Citation: | WU Jiajing, LI Yan, LIANG Yuxia, HUA Huijuan, ZHAO Bo. Mechanism of Fibroblast Growth Factor in Alzheimer's Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1131-1136. DOI: 10.12290/xhyxzz.2023-0641 |
Alzheimer's disease(AD), the most common neurodegenerative disease, has shown an increasing incidence among younger people. With the onset of disease, most patients' cognitive function will show a progressive decline, bringing a heavy burden to the society and the family. Studies have shown that fibroblast growth factor (FGF) may be involved in the pathogenesis of AD through multiple mechanisms. This article reviews the mechanism of FGF in AD, with the hope of providing new ideas for elucidating the pathogenesis and early diagnosis of AD.
[1] |
2023 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2023, 19(4): 1598-1695.
|
[2] |
Ranasinghe K G, Petersen C, Kudo K, et al. Reduced synchrony in alpha oscillations during life predicts post mortem neurofibrillary tangle density in early-onset and atypical Alzheimer's disease[J]. Alzheimers Dement, 2021, 17(12): 2009-2019. DOI: 10.1002/alz.12349
|
[3] |
Moonen S, Koper M J, Van Schoor E, et al. Pyroptosis in Alzheimer's disease: cell type-specific activation in microglia, astrocytes and neurons[J]. Acta Neuropathol, 2023, 145(2): 175-195. DOI: 10.1007/s00401-022-02528-y
|
[4] |
Xian Y F, Qu C, Liu Y, et al. Magnolol ameliorates behavioral impairments and neuropathology in a transgenic mouse model of Alzheimer's disease[J]. Oxid Med Cell Longev, 2020, 2020: 5920476.
|
[5] |
Xie Y L, Su N, Yang J, et al. FGF/FGFR signaling in health and disease[J]. Signal Transduct Target Ther, 2020, 5(1): 181. DOI: 10.1038/s41392-020-00222-7
|
[6] |
Sacco A, Federico C, Giacomini A, et al. Halting the FGF/FGFR axis leads to antitumor activity in Waldenström macroglobulinemia by silencing MYD88[J]. Blood, 2021, 137(18): 2495-2508. DOI: 10.1182/blood.2020008414
|
[7] |
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease[J]. Biol Rev Camb Philos Soc, 2023, 98(4): 1424-1458. DOI: 10.1111/brv.12959
|
[8] |
Lottini G, Plicanti E, Lai M, et al. Canonical fibroblast growth factors in viral infection[J]. Rev Med Virol, 2023, 33(4): e2452. DOI: 10.1002/rmv.2452
|
[9] |
Klimaschewski L, Claus P. Fibroblast growth factor signall-ing in the diseased nervous system[J]. Mol Neurobiol, 2021, 58(8): 3884-3902. DOI: 10.1007/s12035-021-02367-0
|
[10] |
Bayle A, Martin-Romano P, Loriot Y. FIGHT against FGF/FGFR alterations: what are the next steps? [J]. Ann Oncol, 2022, 33(5): 460-462. DOI: 10.1016/j.annonc.2022.03.014
|
[11] |
Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades[J]. Cold Spring Harb Perspect Biol, 2014, 6(3): a008912. DOI: 10.1101/cshperspect.a008912
|
[12] |
Giacomini A, Grillo E, Rezzola S, et al. The FGF/FGFR system in the physiopathology of the prostate gland[J]. Physiol Rev, 2021, 101(2): 569-610. DOI: 10.1152/physrev.00005.2020
|
[13] |
Dailey L, Ambrosetti D, Mansukhani A, et al. Mechanisms underlying differential responses to FGF signaling[J]. Cytokine Growth Factor Rev, 2005, 16(2): 233-247. DOI: 10.1016/j.cytogfr.2005.01.007
|
[14] |
Dhlamini Q, Wang W, Feng G F, et al. FGF1 alleviates LPS-induced acute lung injury via suppression of inflamma-tion and oxidative stress[J]. Mol Med, 2022, 28(1): 73. DOI: 10.1186/s10020-022-00502-8
|
[15] |
Park H B, Baek K H. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(3): 188736. DOI: 10.1016/j.bbcan.2022.188736
|
[16] |
Zhang B Y, Zhao J, Wang Z, et al. DL0410 attenuates oxidative stress and neuroinflammation via BDNF/TrkB/ERK/ CREB and Nrf2/HO-1 activation[J]. Int Immunopharmacol, 2020, 86: 106729. DOI: 10.1016/j.intimp.2020.106729
|
[17] |
Zhan-Qiang H, Hai-Hua Q, Chi Z, et al. miR-146a aggravates cognitive impairment and Alzheimer disease-like pathology by triggering oxidative stress through MAPK signaling[J]. Neurologia (Engl Ed), 2023, 38(7): 486-494.
