Citation: | Bei-di CHEN, Li-dan ZHAO, Xuan ZHANG. Gut Microbiota and Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 258-263. DOI: 10.3969/j.issn.1674-9081.20200056 |
[1] |
Van de Wiele T, Van Praet JT, Marzorati M, et al. How the microbiota shapes rheumatic diseases[J]. Nat Rev Rheumatol, 2016, 12:398-411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=288d5a2f730e4043e26c889cd3c53f01
|
[2] |
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464:59-65. http://www.nature.com/nature/journal/v464/n7285/full/nature08821.html
|
[3] |
Sethi V, Vitiello GA, Saxena D, et al. The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy[J]. Gastroenterology, 2019, 156:2097-2115.e2. https://www.ncbi.nlm.nih.gov/pubmed/30768986
|
[4] |
Stiemsma LT, Reynolds LA, Turvey SE, et al. The hygiene hypothesis:current perspectives and future therapies[J]. Immunotargets Ther, 2015, 4:143-157. https://www.ncbi.nlm.nih.gov/pubmed/27471720
|
[5] |
Skelly AN, Sato Y, Kearney S, et al. Mining the microbiota for microbial and metabolite-based immunotherapies[J]. Nat Rev Immunol, 2019, 19:305-323. https://www.nature.com/articles/s41577-019-0144-5
|
[6] |
Atarashi K, Tanoue T, Ando M, et al. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells[J]. Cell, 2015, 163:367-380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a76f233026963bb5bed995a2c46c10ee
|
[7] |
Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2013, 500:232-236. https://pubmed.ncbi.nlm.nih.gov/23842501/
|
[8] |
Hevia A, Milani C, Lopez P, et al. Intestinal dysbiosis associated with systemic lupus erythematosus[J]. mBio, 2014, 5:e01548-14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196225/
|
[9] |
He Z, Shao T, Li H, et al. Alterations of the gut micro-biome in Chinese patients with systemic lupus erythematosus[J]. Gut Pathog, 2016, 8:64. DOI: 10.1186/s13099-016-0146-9
|
[10] |
Li Y, Wang HF, Li X, et al. Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus[J]. Clin Sci (Lond), 2019, 133:821-838. https://pubmed.ncbi.nlm.nih.gov/30872359/
|
[11] |
van der Meulen TA, Harmsen HJM, Vila AV, et al. Shared gut, but distinct oral microbiota composition in primary Sjogren's syndrome and systemic lupus erythematosus[J]. J Autoimmun, 2019, 97:77-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01e50ac5491da52a056d587b9cb7c46a
|
[12] |
Chen B, Jia X, Xu J, et al. Proinflammatory and autoimmunogenic gut microbiome in systemic lupus erythematosus[OL]. BioRxiv, 2019. https://www.biorxiv.org/content/10.1101/621995v1.
|
[13] |
Azzouz D, Omarbekova A, Heguy A, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal[J]. Ann Rheum Dis, 2019, 78:947-956. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c16c0aff71770ce6b88db4f317c5c7a
|
[14] |
Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569:655-662. https://www.nature.com/articles/s41586-019-1237-9
|
[15] |
Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis[J]. Ann Rheum Dis, 2017, 76:1614-1622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a8ae61ed1b81a8726bf0d9d485799a46
|
[16] |
Asquith M, Sternes PR, Costello ME, et al. HLA Alleles Associated With Risk of Ankylosing Spondylitis and Rheumatoid Arthritis Influence the Gut Microbiome[J]. Arthritis Rheumatol, 2019, 71:1642-1650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/art.40917
|
[17] |
Unni KK, Holley KE, McDuffie FC, et al. Comparative study of NZB mice under germfree and conventional conditions[J]. J Rheumatol, 1975, 2:36-44. https://www.ncbi.nlm.nih.gov/pubmed/1185733
|
[18] |
Manfredo Vieira S, Hiltensperger M, Kumar V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans[J]. Science, 2018, 359:1156-1161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e7a7650e2bce61a97b363b06d6247a0a
|
[19] |
Ma Y, Xu X, Li M, et al. Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus[J]. Mol Med, 2019, 25:35. https://pubmed.ncbi.nlm.nih.gov/31370803/
|
[20] |
Fasano A. Leaky gut and autoimmune diseases[J]. Clin Rev Allergy Immunol, 2012, 42:71-78.
|
[21] |
Ogunrinde E, Zhou Z, Luo Z, et al. A Link Between Plasma Microbial Translocation, Microbiome, and Autoantibody Development in First-Degree Relatives of Systemic Lupus Erythematosus Patients[J]. Arthritis Rheumatol, 2019, 71:1858-1868. DOI: 10.1002/art.40935
|
[22] |
Zegarra-Ruiz DF, El Beidaq A, Iniguez AJ, et al. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity[J]. Cell Host Microbe, 2019, 25:113-127.e6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e2fa041954016ac8116d977ab41e060
|
[23] |
Schmidt TS, Hayward MR, Coelho LP, et al. Extensive transmission of microbes along the gastrointestinal tract[J]. Elife, 2019, 8. pii:e42693. https://pubmed.ncbi.nlm.nih.gov/30747106/
|
[24] |
Correa JD, Calderaro DC, Ferreira GA, et al. Subgingival microbiota dysbiosis in systemic lupus erythematosus:association with periodontal status[J]. Microbiome, 2017, 5:34. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359961/
|
[25] |
焦禹豪, 陈蓓迪, 张烜.肠道菌群在天然免疫系统中的作用[J].协和医学杂志, 2019, 10:257-262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xhyx201903013
|
[26] |
Lopez P, de Paz B, Rodriguez-Carrio J, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients[J]. Sci Rep, 2016, 6:24072. https://www.nature.com/articles/srep24072
|
[27] |
Mu Q, Cabana-Puig X, Mao J, et al. Pregnancy and lactation interfere with the response of autoimmunity to modulation of gut microbiota[J]. Microbiome, 2019, 7:105. DOI: 10.1186/s40168-019-0720-8
|
[28] |
Ansaldo E, Slayden LC, Ching KL, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis[J]. Science, 2019, 364:1179-1184. https://science.sciencemag.org/content/364/6446/1179.full
|
[29] |
Li ZX, Zeng S, Wu HX, et al. The risk of systemic lupus erythematosus associated with Epstein-Barr virus infection:a systematic review and meta-analysis[J]. Clin Exp Med, 2019, 19:23-36. DOI: 10.1007/s10238-018-0535-0
|
[30] |
Ruff WE, Dehner C, Kim WJ, et al. Pathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity[J]. Cell Host Microbe, 2019, 26:100-113.e8. https://www.sciencedirect.com/science/article/abs/pii/S1931312819302483
|
[31] |
Greiling TM, Dehner C, Chen X, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus[J]. Sci Transl Med, 2018, 10. pii:eaan2306. https://www.ncbi.nlm.nih.gov/pubmed/?term=29593104
|
[32] |
Edwards MR, Dai R, Heid B, et al. Commercial rodent diets differentially regulate autoimmune glomerulonephritis, epigenetics and microbiota in MRL/lpr mice[J]. Int Immunol, 2017, 29:263-276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc11af94cc19ce0d8b1ed8f113698040
|
[33] |
Gill PA, van Zelm MC, Muir JG, et al. Review article:short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders[J]. Aliment Pharmacol Ther, 2018, 48:15-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/014860719101500301
|
[34] |
White CA, Pone EJ, Lam T, et al. Histone deacetylase inhibitors upregulate B cell microRNAs that silence AID and Blimp-1 expression for epigenetic modulation of antibody and autoantibody responses[J]. J Immunol, 2014, 193:5933-5950. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb6668882e9b2ef9f3167b6ae1767ee6
|
[35] |
Tzang BS, Liu CH, Hsu KC, et al. Effects of oral Lactobacillus administration on antioxidant activities and CD4+CD25+forkhead box P3(FoxP3)+ T cells in NZB/W F1 mice[J]. Br J Nutr, 2017, 118:333-342.
|
[36] |
Hsu TC, Huang CY, Liu CH, et al. Lactobacillus paracasei GMNL-32, Lactobacillus reuteri GMNL-89 and L. reuteri GMNL-263 ameliorate hepatic injuries in lupus-prone mice[J]. Br J Nutr, 2017, 117:1066-1074.
|
[37] |
Mu Q, Zhang H, Liao X, et al. Control of lupus nephritis by changes of gut microbiota[J]. Microbiome, 2017, 5:73. https://www.ncbi.nlm.nih.gov/pubmed/28697806
|
[38] |
Toral M, Robles-Vera I, Romero M, et al. Lactobacillus fermentum CECT5716:a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus[J]. FASEB J, 2019, 33:10005-10018. https://www.ncbi.nlm.nih.gov/pubmed/31173526
|
[39] |
Allegretti JR, Mullish BH, Kelly C, et al. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications[J]. Lancet, 2019, 394:420-431. https://www.sciencedirect.com/science/article/pii/S0140673619312668
|
[40] |
张发明, 李玥.粪菌移植治疗炎症性肠病的争议[J].协和医学杂志, 2019, 10:211-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xhyx201903006
|
[1] | CHEN Weiyun, DAI Yi, QIAN Min, LIANG Jinqian. Perioperative Management of SEPN1-Related Myopathy Accompanying Scoliosis: A Case Report[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0428 |
[2] | HUANG Biqing, LI Lanjuan. The Impact of Gut Microbiota on Vaccine Immune Efficacy and Potential Mechanisms[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 939-944. DOI: 10.12290/xhyxzz.2023-0173 |
[3] | SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. DOI: 10.12290/xhyxzz.2022-0694 |
[4] | ZHAO Lidan, MENG Xia, XU Haojie, ZHANG Fengchun. Prospect of Gut Microbiota-based Intervention in Autoimmune Disease Control[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 740-746. DOI: 10.12290/xhyxzz.2022-0245 |
[5] | Qi JIN, Qin LUO, Zhi-hui ZHAO, Zhi-hong LIU. MicroRNA-21 in the Pathogenesis of Pulmonary Hypertension[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(4): 430-438. DOI: 10.3969/j.issn.1674-9081.2020.04.013 |
[6] | Yuan XIA, Xiang-pei LI. The Role of MicroRNA Regulation of Interferon-α in the Pathogenesis of Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 673-678. DOI: 10.3969/j.issn.1674-9081.2019.06.021 |
[7] | Ri-liga WU, Rong MU. Intestinal Microbiota in Systemic Sclerosis[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 263-267. DOI: 10.3969/j.issn.1674-9081.2019.03.013 |
[8] | Yu-hao JIAO, Bei-di CHEN, Xuan ZHANG. Interplay between the Gut Microbiota and the Innate Immune System[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 257-262. DOI: 10.3969/j.issn.1674-9081.2019.03.012 |
[9] | Li-wei WANG, Zhi-min DUAN, Jian-bo TONG, Rong ZENG, Hao-xiang XU, Min LI. Diversity Analysis of Intestinal Microbiota in Psoriasis Patients: A Single-center Prospective Study[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 223-230. DOI: 10.3969/j.issn.1674-9081.2019.03.007 |
[10] | Yu-hao JIAO, Feng-chun ZHANG. New Insights into Research on the Role of Gut Microbiota in Human Immune System[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 193-196. DOI: 10.3969/j.issn.1674-9081.2019.03.001 |