LU Yao, LIU Jianing, WANG Mian, HUANG Jiajie, HAN Baojin, SUN Mingyao, CHENG Qianji, NING Jinling, GE Long. Artificial Intelligence in Shared Decision Making[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 661-667. DOI: 10.12290/xhyxzz.2023-0209
Citation: LU Yao, LIU Jianing, WANG Mian, HUANG Jiajie, HAN Baojin, SUN Mingyao, CHENG Qianji, NING Jinling, GE Long. Artificial Intelligence in Shared Decision Making[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 661-667. DOI: 10.12290/xhyxzz.2023-0209

Artificial Intelligence in Shared Decision Making

Funds: 

China Academy of Chinese Medical Sciences Innovation Fund CI2021A05502

More Information
  • Corresponding author:

    GE Long, E-mail: gelong2009@163.com

  • Received Date: April 22, 2023
  • Accepted Date: August 08, 2023
  • Available Online: August 22, 2023
  • Publish Date: August 21, 2023
  • Issue Publish Date: May 29, 2024
  • Artificial intelligence(AI) empowers the development of the medical industry, providing precise and intelligent assistance for clinical diagnosis, treatment, and rehabilitation.AI has the potential to facilitate shared decision making (SDM), but AI interventions used for SDM are currently in their infancy, presenting both challenges and opportunities. This paper aims to describe the application of AI in SDM, explore the problems and challenges of AI-based decision aid used for SDM, and propose possible solutions, aiming to provide a guide for the development and implementation of AI-based decision aid.

  • [1]
    陈耀龙, 孙雅佳, 罗旭飞, 等. 循证医学的核心方法与主要模型[J]. 协和医学杂志, 2023, 14(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202301001.htm

    Chen Y L, Sun Y J, Luo X F, et al. The core methods and key models in evidence-based medicine[J]. Med J PUMCH, 2023, 14(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202301001.htm
    [2]
    Johnson C. Evidence-based practice in 5 simple steps[J]. J Manipulative Physiol Ther, 2008, 31(3): 169-170. DOI: 10.1016/j.jmpt.2008.03.013
    [3]
    Hoffmann T C, Lewis J, Maher C G. Shared decision making should be an integral part of physiotherapy practice[J]. Physiotherapy, 2020, 107: 43-49. DOI: 10.1016/j.physio.2019.08.012
    [4]
    余绍福, 王云云, 邓通, 等. 医患共同决策系列之一: 医患共同决策的国内外发展现状[J]. 医学新知, 2020, 30(2): 159-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXZ202002010.htm

    Yu S F, Wang Y Y, Deng T, et al. First in the series of shared decision making: development status of shared decision making at home and abroad[J]. New Med, 2020, 30(2): 159-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXZ202002010.htm
    [5]
    Morrison T, Foster E, Dougherty J, et al. Shared decision making in rheumatology: a scoping review[J]. Semin Arthritis Rheum, 2022, 56: 152041. DOI: 10.1016/j.semarthrit.2022.152041
    [6]
    Stacey D, Légaré F, Lewis K, et al. Decision aids for people facing health treatment or screening decisions[J]. Cochrane Database Syst Rev, 2017, 4(4): CD001431.
    [7]
    余绍福, 牟玮, 靳英辉, 等. 医患共同决策系列之二: 医患共同决策研究典范——渥太华患者决策辅助工具研究小组[J]. 医学新知, 2021, 31(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXZ202101009.htm

    Yu S F, Mu W, Jin Y H, et al. Second in the series of shared decision making: a model for shared decision making research, the Ottawa Patient Decision Aids Research Group[J]. New Med, 2021, 31(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXZ202101009.htm
    [8]
    Kann B H, Hosny A, Aerts H J W L. Artificial intelligence for clinical oncology[J]. Cancer Cell, 2021, 39(7): 916-927. DOI: 10.1016/j.ccell.2021.04.002
    [9]
    黄霖, 车圳, 李明, 等. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报(医学版), 2023, 61(3): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYB202303006.htm

    Huang L, Che Z, Li M, et al. Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases[J]. J Shandong Univ (Health Sci), 2023, 61(3): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYB202303006.htm
    [10]
    巫嘉陵, 韩建达. 医疗人工智能: 知识引导与数据挖掘联合驱动[J]. 中国现代神经疾病杂志, 2023, 23(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJB202301001.htm

    Wu J L, Han J D. Medical artificial intelligence: driven by the fusion of knowledge-guided and data-mining methodolo-gies[J]. Chin J Contemp Neurol Neurosurg, 2023, 23(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJB202301001.htm
    [11]
    任相阁, 任相颖, 李绪辉, 等. 医疗领域人工智能应用的研究进展[J]. 世界科学技术-中医药现代化, 2022, 24(2): 762-770. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202202035.htm

    Ren X G, Ren X Y, Li X H, et al. Research progress of artificial intelligence application in medicine[J]. Moderniza-tion Tradit Chin Med Mater Med World Sci Technol, 2022, 24(2): 762-770. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202202035.htm
    [12]
    Begley K, Begley C, Smith V. Shared decision-making and maternity care in the deep learning age: Acknowledging and overcoming inherited defeaters[J]. J Eval Clin Pract, 2021, 27(3): 497-503. DOI: 10.1111/jep.13515
    [13]
    Ji M T, Genchev G Z, Huang H Y, et al. Evaluation framework for successful artificial intelligence-enabled clinical decision support systems: mixed methods study[J]. J Med Internet Res, 2021, 23(6): e25929. DOI: 10.2196/25929
    [14]
    Jayakumar P, Moore M G, Furlough K A, et al. Comparison of an artificial intelligence-enabled patient decision aid vs educational material on decision quality, shared decision-making, patient experience, and functional outcomes in adults with knee osteoarthritis: a randomized clinical trial[J]. JAMA Netw Open, 2021, 4(2): e2037107. DOI: 10.1001/jamanetworkopen.2020.37107
    [15]
    Gama F, Tyskbo D, Nygren J, et al. Implementation frameworks for artificial intelligence translation into health care practice: scoping review[J]. J Med Internet Res, 2022, 24(1): e32215. DOI: 10.2196/32215
    [16]
    Abbasgholizadeh Rahimi S, Cwintal M, Huang Y H, et al. Application of artificial intelligence in shared decision making: scoping review[J]. JMIR Med Inform, 2022, 10(8): e36199. DOI: 10.2196/36199
    [17]
    吕健. 医疗的确定性、不确定性与医患共同决策[J]. 医学与哲学, 2021, 42(12): 5-10. DOI: 10.12014/j.issn.1002-0772.2021.12.02

    Lyu J. The certainty, uncertainty of medicine and shared decision-making[J]. Med Philos, 2021, 42(12): 5-10. DOI: 10.12014/j.issn.1002-0772.2021.12.02
    [18]
    Peiffer-Smadja N, Rawson T M, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications[J]. Clin Microbiol Infect, 2020, 26(5): 584-595. DOI: 10.1016/j.cmi.2019.09.009
    [19]
    Wang L, Chen X Y, Zhang L, et al. Artificial intelligence in clinical decision support systems for oncology[J]. Int J Med Sci, 2023, 20(1): 79-86. DOI: 10.7150/ijms.77205
    [20]
    杨宇辉, 李素姣, 喻洪流, 等. 临床决策支持系统研究进展[J]. 生物医学工程学进展, 2021, 42(4): 203-207. DOI: 10.3969/j.issn.1674-1242.2021.04.005

    Yang Y H, Li S J, Yu H L, et al. Research progress of clinical decision support system[J]. Prog Biomed Eng, 2021, 42(4): 203-207. DOI: 10.3969/j.issn.1674-1242.2021.04.005
    [21]
    Chewning B, Bylund C L, Shah B, et al. Patient prefer-ences for shared decisions: a systematic review[J]. Patient Educ Couns, 2012, 86(1): 9-18. DOI: 10.1016/j.pec.2011.02.004
    [22]
    Selmouni F, Guy M, Muwonge R, et al. Effectiveness of artificial intelligence-assisted decision-making to improve vulnerable women's participation in cervical cancer screening in France: protocol for a cluster randomized controlled trial (AppDate-You)[J]. JMIR Res Protoc, 2022, 11(8): e39288. DOI: 10.2196/39288
    [23]
    Li W H, Dong B, Wang H S, et al. Artificial intelligence promotes shared decision-making through recommending tests to febrile pediatric outpatients[J]. World J Emerg Med, 2023, 14(2): 106-111. DOI: 10.5847/wjem.j.1920-8642.2023.033
    [24]
    Kökciyan N, Chapman M, Balatsoukas P, et al. A collaborative decision support tool for managing chronic conditions[J]. Stud Health Technol Inform, 2019, 264: 644-648.
    [25]
    Kökciyan N, Sassoon I, Sklar E, et al. Applying metalevel argumentation frameworks to support medical decision making[J]. IEEE Intell Syst, 2021, 36(2): 64-71. DOI: 10.1109/MIS.2021.3051420
    [26]
    Frize M, Yang L, Walker R C, et al. Conceptual framework of knowledge management for ethical decision-making support in neonatal intensive care[J]. IEEE Trans Inf Technol Biomed, 2005, 9(2): 205-215. DOI: 10.1109/TITB.2005.847187
    [27]
    Wang Y, Li P F, Tian Y, et al. A shared decision-making system for diabetes medication choice utilizing electronic health record data[J]. IEEE J Biomed Health Inform, 2017, 21(5): 1280-1287. DOI: 10.1109/JBHI.2016.2614991
    [28]
    Twiggs J G, Wakelin E A, Fritsch B A, et al. Clinical and statistical validation of a probabilistic prediction tool of total knee arthroplasty outcome[J]. J Arthroplasty, 2019, 34(11): 2624-2631. DOI: 10.1016/j.arth.2019.06.007
    [29]
    Bertsimas D, Dunn J, Pawlowski C, et al. Applied informatics decision support tool for mortality predictions in patients with cancer[J]. JCO Clin Cancer Inform, 2018, 2: 1-11.
    [30]
    刘伶俐, 王端, 王力钢. 医疗人工智能应用中的伦理问题及应对[J]. 医学与哲学, 2020, 41(14): 28-32. DOI: 10.12014/j.issn.1002-0772.2020.14.06

    Liu L L, Wang D, Wang L G. Ethical issues and countermeasures in the application of medical artificial intelligence[J]. Med Philos, 2020, 41(14): 28-32. DOI: 10.12014/j.issn.1002-0772.2020.14.06
    [31]
    林伟. 人工智能数据安全风险及应对[J]. 情报杂志, 2022, 41(10): 105-111. DOI: 10.3969/j.issn.1002-1965.2022.10.016

    Lin W. Artificial intelligence data security risks and countermeasures[J]. J Intell, 2022, 41(10): 105-111. DOI: 10.3969/j.issn.1002-1965.2022.10.016
    [32]
    刘轩, 陈海彬. 人工智能监管: 理论、模式与趋势[J]. 情报理论与实践, 2023, 46(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-QBLL202306003.htm

    Liu X, Chen H B. Artificial intelligence regulation: theory, model and trend[J]. Inf Stud Theory Appl, 2023, 46(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-QBLL202306003.htm
    [33]
    国家新一代人工智能治理专业委员会. 《新一代人工智能伦理规范》发布[EB/OL]. (2021-09-26)[2023-04-23]. https://www.most.gov.cn/kjbgz/202109/t20210926_177063.html.

    National New Generation Artificial Intelligence Governance Professional Committee. The release of the new generation of ethical standards for artificial intelligence[EB/OL]. (2021-09-26)[2023-04-23]. https://www.most.gov.cn/kjbgz/202109/t20210926_177063.html.
    [34]
    中国共产党中央委员会办公厅, 中华人民共和国国务院办公厅. 中共中央办公厅国务院办公厅印发《关于加强科技伦理治理的意见》[EB/OL]. (2022-03-20)[2023-04-23]. https://www.gov.cn/zhengce/2022-03/20/content_5680105.htm.

    General Office of the Central Committee of the CPC, General Office of the State Council of the People's Republic of China. The General Office of the Central Committee of the Communist Party of China and the General Office of the State Council have issued the "Opinions on Strengthening the Governance of Science and Technology Ethics"[EB/OL]. (2022-03-20)[2023-04-23]. https://www.gov.cn/zhengce/2022-03/20/content_5680105.htm.
    [35]
    徐云山, 贺丹, 严贞龙, 等. 面向医疗数据的隐私保护方法研究[J]. 电脑知识与技术, 2023, 19(4): 116-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS202304036.htm

    Xu Y S, He D, Yan Z L, et al. Research on privacy protection methods for medical data[J]. Comput Knowl Technol, 2023, 19(4): 116-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS202304036.htm
    [36]
    陈龙, 曾凯, 李莎, 等. 人工智能算法偏见与健康不公平的成因与对策分析[J]. 中国全科医学, 2023, 26(19): 2423-2427. DOI: 10.12114/j.issn.1007-9572.2023.0007

    Chen L, Zeng K, Li S, et al. Causes and countermeasures of algorithmic bias and health inequity[J]. Chin Gen Pract, 2023, 26(19): 2423-2427. DOI: 10.12114/j.issn.1007-9572.2023.0007
    [37]
    赵延玉, 赵晓永, 王磊, 等. 可解释人工智能研究综述[J]. 计算机工程与应用, 2023, 59(14): 1-14. DOI: 10.3778/j.issn.1002-8331.2208-0322

    Zhao Y Y, Zhao X Y, Wang L, et al. Review of explainable artificial intelligence[J]. Comput Eng Appl, 2023, 59(14): 1-14. DOI: 10.3778/j.issn.1002-8331.2208-0322
    [38]
    王冬丽, 杨珊, 欧阳万里, 等. 人工智能可解释性: 发展与应用[J]. 计算机科学, 2023, 50(增1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2023S1134.htm

    Wang D L, Yang S, Ouyang W L, et al. Explainability of artificial intelligence: development and application[J]. Comput Sci, 2023, 50(S1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2023S1134.htm
    [39]
    Kostick-Quenet K M, Cohen I G, Gerke S, et al. Mitigating racial bias in machine learning[J]. J Law Med Ethics, 2022, 50(1): 92-100. DOI: 10.1017/jme.2022.13
    [40]
    Zhang J, Zhang Z M. Ethics and governance of trustworthy medical artificial intelligence[J]. BMC Med Inform Decis Mak, 2023, 23(1): 7. DOI: 10.1186/s12911-023-02103-9
    [41]
    Elwyn G. Shared decision making: What is the work?[J]. Patient Educ Couns, 2021, 104(7): 1591-1595. DOI: 10.1016/j.pec.2020.11.032
    [42]
    Elwyn G, Frosch D L, Kobrin S. Implementing shared decision-making: consider all the consequences[J]. Implement Sci, 2016, 11: 114.
    [43]
    McDougall R J. Computer knows best? The need for value-flexibility in medical AI[J]. J Med Ethics, 2019, 45(3): 156-160. DOI: 10.1136/medethics-2018-105118
    [44]
    Doorn N, Schuurbiers D, Van De Poel I, et al. Early engagement and new technologies: opening up the laboratory[M]. Dordrecht: Springer, 2013.
    [45]
    Dullabh P, Sandberg S F, Heaney-Huls K, et al. Challenges and opportunities for advancing patient-centered clinical decision support: findings from a horizon scan[J]. J Am Med Inform Assoc, 2022, 29(7): 1233-1243. DOI: 10.1093/jamia/ocac059
    [46]
    白宇, 陈理, 易岚, 等. 中医临床决策支持系统研发的现状与思考[J]. 江苏中医药, 2022, 54(12): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZY202212022.htm

    Bai Y, Chen L, Yi L, et al. Consideration on research and development of Chinese medicine clinical decision support system[J]. Jiangsu J Tradit Chin Med, 2022, 54(12): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZY202212022.htm
    [47]
    赵国桢, 郭诗琪, 庞华鑫, 等. 人工智能技术在辅助中医诊疗及诊疗标准化中的应用[J]. 中医杂志, 2022, 63(24): 2306-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ202224002.htm

    Zhao G Z, Guo S Q, Pang H X, et al. Application of artificial intelligence in assisting diagnosis and treatment in traditional Chinese medicine and its standardization[J]. J Tradit Chin Med, 2022, 63(24): 2306-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ202224002.htm
    [48]
    Waddell A, Lennox A, Spassova G, et al. Barriers and facilitators to shared decision-making in hospitals from policy to practice: a systematic review[J]. Implement Sci, 2021, 16(1): 74. DOI: 10.1186/s13012-021-01142-y
    [49]
    Légaré F, Ratté S, Gravel K, et al. Barriers and facilitators to implementing shared decision-making in clinical practice: update of a systematic review of health professionals' perceptions[J]. Patient Educ Couns, 2008, 73(3): 526-535. DOI: 10.1016/j.pec.2008.07.018
    [50]
    Printz C. Artificial intelligence platform for oncology could assist in treatment decisions[J]. Cancer, 2017, 123(6): 905. DOI: 10.1002/cncr.30655
    [51]
    Chandra S, Mohammadnezhad M, Ward P. Trust and communication in a doctor-patient relationship: a literature review[J]. J Healthc Commun, 2018, 3(3): 36.
    [52]
    Kerasidou A. Artificial intelligence and the ongoing need for empathy, compassion and trust in healthcare[J]. Bull World Health Organ, 2020, 98(4): 245-250. DOI: 10.2471/BLT.19.237198
    [53]
    Sauerbrei A, Kerasidou A, Lucivero F, et al. The impact of artificial intelligence on the person-centred, doctor-patient relationship: some problems and solutions[J]. BMC Med Inform Decis Mak, 2023, 23(1): 73. DOI: 10.1186/s12911-023-02162-y
    [54]
    Sepucha K R, Borkhoff C M, Lally J, et al. Establishing the effectiveness of patient decision aids: key constructs and measurement instruments[J]. BMC Med Inform Decis Mak, 2013, 13(S2): S12. DOI: 10.1186/1472-6947-13-S2-S12
    [55]
    Gundersen T, Bærøe K. The future ethics of artificial intelligence in medicine: making sense of collaborative models[J]. Sci Eng Ethics, 2022, 28(2): 17. DOI: 10.1007/s11948-022-00369-2
    [56]
    Stacey D, Ludwig C, Archambault P, et al. Feasibility of rapidly developing and widely disseminating patient decision aids to respond to urgent decisional needs due to the COVID-19 pandemic[J]. Med Decis Making, 2021, 41(2): 233-239. DOI: 10.1177/0272989X20979693
    [57]
    Chen Y, Clayton E W, Novak L L, et al. Human-centered design to address biases in artificial intelligence[J]. J Med Internet Res, 2023, 25: e43251. DOI: 10.2196/43251
    [58]
    Stacey D, Volk R J. The international patient decision aid standards (IPDAS) collaboration: evidence update 2.0[J]. Med Decis Making, 2021, 41(7): 729-733. DOI: 10.1177/0272989X211035681
    [59]
    杨垠红. 欧盟《数据法案》规范使用者权利和义务[N]. 中国社会科学报, 2022-04-11(07).

    Yang Y H. The EU Data Act regulates user rights and obligations[N]. Chinese Social Sciences Today, 2022-04-11(07).
    [60]
    周杰, 宋扬. 临床决策支持系统应用中的伦理思考[J]. 医学与哲学, 2022, 43(8): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YXZX202208005.htm

    Zhou J, Song Y. Ethical thinking in clinical application of clinical decision support system[J]. Med Philos, 2022, 43(8): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YXZX202208005.htm
    [61]
    谢新水. 人工智能内容生产: 功能张力、发展趋势及监管策略: 以ChatGPT为分析起点[J]. 电子政务, 2023(4): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZW202304002.htm

    Xie X S. Artificial intelligence content production: functional tension, development trends, and regulatory strategies-starting from ChatGPT analysis[J]. E-Gov, 2023(4): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZW202304002.htm
    [62]
    Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine[J]. N Engl J Med, 2023, 388(13): 1233-1239. DOI: 10.1056/NEJMsr2214184
    [63]
    Dullabh P, Heaney-Huls K, Lobach D F, et al. The technical landscape for patient-centered CDS: progress, gaps, and challenges[J]. J Am Med Inform Assoc, 2022, 29(6): 1101-1105. DOI: 10.1093/jamia/ocac029
    [64]
    Haug C J, Drazen J M. Artificial intelligence and machine learning in clinical medicine, 2023[J]. N Engl J Med, 2023, 388(13): 1201-1208. DOI: 10.1056/NEJMra2302038
  • Related Articles

    [1]ZHOU Lixin, TAN Ying, HAN Fei, YAO Ming, LUO Linzhi, NI Jun, PENG Bin, CUI Liying, ZHU Yicheng. Establishment and Exploration of Core Competency Oriented Training Program for Neurology Resident[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 973-980. DOI: 10.12290/xhyxzz.2023-0601
    [2]WEI Yizhen, ZHANG Duoduo, WANG Qiang, CHANG Xiao, CHEN Meini, LUO Linzhi. Establishment and Preliminary Application of Competence Framework for Clinical Teaching Management Positions Based on Nominal Group Technique[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 718-723. DOI: 10.12290/xhyxzz.2023-0443
    [3]SU Tong, CHEN Yu, ZHANG Daming, ZHAO Jun, SUN Hao, DING Ning, XUE Huadan, JIN Zhengyu. Establishment and Preliminary Application of Competency Model for Undergraduate Medical Imaging Teachers[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 708-717. DOI: 10.12290/xhyxzz.2023-0401
    [4]ZHANG Hanlin, HE Zitang, LI Yue, LUO Linzhi, ZHANG Shuyang. Professional Competence for Clinicians: Assessment Methods and Research Progress[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1296-1300. DOI: 10.12290/xhyxzz.2023-0064
    [5]Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China Medical Board, Chinese Hospital Association Pharmaceutical Specialized Committee. Expert Consensus on the Core Competency Framework of Chinese Clinical Pharmacist (2023)[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 257-265. DOI: 10.12290/xhyxzz.2023-0092
    [6]CHEN Yu, XUE Huadan, ZHANG Daming, SHI Yuxi, SUN Hao, DING Ning, SU Tong, ZHU Huijuan, JIN Zhengyu, ZHANG Shuyang. Exploration on the Training and Evaluation Mode of Clinical Postdoctoral Trainees in Radiology Department Based on Core Competence[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 702-708. DOI: 10.12290/xhyxzz.2021-0800
    [7]RUAN Xia, TAN Gang, WANG Lin, CAI Jingjing, XUE Qinghua, XU Mingjun, ZHANG Jianmin, YAN Fuxia, ZHENG Hui, DENG Xiaoming, SHEN Le, HUANG Yuguang. Exploration and Practice of the Collaborative Program in Postdoctoral Trainees of Clinical Anesthesiology[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 56-60. DOI: 10.12290/xhyxzz.2021-0459
    [8]ZHANG Shuyang. Exploration and Practice of the Training System of Comprehensive Medical Talents at Peking Union Medical College Hospital[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 5-8. DOI: 10.12290/xhyxzz.2021-0535
    [9]SHI Yuxi, ZHU Huijuan, XUE Huadan, LI Yue, LUO Linzhi, LI Hang, LIANG Naixin, QIU Jie, WEI Yizhen, SUN Jun, ZHANG Shuyang. Application of 360° Evaluation System Based on Core-competency in Clinical Postdoctoral Training[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 584-588. DOI: 10.3969/j.issn.1674-9081.2020.00.013
    [10]SHI Yu-xi, LI Yue, ZHU Hui-juan, ZHANG Shuo, WEI Yi-zhen, CHANG Xing, LUO Lin-zhi, JIA Xue-yan, ZHU Dan-tong, ZHANG Shu-yang. Investigation on the Core Competency of Residents during Coronavirus Disease 2019 Outbreak[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 136-140. DOI: 10.12290/xhyxzz.20200134
  • Cited by

    Periodical cited type(13)

    1. 张曼,杨旭. 医院高质量发展背景下博士后培养体系的实践及探索. 中国继续医学教育. 2025(03): 193-198 .
    2. 郭利忠,臧广超. 医学本科生创新能力培养的实践与改革探索. 中华医学教育探索杂志. 2024(03): 378-382 .
    3. 李沛,朱圣洁,赵宁,邱月. 我国临床医生科研能力现状与培养策略. 中华医学教育杂志. 2024(12): 915-919 .
    4. 黄华,朱雪晴,唐艺瑜,邱越,匡铭. 新质生产力赋能大型公立医院国际合作交流的实践与思考. 现代医院. 2024(12): 1813-1816 .
    5. 张裕娇,段斌斌,李倩,苏颖,蔡开琳,黄恺,姚强,李刚. 临床博士后并轨规范化培训项目开展的现状、问题及对策——基于双一流建设高校的一项调查. 中国卫生事业管理. 2024(12): 1420-1423 .
    6. 卢迎宁,王洪海,刘丽红. 基于CiteSpace的医学教育创新研究动态及热点分析. 卫生职业教育. 2023(11): 126-130 .
    7. 刘宇,杨钰一,侯岫岐,丁君怡,魏倩,卢炼,王颖. 基层医疗集团通过引进博士后提升科研实力的探索与实践——以深圳市罗湖医院集团为例. 现代医院. 2023(06): 956-959 .
    8. 张玫,郑燕鸣,江丰,罗丽珊,张露文. 创新中医院“三工程一计划”中医药人才培养机制实践探讨. 现代医院. 2023(12): 1923-1925+1928 .
    9. 许志威,吴敏昊,郭开华,杨冬成,高国全,王淑珍. 基础医学拔尖创新人才培养机制的探索与实践. 医学教育管理. 2022(03): 255-259+275 .
    10. 王卓青,刘洪江,冯劭婷,李海,张昆松,肖海鹏. 人才和科技是实现慢病精准化管理的必由之路——中山大学附属第一医院的思考和探索. 中华内分泌代谢杂志. 2022(08): 629-632 .
    11. 杜勃,董魁,高妍,周国宏,白雪,王泽远. 眼视光医学本科《眼科前沿与聚焦》教学现状调查. 临床医药实践. 2022(11): 854-856 .
    12. 谢波,曹静敏,徐希宇,周志浩. 大健康视域下拔尖创新人才培养的思考. 盐城工学院学报(社会科学版). 2022(04): 105-107 .
    13. 杨舒雅,梁伟,孙元杰,王静,杨琨. 免疫学超敏反应课程教学设计与实践. 细胞与分子免疫学杂志. 2022(11): 1051-1054 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close