|
[18] |
Luo Q H, Schnöder L, Hao W L, et al. p38α-MAPK-deficient myeloid cells ameliorate symptoms and pathology of APP-transgenic Alzheimer's disease mice[J]. Aging Cell, 2022, 21(8): e13679. DOI: 10.1111/acel.13679
|
[19] |
Fakhri S, Iranpanah A, Gravandi M M, et al. Natural products attenuate PI3K/Akt/mTOR signaling pathway: a promising strategy in regulating neurodegeneration[J]. Phytomedicine, 2021, 91: 153664. DOI: 10.1016/j.phymed.2021.153664
|
[20] |
Peng X Q, Guo H S, Zhang X, et al. TREM2 inhibits tau hyperphosphorylation and neuronal apoptosis via the PI3K/Akt/GSK-3β signaling pathway in vivo and in vitro[J]. Mol Neurobiol, 2023, 60(5): 2470-2485. DOI: 10.1007/s12035-023-03217-x
|
[21] |
Wang S T, Sudan R, Peng V, et al. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways[J]. Cell, 2022, 185(22): 4153-4169. e19. DOI: 10.1016/j.cell.2022.09.033
|
[22] |
Singh N, Das B, Zhou J, et al. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance[J]. Sci Adv, 2022, 8(29): eabo3610. DOI: 10.1126/sciadv.abo3610
|
[23] |
Wang G Q, Zhou P, Xie D J, et al. Effects of Huangpu Tongqiao Capsules on EGFR-PLCγ signal pathway of hippocampus in rats with Alzheimer's disease[J]. China J Chin Mater Med, 2020, 45(9): 2165-2171.
|
[24] |
Chen Y S, Zhang S M, Tan W, et al. Early 7, 8-dihydroxyflavone administration ameliorates synaptic and behavioral deficits in the young FXS animal model by acting on BDNF-TrkB pathway[J]. Mol Neurobiol, 2023, 60(5): 2539-2552. DOI: 10.1007/s12035-023-03226-w
|
[25] |
Mashayekhi F, Hadavi M, Vaziri H R, et al. Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with Alzheimer's disease[J]. J Clin Neurosci, 2010, 17(3): 357-359. DOI: 10.1016/j.jocn.2009.05.037
|
[26] |
Peng D, Wang Y J, Xiao Y J, et al. Extracellular vesicles derived from astrocyte-treated with haFGF14-154 attenuate Alzheimer phenotype in AD mice[J]. Theranostics, 2022, 12(8): 3862-3881. DOI: 10.7150/thno.70951
|
[27] |
Meng T, Cao Q, Lei P, et al. Tat-haFGF14-154 upregulates ADAM10 to attenuate the Alzheimer phenotype of APP/PS1 mice through the PI3K-CREB-IRE1α/XBP1 pathway[J]. Mol Ther Nucleic Acids, 2017, 7: 439-452. DOI: 10.1016/j.omtn.2017.05.004
|
[28] |
Chang Y T, Kazui H, Ikeda M, et al. Genetic interaction of APOE and FGF1 is associated with memory impairment and hippocampal atrophy in Alzheimer's disease[J]. Aging Dis, 2019, 10(3): 510-519. DOI: 10.14336/AD.2018.0606
|
[29] |
Woodbury M E, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration[J]. J Neuroimmune Pharmacol, 2014, 9(2): 92-101. DOI: 10.1007/s11481-013-9501-5
|
[30] |
Chen X, Li Z J, Cheng Y, et al. Low and high molecular weight FGF-2 have differential effects on astrocyte proliferation, but are both protective against Aβ-induced cytotoxicity[J]. Front Mol Neurosci, 2019, 12: 328.
