al. Phenotype similarity regression for identifying the genetic determinants of rare diseases [J]. Am J Hum Genet, 2016, 98: 490-499. doi:  10.1016/j.ajhg.2016.01.008
    [12] Sarntivijai S, Vasant D, Jupp S, et al. Linking rare and common disease: mapping clinical disease-phenotypes to ontologies in therapeutic target validation [J]. J Biomed Semantics, 2016, 7: 8. doi:  10.1186/s13326-016-0051-7
    [13] Velupillai S, Mowery D, South BR, et al. Recent advances in clinical natural language processing in support of semantic analysis [J]. Yearb Med Inform, 2015, 10: 183-193. http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM26293867.aspx
    [14] Machado CM, Rebholz-Schuhmann D, Freitas AT, et al. The semantic web in translational medicine: current applications and future directions [J]. Brief Bioinform, 2015, 16: 89-103. doi:  10.1093/bib/bbt079
    [15] De Silva TS, MacDonald D, Paterson G, et al. Systematized nomenclature of medicine clinical terms (SNOMED CT) to represent computed tomography procedures [J]. Comput Methods Programs Biomed, 2011, 101: 324-329. doi:  10.1016/j.cmpb.2011.01.002
    [16] Lambin P, Leijeaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine [J]. Nat Rev Clin Oncol, 2017, 14: 749-762. doi:  10.1038/nrclinonc.2017.141
    [17] Polan DF, Brady SL, Kaufman RA.Tissue segmentation of computed tomography images using a random forest algorithm: a feasibility study [J]. Phys Med Biol, 2016, 61: 6553-6569. doi:  10.1088/0031-9155/61/17/6553
    [18] Zhang L, Fried DV, Fave XJ, et al. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics [J]. Med Phys, 2015, 42: 1341-1353. doi:  10.1118/1.4908210
    [19] Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers [J]. Sci Rep, 2015, 5: 13087. doi:  10.1038/srep13087
    [20] Liehr T, Acquarola N, Pyle K, et al. Next generation phenotyping in emanuel and pallister-killian syndrome using computer-aided facial dysmorphology analysis of 2D photos [J]. Clin Genet, 2018, 93:378-381. doi:  10.1111/cge.13087
    [21] Katsanis SH, Katsanis N. Molecular genetic testing and the future of clinical genomics [J]. Nat Rev Genet, 2013, 14: 415-426. http://www.ncbi.nlm.nih.gov/pubmed/23681062/
    [22] Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequencing as a tool for mendelian disease gene discovery [J]. Nat Rev Genet, 2011, 12: 745-755. doi:  10.1038/nrg3031
    [23] Fernandez-Marmiesse A, Gouveia S, Couce ML. NGS technologies as a turning point in rare disease research, diagno-sis, and treatment [J]. Curr Med Chem, 2018, 25:404-432. doi:  10.2174/0929867324666170718101946
    [24] Gligorijevi c V, Malod-Dognin N, Pr z ulj N. Integrative meth-ods for analyzing big data in precision medicine [J]. Proteomics, 2016, 16: 741-758. doi:  10.1002/pmic.201500396
    [25] Visscher PM, Brown MA, McCarthy MI, et al. Five years of GWAS discovery [J]. Am J Hum Genet, 2012, 90: 7-24. doi:  10.1016/j.ajhg.2011.11.029
    [26] Denny JC, Bastarache L, Roden DM. Phenome-wide association studies as a tool to advance precision medicine [J]. Annu Rev Genomics Hum Genet, 2016, 17: 353-373. doi:  10.1146/annurev-genom-090314-024956
    [27] Visscher PM, Wray NR, Zhang Q, et al. 10 Years of GWAS discovery: biology, function, and translation [J]. Am J Hum Genet, 2017, 101: 5-22. doi:  10.1016/j.ajhg.2017.06.005
    [28] Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations [J]. Bioinformatics, 2010, 26: 1205-1210. doi:  10.1093/bioinformatics/btq126
    [29] Bush WS, Oetjens MT, Crawford DC.Unravelling the human genome-phenome relationship using phenome-wide association studies [J]. Nat Rev Genet, 2016, 17: 129-145. doi:  10.1038/nrg.2015.36
    [30] McKusick VA. Mendelian Inheritance in Man and its online version, OMIM [J]. Am J Hum Genet, 2007, 80: 588-604. doi:  10.1086/514346
    [31] Pavan S, Rommel K, Mateo Marquina ME, et al. Clinical practice guidelines for rare diseases: the orphanet database [J]. PLoS One, 2017, 12: e0170365. http://pubmedcentralcanada.ca/pmcc/articles/PMC5242437/
    [32] Swaminathan GJ, Bragin E, Chatzimichali EA, et al. DECIPHER: web-based, community resource for clinical interpretation of rare variants in developmental disorders [J]. Hum Mol Genet, 2012, 21: R37-R44. http://europepmc.org/articles/PMC3459644
    [33] Zhang X, Minikel EV, O'Donnell-Luria AH, et al. ClinVar data parsing [J]. Wellcome Open Res, 2017, 2: 33. doi:  10.12688/wellcomeopenres.11640.1
    [34] Stenson PD, Ball EV, Mort M, et al. The human gene mutation database (HGMD) and its exploitation in the fields of personalized genomics and molecular evolution [J]. Curr Protoc Bioinformatics,2012,Chapter 1:Unit1.13.
    [35] Stelzer G, Rosen N, Plaschkes I, et al. The gene cards suite: from gene data mining to disease genome sequence analyses [J]. Curr Protoc Bioinformatics, 2016, 54:1.30.1-1.30.33. doi:  10.1002/cpbi.5/pdf
    [36] Rappaport N, Twik M, Plaschkes I, et al. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search [J]. Nucleic Acids Res, 2017, 45: D877-D887. http://pubmedcentralcanada.ca/pmcc/articles/PMC5210521/figure/F3/
    [37] Pepin MG, Murray ML, Bailey S, et al. The challenge of comprehensive and consistent sequence variant interpretation between clinical laboratories [J]. Genet Med, 2016, 18: 20-24. doi:  10.1038/gim.2015.31
    [38] Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology [J]. Genet Med, 2015, 17: 405-424. doi:  10.1038/gim.2015.30
    [39] Van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology [J]. Trends Genet, 2014, 30: 418-426. doi:  10.1016/j.tig.2014.07.001
    [40] Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder [J]. Nat Genet, 2010, 42: 30-35. doi:  10.1038/ng.499
    [41] Ng SB, Bigham AW, Buckingham KJ, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome [J]. Nat Genet, 2010, 42: 790-793. doi:  10.1038/ng.646
    [42] Hoischen A, van Bon BW, Gilissen C, et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome [J]. Nat Genet, 2010, 42: 483-485. doi:  10.1038/ng.581
    [43] Gilissen C, Arts HH, Hoischen A, et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome [J]. Am J Hum Genet, 2010, 87: 418-423. doi:  10.1016/j.ajhg.2010.08.004
    [44] Beaulieu CL, Majewski J, Schwartzentruber, et al. FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project [J]. Am J Hum Genet, 2014, 94: 809-817. doi:  10.1016/j.ajhg.2014.05.003
    [45] Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations [J]. Nucleic Acids Res, 2014, 42: D1001-D1006. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000006278284
    [46] Duan L, Wei L, Tian Y, et al. Novel susceptibility loci for moyamoya disease revealed by a genome-wide association study [J]. Stroke, 2018, 49: 11-18. doi:  10.1161/STROKEAHA.117.017430
    [47] Sardana D, Zhu C, Zhang M, et al.Drugrepositioningforor-phandiseases[J]. Brief Bioinform, 2011, 12: 346-356. doi:  10.1093/bib/bbr021
    [48] Stockklausner C, Lampert A, Hoffmann GF, et al. Novel treatments for rare cancers: the U.S. orphan drug act is deli-vering-A cross-sectional analysis [J]. Oncologist, 2016, 21: 487-493. doi:  10.1634/theoncologist.2015-0397
    [49] Zhao M, Wei DQ. Rare diseases: drug discovery and informatics resource [J]. Interdiscip Sci, 2018, 10:195-204. doi:  10.1007/s12539-017-0270-3
    [50] Kodra Y, Posada de la Paz M, Coi A, et al. Data quality in rare diseases registries [J]. Adv Exp Med Biol, 2017, 1031: 149-164. http://www.ncbi.nlm.nih.gov/pubmed/29214570
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (263) PDF downloads(431) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint