留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肿瘤相关巨噬细胞与肿瘤耐药及治疗研究进展

苏鹏飞 于健春

苏鹏飞, 于健春. 肿瘤相关巨噬细胞与肿瘤耐药及治疗研究进展[J]. 协和医学杂志, 2022, 13(3): 480-486. doi: 10.12290/xhyxzz.2021-0605
引用本文: 苏鹏飞, 于健春. 肿瘤相关巨噬细胞与肿瘤耐药及治疗研究进展[J]. 协和医学杂志, 2022, 13(3): 480-486. doi: 10.12290/xhyxzz.2021-0605
SU Pengfei, YU Jianchun. Progress in the Research on the Role of Tumor-associated Macrophages in Drug-resistance and Treatment of Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 480-486. doi: 10.12290/xhyxzz.2021-0605
Citation: SU Pengfei, YU Jianchun. Progress in the Research on the Role of Tumor-associated Macrophages in Drug-resistance and Treatment of Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 480-486. doi: 10.12290/xhyxzz.2021-0605

肿瘤相关巨噬细胞与肿瘤耐药及治疗研究进展

doi: 10.12290/xhyxzz.2021-0605
基金项目: 

北京市科学技术委员会基金 D171100006517002

详细信息
    通讯作者:

    于健春, E-mail:yu-jch@163.com

  • 中图分类号: R730.5

Progress in the Research on the Role of Tumor-associated Macrophages in Drug-resistance and Treatment of Tumors

Funds: 

Beijing Municipal Commission of Science and Technology Foundation D171100006517002

More Information
  • 摘要: 肿瘤耐药的产生是肿瘤细胞与肿瘤微环境(tumor microenvironment, TME)相互作用的结果, 肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)是TME中的主要免疫细胞, 在炎症微环境和肿瘤细胞的恶性表型之间发挥桥梁作用, 与肿瘤耐药和疾病进展密切相关, 其中M2型TAMs浸润则预示着不良的临床结局。本文主要针对TAMs参与肿瘤耐药的作用机制和治疗进展进行综述, 以期为减少肿瘤耐药、增强抗肿瘤治疗疗效提供参考。
    作者贡献:苏鹏飞、于健春共同参与论文选题;苏鹏飞负责文献检索及论文撰写;于健春负责论文修订。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68: 394-424. doi:  10.3322/caac.21492
    [2] Zhang T, Yuan Q, Gu Z, et al. Advances of proteomics technologies for multidrug-resistant mechanisms[J]. Future Med Chem, 2019, 11: 2573-2593. doi:  10.4155/fmc-2018-0507
    [3] Taddia L, D'Arca D, Ferrari S, et al. Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance[J]. Drug Resist Updat, 2015, 23: 20-54. doi:  10.1016/j.drup.2015.10.003
    [4] Takeya M, Komohara Y. Role of tumor-associated macrophages in human malignancies: friend or foe?[J]. Pathol Int, 2016, 66: 491-505. doi:  10.1111/pin.12440
    [5] Wang M, Zhao J, Zhang L, et al. Role of tumor microenvironment in tumorigenesis[J]. J Cancer, 2017, 8: 761-773. doi:  10.7150/jca.17648
    [6] Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm[J]. J Immunol, 2000, 164: 6166-6173. doi:  10.4049/jimmunol.164.12.6166
    [7] Zhu J, Zhi Q, Zhou BP, et al. The role of tumor associated macrophages in the tumor microenvironment: mechanism and functions[J]. Anticancer Agents Med Chem, 2016, 16: 1133-1141. doi:  10.2174/1871520616666160520112622
    [8] Schultze JL, Schmidt SV. Molecular features of macrophage activation[J]. Semin Immunol, 2015, 27: 416-423. doi:  10.1016/j.smim.2016.03.009
    [9] Jeannin P, Paolini L, Adam C, et al. The roles of CSFs on the functional polarization of tumor-associated macrophages[J]. FEBS J, 2018, 285: 680-699. doi:  10.1111/febs.14343
    [10] Ostuni R, Kratochvill F, Murray PJ, et al. Macrophages and cancer: from mechanisms to therapeutic implications[J]. Trends Immunol, 2015, 36: 229-239. doi:  10.1016/j.it.2015.02.004
    [11] Li X, Liu R, Su X, et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy[J]. Mol Cancer, 2019, 18: 177. doi:  10.1186/s12943-019-1102-3
    [12] Wu K, Lin K, Li X, et al. Redefining tumor-associated Macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol, 2020, 11: 1731. doi:  10.3389/fimmu.2020.01731
    [13] Xue J, Schmidt SV, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation[J]. Immunity, 2014, 40: 274-288. doi:  10.1016/j.immuni.2014.01.006
    [14] Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122: 787-795. doi:  10.1172/JCI59643
    [15] Candido JB, Morton JP, Bailey P, et al. CSF1R(+) macrophages sustain pancreatic tumor growth through T cell Suppression and maintenance of key gene programs that define the squamous subtype[J]. Cell Rep, 2018, 23: 1448-1460. doi:  10.1016/j.celrep.2018.03.131
    [16] Li M, Li M, Yang Y, et al. Remodeling tumor immune microenvironment via targeted blockade of PI3K-gamma and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy[J]. J Control Release, 2020, 321: 23-35. doi:  10.1016/j.jconrel.2020.02.011
    [17] Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer[J]. Immunotherapy, 2019, 11: 677-689. doi:  10.2217/imt-2018-0156
    [18] Sarode P, Zheng X, Giotopoulou GA, et al. Reprogramm-ing of tumor-associated macrophages by targeting beta-catenin/FOSL2/ARID5A signaling: A potential treatment of lung cancer[J]. Sci Adv, 2020, 6: eaaz6105. doi:  10.1126/sciadv.aaz6105
    [19] Yin Y, Yao S, Hu Y, et al. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6[J]. Clin Cancer Res, 2017, 23: 7375-7387. doi:  10.1158/1078-0432.CCR-17-1283
    [20] Li J, He K, Liu P, et al. Iron participated in breast cancer chemoresistance by reinforcing IL-6 paracrine loop[J]. Biochem Biophys Res Commun, 2016, 475: 154-160. doi:  10.1016/j.bbrc.2016.05.064
    [21] Yang C, He L, He P, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway[J]. Med Oncol, 2015, 32: 352.
    [22] Wei C, Yang CG, Wang SY, et al. M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling[J]. Onco Targets Ther, 2019, 12: 3051-3063. doi:  10.2147/OTT.S198126
    [23] Yu S, Li Q, Yu Y, et al. Activated HIF1alpha of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer[J]. Cancer Immunol Immun, 2020, 69: 1973-1987. doi:  10.1007/s00262-020-02598-5
    [24] Ireland L, Santos A, Ahmed MS, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors[J]. Cancer Res, 2016, 76: 6851-6863. doi:  10.1158/0008-5472.CAN-16-1201
    [25] Zhang M, Zhang H, Tang F, et al. Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells[J]. Exp Biol Med (Maywood), 2016, 241: 2086-2093. doi:  10.1177/1535370216660399
    [26] Li D, Ji H, Niu X, et al. Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer[J]. Cancer Sci, 2020, 111: 47-58. doi:  10.1111/cas.14230
    [27] He Z, Chen D, Wu J, et al. Yes associated protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating GLUT3-dependent glycometabolism reprogramming of tumor-associated macrophages[J]. Arch Biochem Biophys, 2021, 702: 108838. doi:  10.1016/j.abb.2021.108838
    [28] Yu S, Li Q, Wang Y, et al. Tumor-derived LIF promotes chemoresistance via activating tumor-associated macrophages in gastric cancers[J]. Exp Cell Res, 2021, 406: 112734. doi:  10.1016/j.yexcr.2021.112734
    [29] Wang H, Wang L, Pan H, et al. Exosomes derived from macrophages enhance aerobic glycolysis and chemoresistance in lung cancer by stabilizing c-Myc via the inhibition of NEDD4L[J]. Front Cell Dev Biol, 2021, 8: 231-246.
    [30] Zhu X, Shen H, Yin X, et al. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype[J]. J Exp Clin Cancer Res, 2019, 38: 81. doi:  10.1186/s13046-019-1095-1
    [31] Stockmann C, Doedens A, Weidemann A, et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis[J]. Nature, 2008, 456: 814-818. doi:  10.1038/nature07445
    [32] De Palma M, Lewis CE. Cancer: Macrophages limit chemotherapy[J]. Nature, 2011, 472: 303-304. doi:  10.1038/472303a
    [33] Li Y, Weng Y, Zhong L, et al. VEGFR3 inhibition chemosensitizes lung adenocarcinoma A549 cells in the tumor-associated macrophage microenvironment through upregulation of p53 and PTEN[J]. Oncol Rep, 2017, 38: 2761-2773. doi:  10.3892/or.2017.5969
    [34] Dalton HJ, Pradeep S, Mcguire M, et al. Macrophages facilitate resistance to anti-VEGF therapy by altered VEGFR expression[J]. Clin Cancer Res, 2017, 23: 7034-7046. doi:  10.1158/1078-0432.CCR-17-0647
    [35] Bracci L, Schiavoni G, Sistigu A, et al. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer[J]. Cell Death Differ, 2014, 21: 15-25. doi:  10.1038/cdd.2013.67
    [36] Denardo DG, Brennan DJ, Rexhepaj E, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy[J]. Cancer Discov, 2011, 1: 54-67. doi:  10.1158/2159-8274.CD-10-0028
    [37] Baghdadi M, Wada H, Nakanishi S, et al. Chemotherapy-induced IL-34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells[J]. Cancer Res, 2016, 76: 6030-6042. doi:  10.1158/0008-5472.CAN-16-1170
    [38] Larionova I, Cherdyntseva N, Liu T, et al. Interaction of tumor-associated macrophages and cancer chemotherapy[J]. Oncoimmunology, 2019, 8: 1596004. doi:  10.1080/2162402X.2019.1596004
    [39] Vahidian F, Duijf P, Safarzadeh E, et al. Interactions between cancer stem cells, immune system and some environmental components: Friends or foes?[J]. Immunol Lett, 2019, 208: 19-29. doi:  10.1016/j.imlet.2019.03.004
    [40] Xiang T, Long H, He L, et al. Interleukin-17 produced by tumor microenvironment promotes self-renewal of CD133+ cancer stem-like cells in ovarian cancer[J]. Oncogene, 2015, 34: 165-176. doi:  10.1038/onc.2013.537
    [41] Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses[J]. Cancer Res, 2013, 73: 1128-1141. doi:  10.1158/0008-5472.CAN-12-2731
    [42] Yang L, Dong Y, Li Y, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-kappaB/Notch1 pathway in non-small cell lung cancer[J]. Int J Cancer, 2019, 145: 1099-1110. doi:  10.1002/ijc.32151
    [43] Zhou W, Ke SQ, Huang Z, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth[J]. Nat Cell Biol, 2015, 17: 170-182. doi:  10.1038/ncb3090
    [44] Sainz BJ, Alcala S, Garcia E, et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment[J]. Gut, 2015, 64: 1921-1935. doi:  10.1136/gutjnl-2014-308935
    [45] Nywening TM, Belt BA, Cullinan DR, et al. Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma[J]. Gut, 2018, 67: 1112-1123. doi:  10.1136/gutjnl-2017-313738
    [46] Lederman MM, Sieg SF. CCR5 and its ligands: a new axis of evil?[J]. Nat Immunol, 2007, 8: 1283-1285. doi:  10.1038/ni1207-1283
    [47] Gao D, Cazares LH, Fish EN. CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis[J]. BMC Cancer, 2017, 17: 834. doi:  10.1186/s12885-017-3817-0
    [48] Halama N, Zoernig I, Berthel A, et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients[J]. Cancer cell, 2016, 29: 587-601. doi:  10.1016/j.ccell.2016.03.005
    [49] Aldinucci D, Casagrande N. Inhibition of the CCL5/CCR5 axis against the progression of gastric cancer[J]. Int J Mol Sci, 2018, 19: 1477. doi:  10.3390/ijms19051477
    [50] Huang H, Zepp M, Georges RB, et al. The CCR5 antagonist maraviroc causes remission of pancreatic cancer liver metastasis in nude rats based on cell cycle inhibition and apoptosis induction[J]. Cancer Lett, 2020, 474: 82-93. doi:  10.1016/j.canlet.2020.01.009
    [51] Lee C, Jeong H, Bae Y, et al. Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide[J]. J Immunother Cancer, 2019, 7: 147. doi:  10.1186/s40425-019-0610-4
    [52] Hume DA, Macdonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling[J]. Blood, 2012, 119: 1810-1820. doi:  10.1182/blood-2011-09-379214
    [53] Andersen MN, Etzerodt A, Graversen JH, et al. STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes[J]. Cancer Immunol Immunother, 2019, 68: 489-502. doi:  10.1007/s00262-019-02301-3
    [54] Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nat Biomed Eng, 2018, 2: 578-588. doi:  10.1038/s41551-018-0236-8
    [55] Tanei T, Leonard F, Liu X, et al. Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases[J]. Cancer Res, 2016, 76: 429-439. doi:  10.1158/0008-5472.CAN-15-1576
    [56] Choi J, Kim HY, Ju EJ, et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors[J]. Biomaterials, 2012, 33: 4195-4203. doi:  10.1016/j.biomaterials.2012.02.022
  • 加载中
计量
  • 文章访问数:  97
  • HTML全文浏览量:  3
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 录用日期:  2021-10-12
  • 网络出版日期:  2022-04-12
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回

    【通知】尊敬的读者、作者及编者:因特殊原因,本站自2022.9.30至10.24日期间实施6—24点开放,其他时段访问受限,给您带来不便敬请谅解!10.25日恢复如常。