|
[31] |
Katsouri L, Ashraf A, Birch A M, et al. Systemic administration of fibroblast growth factor-2(FGF2) reduces BACE1 expression and amyloid pathology in APP23 mice[J]. Neurobiol Aging, 2015, 36(2): 821-831. DOI: 10.1016/j.neurobiolaging.2014.10.004
|
[32] |
Zhang C, Han M, Wu S. Silencing fibroblast growth factor 7 inhibits Krypton laser-induced choroidal neovascularization in a rat model[J]. J Cell Biochem, 2019, 120(8): 13792-13801. DOI: 10.1002/jcb.28652
|
[33] |
Huang T T, Wang L, Liu D, et al. FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin-1[J]. Int J Oncol, 2017, 50(5): 1501-1512. DOI: 10.3892/ijo.2017.3927
|
[34] |
Takaya K, Aramaki-Hattori N, Sakai S, et al. Fibroblast growth factor 7 suppresses fibrosis and promotes epithelialization during wound healing in mouse fetuses[J]. Int J Mol Sci, 2022, 23(13): 7087. DOI: 10.3390/ijms23137087
|
[35] |
Abubakar M B, Sanusi K O, Ugusman A, et al. Alzheimer's disease: an update and insights into pathophysiology[J]. Front Aging Neurosci, 2022, 14: 742408. DOI: 10.3389/fnagi.2022.742408
|
[36] |
Samadian M, Gholipour M, Hajiesmaeili M, et al. The eminent role of microRNAs in the pathogenesis of Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13: 641080. DOI: 10.3389/fnagi.2021.641080
|
[37] |
Chen W, Wu L, Hu Y Q, et al. MicroRNA-107 ameliorates damage in a cell model of Alzheimer's disease by mediating the FGF7/FGFR2/PI3K/Akt pathway[J]. J Mol Neurosci, 2020, 70(10): 1589-1597. DOI: 10.1007/s12031-020-01600-0
|
[38] |
Lu H Z, Yin M C, Wang L, et al. FGF13 interaction with SHCBP1 activates AKT-GSK3α/β signaling and promotes the proliferation of A549 cells[J]. Cancer Biol Ther, 2020, 21(11): 1014-1024. DOI: 10.1080/15384047.2020.1824512
|
[39] |
Pan X Y, Zhao J R, Zhou Z Y, et al. 5'-UTR SNP of FGF13 causes translational defect and intellectual disability[J]. Elife, 2021, 10: e63021. DOI: 10.7554/eLife.63021
|
[40] |
Tfilin M, Turgeman G. Interleukine-17 administration modulates adult hippocampal neurogenesis and improves spatial learning in mice[J]. J Mol Neurosci, 2019, 69(2): 254-263. DOI: 10.1007/s12031-019-01354-4
|
[41] |
Li R M, Xiao L, Zhang T, et al. Overexpression of fibroblast growth factor 13 ameliorates amyloid-β-induced neuronal damage[J]. Neural Regen Res, 2023, 18(6): 1347-1353. DOI: 10.4103/1673-5374.357902
|
[42] |
Hsu W C J, Wildburger N C, Haidacher S J, et al. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease[J]. Exp Neurol, 2017, 295: 1-17. DOI: 10.1016/j.expneurol.2017.05.005
|
[43] |
Wang L S, Jing R R, Wang X, et al. A method for the expression of fibroblast growth factor 14 and assessment of its neuroprotective effect in an Alzheimer's disease model[J]. Ann Transl Med, 2021, 9(12): 994. DOI: 10.21037/atm-21-2492
|
[44] |
Conte M, Sabbatinelli J, Chiariello A, et al. Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type Ⅱ diabetes and Alzheimer's disease in comparison with healthy aging[J]. Geroscience, 2021, 43(2): 985-1001. DOI: 10.1007/s11357-020-00287-w
|
[45] |
Kakoty V, Sarathlal K C, Tang R D, et al. Fibroblast growth factor 21 and autophagy: a complex interplay in Parkinson disease[J]. Biomed Pharmacother, 2020, 127: 110145. DOI: 10.1016/j.biopha.2020.110145
|
[46] |
Sun Y, Wang Y, Chen S T, et al. Modulation of the astrocyte-neuron lactate shuttle system contributes to neuroprotective action of fibroblast growth factor 21[J]. Theranostics, 2020, 10(18): 8430-8445. DOI: 10.7150/thno.44370
|
[47] |
Chen S, Chen S T, Sun Y, et al. Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer's disease[J]. Redox Biol, 2019, 22: 101133. DOI: 10.1016/j.redox.2019.101133
|
[48] |
Drew D A, Katz R, Kritchevsky S, et al. Fibroblast growth factor 23 and blood pressure in older adults: the health, aging, and body composition study[J]. Hypertension, 2020, 76(1): 236-243. DOI: 10.1161/HYPERTENSIONAHA.120.14703
|
[49] |
Laszczyk A M, Nettles D, Pollock T A, et al. FGF-23 deficiency impairs hippocampal-dependent cognitive function[J]. eNeuro, 2019, 6(2): ENEURO. 0469-ENEU18.2019. DOI: 10.1523/ENEURO.0469-18.2019
|
[50] |
McGrath E R, Himali J J, Levy D, et al. Circulating fibroblast growth factor 23 levels and incident dementia: the Framingham heart study[J]. PLoS One, 2019, 14(3): e0213321. DOI: 10.1371/journal.pone.0213321
|
[51] |
Li B S, Zhou M, Peng J, et al. Mechanism of the fibroblast growth factor 23/α-Klotho axis in peripheral blood mononuclear cell inflammation in Alzheimer's disease[J]. Immunol Invest, 2022, 51(5): 1471-1484. DOI: 10.1080/08820139.2021.1970180
|