Liang SHI, Ya-zhou CUI, Jin-xiang HAN. Models of Rare Diseases Based on Induced Pluripotent Stem Cells and Their Applications[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(3): 261-270. doi: 10.3969/j.issn.1674-9081.2018.03.014
Citation: Liang SHI, Ya-zhou CUI, Jin-xiang HAN. Models of Rare Diseases Based on Induced Pluripotent Stem Cells and Their Applications[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(3): 261-270. doi: 10.3969/j.issn.1674-9081.2018.03.014

Models of Rare Diseases Based on Induced Pluripotent Stem Cells and Their Applications

doi: 10.3969/j.issn.1674-9081.2018.03.014
More Information
  • Corresponding author: HAN Jin-xiang Tel: 0531-82629151, E-mail:
  • Received Date: 2018-02-28
  • Publish Date: 2018-05-30
  • Research on rare diseases is limited by the poor availability of samples. Therefore, treatment of rare diseases is hampered by insufficient understanding of the mechanisms and resultant underdevelopment of viable therapies. With the advent and development of the technology of induced pluripotent stem cells (iPSCs) in recent years, more and more studies have begun to reprogram somatic cells derived from patients into iPSCs, which then differentiate into cells affected by the disease. Through developmental and functional analysis of the differentiated cell types, these stem cell models carrying patient-specific mutations have become an invaluable tool for research on rare diseases. iPSCs technology has revolutionized the ways of exploring the mechanisms of human rare diseases and developing therapies. In particular, the combination of human iPSCs technology with recent development in gene editing and 3D organoids makes iPSC-based platforms even more powerful in each area of their applications, including precision medicine. This review overviews recent advance in human iPSC-based modeling of rare diseases. Additionally, we outline the application of iPSCs technology particularly relevant to drug screening and cell therapy, so as to provide new inspiration for researchers.
  • loading
  • [1] Cui Y, Han J. Defining rare diseases in China[J]. Intractable Rare Dis Res, 2017, 6:148-149. doi:  10.5582/irdr.2017.01009
    [2] Melnikova I. Rare diseases and orphan drugs[J]. Nat Rev Drug Discov, 2012, 11:267-268. doi:  10.1038/nrd3654
    [3] Hamlin RL, Altschuld RA. Extrapolation from mouse to man[J]. Circ Cardiovasc Imaging, 2011, 4:2-4. doi:  10.1161/CIRCIMAGING.110.961979
    [4] Onos KD, Sukoff Rizzo SJ, Howell GR, et al. Toward more predictive genetic mouse models of Alzheimer's disease[J]. Brain Res Bull, 2016, 122:1-11. doi:  10.1016/j.brainresbull.2015.12.003
    [5] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131:861-872. doi:  10.1016/j.cell.2007.11.019
    [6] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluri-potent stem cell lines derived from human somatic cells[J]. Science, 2007, 318:1917-1920. doi:  10.1126/science.1151526
    [7] Kim K, Zhao R, DoiA, et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells[J]. Nat Biotechnol, 2011, 29:1117-1119. doi:  10.1038/nbt.2052
    [8] Ohi Y, Qin H, Hong C, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells[J]. Nat Cell Biol, 2011, 13:541-549. doi:  10.1038/ncb2239
    [9] Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery[J]. Nat Rev Mol Cell Biol, 2016, 17:170-182. doi:  10.1038/nrm.2015.27
    [10] Wada N, Wang B, Lin NH, et al. Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts[J]. J Periodontal Res, 2011, 46:438-447. doi:  10.1111/j.1600-0765.2011.01358.x
    [11] Aasen T, Raya A, Barrero MJ, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes[J]. Nat Biotechnol, 2008, 26:1276-1284. doi:  10.1038/nbt.1503
    [12] Giorgetti A, Montserrat N, Aasen T, et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2[J]. Cell Stem Cell, 2009, 5:353-357. doi:  10.1016/j.stem.2009.09.008
    [13] Haase A, Olmer R, Schwanke K, et al. Generation of induced pluripotent stem cells from human cord blood[J]. Cell Stem Cell, 2009, 5:434-441. doi:  10.1016/j.stem.2009.08.021
    [14] Seki T, Yuasa S, Fukuda K. Generation of induced pluripotent stem cells from a small amount of human peri-pheral blood using a combination of activated T cells and Sendai virus[J]. Nat Protoc, 2012, 7:718-728. doi:  10.1038/nprot.2012.015
    [15] Simara P, Tesarova L, Rehakova D, et al. Reprogramming of adult peripheral blood cells into human induced pluripotent stem cells as a safe and accessible source of endothelial cells[J]. Stem Cells Dev, 2018, 27:10-22. doi:  10.1089/scd.2017.0132
    [16] Aoki T, Ohnishi H, Oda Y, et al. Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC[J]. Tissue Eng Part A, 2010, 16:2197-2206. doi:  10.1089/ten.tea.2009.0747
    [17] Sugii S, Kida Y, Kawamura T, et al. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells[J]. Proc Natl Acad Sci USA, 2010, 107:3558-3563. doi:  10.1073/pnas.0910172106
    [18] Kim JB, Greber B, Arauzo-Bravo MJ, et al. Direct reprogramming of human neural stem cells by OCT4[J]. Nature, 2009, 461:649-653. doi:  10.1038/nature08436
    [19] Cai J, Li W, Su H, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells[J]. J Biol Chem, 2010, 285:11227-11234. doi:  10.1074/jbc.M109.086389
    [20] Li C, Zhou J, Shi G, et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells[J]. Hum Mol Genet, 2009, 18:4340-4349. doi:  10.1093/hmg/ddp386
    [21] Liu H, Ye Z, Kim Y, et al. Generation of endoderm-derived human induced pluripotent stem cells from primary hepato-cytes[J]. Hepatology, 2010, 51:1810-1819. doi:  10.1002/hep.23626
    [22] Zhou T, Benda C, Dunzinger S, et al. Generation of human induced pluripotent stem cells from urine samples[J]. Nat Protoc, 2012, 7:2080-2089. doi:  10.1038/nprot.2012.115
    [23] Uhm KO, Jo EH, Go GY, et al. Generation of human induced pluripotent stem cells from urinary cells of a healthy donor using a non-integration system[J]. Stem Cell Res, 2017, 21:44-46. doi:  10.1016/j.scr.2017.03.019
    [24] Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2009, 85:348-362. doi:  10.2183/pjab.85.348
    [25] Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration[J]. Science, 2008, 322:945-949. doi:  10.1126/science.1162494
    [26] Si-Tayeb K, Noto FK, Sepac A, et al. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors[J]. BMC Dev Biol, 2010, 10:81. doi:  10.1186/1471-213X-10-81
    [27] Lorenzo IM, Fleischer A, Bachiller D. Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells[J]. Stem Cell Rev, 2013, 9:435-450. doi:  10.1007/s12015-012-9412-5
    [28] Xue Y, Cai X, Wang L, et al. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells[J]. PLoS One, 2013, 8:e70573. doi:  10.1371/journal.pone.0070573
    [29] Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J]. Nature, 2009, 458:766-770. doi:  10.1038/nature07863
    [30] Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins[J]. Cell Stem Cell, 2009, 4:381-384. doi:  10.1016/j.stem.2009.04.005
    [31] Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009, 4:472-476. doi:  10.1016/j.stem.2009.05.005
    [32] Ichida JK, Blanchard J, Lam K, et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog[J]. Cell Stem Cell, 2009, 5:491-503. doi:  10.1016/j.stem.2009.09.012
    [33] Zhu S, Li W, Zhou H, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds[J]. Cell Stem Cell, 2010, 7:651-655. doi:  10.1016/j.stem.2010.11.015
    [34] Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA[J]. Cell Stem Cell, 2010, 7:618-630. doi:  10.1016/j.stem.2010.08.012
    [35] Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs[J]. Cell Stem Cell, 2011, 8:633-638. doi:  10.1016/j.stem.2011.05.001
    [36] Kwart D, Paquet D, Teo S, et al. Precise and efficient scarless genome editing in stem cells using CORRECT[J]. Nat Protoc, 2017, 12:329-354. doi:  10.1038/nprot.2016.171
    [37] Park CY, Sung JJ, Choi SH, et al. Modeling and correction of structural variations in patient-derived iPSCs using CRISPR/Cas9[J]. Nat Protoc, 2016, 11:2154-2169. doi:  10.1038/nprot.2016.129
    [38] Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9[J]. Nature, 2016, 533:125-129. doi:  10.1038/nature17664
    [39] Zhang Y, Schmid B, Nielsen TT, et al. Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a site-specific heterozygous mutation in CHMP2B[J]. Stem Cell Res, 2016, 17:148-150. doi:  10.1016/j.scr.2016.06.004
    [40] Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing[J]. Cell Stem Cell, 2016, 18:573-586. doi:  10.1016/j.stem.2016.04.013
    [41] Suh W. A new era of disease modeling and drug discovery using induced pluripotent stem cells[J]. Arch Pharm Res, 2017, 40:1-12. doi:  10.1007/s12272-016-0871-0
    [42] Maetzel D, Sarkar S, Wang H, et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells[J]. Stem Cell Reports, 2014, 2:866-880. doi:  10.1016/j.stemcr.2014.03.014
    [43] Hall CE, Yao Z, Choi M, et al. Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS[J]. Cell Rep, 2017, 19:1739-1749. doi:  10.1016/j.celrep.2017.05.024
    [44] Yoshida M, Kitaoka S, Egawa N, et al. Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs[J]. Stem Cell Reports, 2015, 4:561-568. doi:  10.1016/j.stemcr.2015.02.010
    [45] Okuno H, Renault Mihara F, Ohta S, et al. CHARGE syndrome modeling using patient-iPSCs reveals defective migra-tion of neural crest cells harboring CHD7 mutations[J]. Elife, 2017, 6.
    [46] Chailangkarn T, Muotri AR. Modeling Williams syndrome with induced pluripotent stem cells[J]. Neurogenesis, 2017, 4:e1283187. doi:  10.1080/23262133.2017.1283187
    [47] Aflaki E, Borger DK, Moaven N, et al. A new glucocerebrosidase chaperone reduces alpha-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with Gaucher disease and Parkinsonism[J]. J Neurosci, 2016, 36:7441-7452. doi:  10.1523/JNEUROSCI.0636-16.2016
    [48] Awad O, Sarkar C, Panicker LM, et al. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells[J]. Hum Mol Genet, 2015, 24:5775-5788. doi:  10.1093/hmg/ddv297
    [49] Chou SJ, Yu WC, Chang YL, et al. Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease[J]. Int J Cardiol, 2017, 232:255-263. doi:  10.1016/j.ijcard.2017.01.009
    [50] Sato Y, Kobayashi H, Higuchi T, et al. TFEB overexpression promotes glycogen clearance of Pompe disease iPSC-derived skeletal muscle[J]. Mol Ther Methods Clin Dev, 2016, 3:16054. doi:  10.1038/mtm.2016.54
    [51] Yoshida S, Nakanishi C, Okada H, et al. Characteristics of induced pluripotent stem cells from clinically divergent female monozygotic twins with Danon disease[J]. J Mol Cell Cardiol, 2017, 114:234-242.
    [52] HD iPSC Consortium. Developmental alterations in Huntington's disease neural cells and pharmacological rescue in cells and mice[J]. Nat Neurosci, 2017, 20:648-660. doi:  10.1038/nn.4532
    [53] Lukovic D, Artero Castro A, Delgado AB, et al. Human iPSC derived disease model of MERTK-associated retinitis pigmentosa[J]. Sci Rep, 2015, 5:12910. doi:  10.1038/srep12910
    [54] Ramsden CM, Nommiste B, A RL, et al. Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs[J]. Sci Rep, 2017, 7:51. doi:  10.1038/s41598-017-00142-7
    [55] Matsumoto Y, Ikeya M, Hino K, et al. New protocol to optimize iPS cells for genome analysis of fibrodysplasia ossificans progressiva[J]. Stem Cells, 2015, 33:1730-1742. doi:  10.1002/stem.1981
    [56] Barruet E, Morales BM, Lwin W, et al. The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling[J]. Stem Cell Res Ther, 2016, 7:115. doi:  10.1186/s13287-016-0372-6
    [57] Yi F, Qu J, Li M, et al. Establishment of hepatic and neural differentiation platforms of Wilson's disease specific induced pluripotent stem cells[J]. Protein Cell, 2012, 3:855-863. doi:  10.1007/s13238-012-2064-z
    [58] Granata A, Serrano F, Bernard WG, et al. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death[J]. Nat Genet, 2017, 49:97-109. doi:  10.1038/ng.3723
    [59] Park JW, Yan L, Stoddard C, et al. Recapitulating and correcting Marfan syndrome in a cellular model[J]. Int J Biol Sci, 2017, 13:588-603. doi:  10.7150/ijbs.19517
    [60] Fink JJ, Robinson TM, Germain ND, et al. Disrupted neuronal maturation in Angelman syndrome-derived induced pluripotent stem cells[J]. Nat Commun, 2017, 8:15038. doi:  10.1038/ncomms15038
    [61] Francis KR, Ton AN, Xin Y, et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/beta-catenin defects in neuronal choles-terol synthesis phenotypes[J]. Nat Med, 2016, 22:388-396. doi:  10.1038/nm.4067
    [62] Ebert AD, Yu J, Rose FF Jr, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient[J]. Nature, 2009, 457:277-280. doi:  10.1038/nature07677
    [63] Itzhaki I, Maizels L, Huber I, et al. Modelling the long QT syndrome with induced pluripotent stem cells[J]. Nature, 2011, 471:225-259. doi:  10.1038/nature09747
    [64] Carlessi L, Fusar Poli E, Bechi G, et al. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency[J]. Cell Death Dis, 2014, 5:e1342. doi:  10.1038/cddis.2014.310
    [65] Long Y, Xu M, Li R, et al. Induced pluripotent stem cells for disease modeling and evaluation of therapeutics for Niemann-Pick disease type A[J]. Stem Cells Transl Med, 2016, 5:1644-1655. doi:  10.5966/sctm.2015-0373
    [66] Trilck M, Hubner R, Seibler P, et al. Niemann-Pick type C1 patient-specific induced pluripotent stem cells display disease specific hallmarks[J]. Orphanet J Rare Dis, 2013, 8:144. doi:  10.1186/1750-1172-8-144
    [67] Vessoni AT, Herai RH, Karpiak JV, et al. Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony[J]. Hum Mol Genet, 2016, 25:1271-1280. doi:  10.1093/hmg/ddw008
    [68] Bell S, Peng H, Crapper L, et al. A rapid pipeline to model rare neurodevelopmental disorders with simultaneous CRISPR/Cas9 gene editing[J]. Stem Cells Transl Med, 2017, 6:886-896. doi:  10.1002/sctm.16-0158
    [69] Munsat TL, Davies KE. International SMA consortium meeting[J]. Neuromuscul Disord, 1992, 2:423-428. doi:  10.1016/S0960-8966(06)80015-5
    [70] DeRosa BA, Van Baaren JM, Dubey GK, et al. Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells[J]. Neurosci Lett, 2012, 516:9-14. doi:  10.1016/j.neulet.2012.02.086
    [71] Marchetto MC, Belinson H, Tian Y, et al. Altered proli-feration and networks in neural cells derived from idiopathic autistic individuals[J]. Mol Psychiatry, 2017, 22:820-835. doi:  10.1038/mp.2016.95
    [72] Ciucci F, Putignano E, Baroncelli L, et al. Insulin-like growth factor 1(IGF-1) mediates the effects of enriched environment (EE) on visual cortical development[J]. PLoS One, 2007, 2:e475. doi:  10.1371/journal.pone.0000475
    [73] Cheng CM, Reinhardt RR, Lee WH, et al. Insulin-like growth factor 1 regulates developing brain glucose metabolism[J]. Proc Natl Acad Sci USA, 2000, 97:10236-10241. doi:  10.1073/pnas.170008497
    [74] Studer L, Vera E, Cornacchia D. Programming and reprogramming cellular age in the era of induced pluripotency[J]. Cell Stem Cell, 2015, 16:591-600. doi:  10.1016/j.stem.2015.05.004
    [75] Miller JD, Ganat YM, Kishinevsky S, et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging[J]. Cell Stem Cell, 2013, 13:691-705. doi:  10.1016/j.stem.2013.11.006
    [76] Cooper O, Seo H, Andrabi S, et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson's disease[J]. Sci Transl Med, 2012, 4:141ra90.
    [77] Pearson BL, Simon JM. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration[J]. Nat Commun, 2016, 7:11173. doi:  10.1038/ncomms11173
    [78] Nguyen HN, Byers B, Cord B, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress[J]. Cell Stem Cell, 2011, 8:267-280. doi:  10.1016/j.stem.2011.01.013
    [79] Vera E, Bosco N, Studer L. Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation[J]. Cell Rep, 2016, 17:1184-1192. doi:  10.1016/j.celrep.2016.09.062
    [80] Liu GH, Barkho BZ, Ruiz S, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome[J]. Nature, 2011, 472:221-225. doi:  10.1038/nature09879
    [81] Lancaster MA, Knoblich JA. Organogenesis in a dish:modeling development and disease using organoid technologies[J]. Science, 2014, 345:1247125. doi:  10.1126/science.1247125
    [82] Camp JG, Badsha F, Florio M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocor-tex development[J]. Proc Natl Acad Sci USA, 2015, 112:15672-15677. doi:  10.1073/pnas.1520760112
    [83] Otani T, Marchetto MC, Gage FH, et al. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size[J]. Cell Stem Cell, 2016, 18:467-480. doi:  10.1016/j.stem.2016.03.003
    [84] Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2015, 526:564-568. doi:  10.1038/nature15695
    [85] Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease[J]. Nat Cell Biol, 2016, 18:246-254. doi:  10.1038/ncb3312
    [86] Lee G, Ramirez CN, Kim H, et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression[J]. Nat Biotechnol, 2012, 30:1244-1248. doi:  10.1038/nbt.2435
    [87] Choi SM, Kim Y, Shim JS, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells[J]. Hepatology, 2013, 57:2458-2468. doi:  10.1002/hep.26237
    [88] Yamashita A, Morioka M, Kishi H, et al. Statin treatment rescues FGFR3 skeletal dysplasia phenotypes[J]. Nature, 2014, 513:507-511. doi:  10.1038/nature13775
    [89] DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry:New estimates of R&D costs[J]. J Health Econ, 2016, 47:20-33. doi:  10.1016/j.jhealeco.2016.01.012
    [90] Liang P, Lan F, Lee AS, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity[J]. Circulation, 2013, 127:1677-1691. doi:  10.1161/CIRCULATIONAHA.113.001883
    [91] Kimbrel EA, Lanza R. Current status of pluripotent stem cells:moving the first therapies to the clinic[J]. Nat Rev Drug Discov, 2015, 14:681-692. doi:  10.1038/nrd4738
    [92] Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic[J]. Nat Rev Mol Cell Biol, 2016, 17:194-200. doi:  10.1038/nrm.2016.10
    [93] Pera MF. Stem cells:The dark side of induced pluripotency[J]. Nature, 2011, 471:46-47. doi:  10.1038/471046a
    [94] Thomsen GM, Gowing G, Svendsen S, et al. The past, present and future of stem cell clinical trials for ALS[J]. Exp Neurol, 2014, 262 Pt B:127-137. doi:  10.1016/j.expneurol.2014.02.021
    [95] Lee AS, Tang C, Rao MS, et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies[J]. Nat Med, 2013, 19:998-1004. doi:  10.1038/nm.3267
    [96] Lee MO, Moon SH, Jeong HC, et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules[J]. Proc Natl Acad Sci USA, 2013, 110:E3281-3290. doi:  10.1073/pnas.1303669110
    [97] Lund RJ, Narva E, Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells[J]. Nat Rev Genet, 2012, 13:732-744. doi:  10.1038/nrg3271
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (286) PDF downloads(227) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint