ZHAO Lidan, MENG Xia, XU Haojie, ZHANG Fengchun. Prospect of Gut Microbiota-based Intervention in Autoimmune Disease Control[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 740-746. DOI: 10.12290/xhyxzz.2022-0245
Citation: ZHAO Lidan, MENG Xia, XU Haojie, ZHANG Fengchun. Prospect of Gut Microbiota-based Intervention in Autoimmune Disease Control[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 740-746. DOI: 10.12290/xhyxzz.2022-0245

Prospect of Gut Microbiota-based Intervention in Autoimmune Disease Control

Funds: 

National Natural Science Foundation of China 82071840

CAMS Innovation Fund for Medical Sciences 2020-I2M-C & T-B-013

More Information
  • Corresponding author:

    ZHANG Fengchun, E-mail: zhangfccra@aliyun.com

  • Received Date: May 01, 2022
  • Accepted Date: July 14, 2022
  • Available Online: July 27, 2022
  • Issue Publish Date: September 29, 2022
  • Gut microbiota is indispensable for the maintenance of human immune homeostasis. Dysbiosis and translocation of gut microbes as well as aberrance of microbiome metabolites, which are commonly seen in many autoimmune diseases, are suggested to participate in the breakdown of immune tolerance and the excessive inflammatory responses. The involved mechanisms include immune equilibrium skewing, molecular mimicry, bystander activation and epitope spreading, which contributes to the initiation and progression of autoimmune diseases. In addition, the microbial biotransformation of antirheumatic drugs help determine the bioactivity and toxicity of these drugs. Herein, gut microbiota-based intervention may shed light on developing novel strategies for prophylaxis and treatment of autoimmune diseases. In this review, recent advances in exploring the potential pathogenic role of gut microbiota in autoimmunity are summarized and the prospect of applying microbiota-based intervention in systemic autoimmune diseases is addressed.
  • [1]
    Hevia A, Milani C, López P, et al. Intestinal dysbiosis associated with systemic lupus erythematosus[J]. mBio, 2014, 5: e01548-14.
    [2]
    He Z, Shao T, Li H, et al. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus[J]. Gut Pathog, 2016, 8: 64. DOI: 10.1186/s13099-016-0146-9
    [3]
    Chen BD, Jia XM, Xu JY, et al. An Autoimmunogenic and Proinflammatory Profile Defined by the Gut Microbiota of Patients With Untreated Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2021, 73: 232-243.
    [4]
    Azzouz D, Omarbekova A, Heguy A, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal[J]. Ann Rheum Dis, 2019, 78: 947-956. DOI: 10.1136/annrheumdis-2018-214856
    [5]
    Scher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis[J]. Elife, 2013, 2: e01202. DOI: 10.7554/eLife.01202
    [6]
    Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment[J]. Nat Med, 2015, 21: 895-905. DOI: 10.1038/nm.3914
    [7]
    Tang R, Wei Y, Li Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy[J]. Gut, 2018, 67: 534-541. DOI: 10.1136/gutjnl-2016-313332
    [8]
    Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis[J]. Ann Rheum Dis, 2017, 76: 1614-1622. DOI: 10.1136/annrheumdis-2016-211064
    [9]
    Mandl T, Marsal J, Olsson P, et al. Severe intestinal dysbiosis is prevalent in primary Sjögren's syndrome and is associated with systemic disease activity[J]. Arthritis Res Ther, 2017, 19: 237. DOI: 10.1186/s13075-017-1446-2
    [10]
    Cano-Ortiz A, Laborda-Illanes A, Plaza-Andrades I, et al. Connection between the Gut Microbiome, Systemic Inflammation, Gut Permeability and FOXP3 Expression in Patients with Primary Sjögren's Syndrome[J]. Int J Mol Sci, 2020, 21: 8733. DOI: 10.3390/ijms21228733
    [11]
    Zhou C, Zhao H, Xiao XY, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis[J]. J Autoimmun, 2020, 107: 102360. DOI: 10.1016/j.jaut.2019.102360
    [12]
    Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis[J]. Ann Rheum Dis, 2017, 76: 1614-1622. DOI: 10.1136/annrheumdis-2016-211064
    [13]
    Hall AB, Yassour M, Sauk J, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients[J]. Genome Med, 2017, 9: 103. DOI: 10.1186/s13073-017-0490-5
    [14]
    Gomez-Banuelos E, Mukherjee A, Darrah E, et al. Rheumatoid Arthritis-Associated Mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans[J]. J Clin Med, 2019, 8: 1309. DOI: 10.3390/jcm8091309
    [15]
    Bagavant H, Dunkleberger ML, Wolska N, et al. Antibodies to periodontogenic bacteria are associated with higher disease activity in lupus patients[J]. Clin Exp Rheumatol, 2019, 37: 106-111.
    [16]
    Manfredo Vieira S, Hiltensperger M, Kumar V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans[J]. Science, 2018, 359: 1156-1161. DOI: 10.1126/science.aar7201
    [17]
    Zegarra-Ruiz DF, El Beidaq A, Iniguez AJ, et al. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity[J]. Cell Host Microbe, 2019, 25: 113-127. e6. DOI: 10.1016/j.chom.2018.11.009
    [18]
    Ruff WE, Dehner C, Kim WJ, et al. Pathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity[J]. Cell Host Microbe, 2019, 26: 100-113. e8. DOI: 10.1016/j.chom.2019.05.003
    [19]
    Greiling TM, Dehner C, Chen X, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus[J]. Sci Transl Med, 2018, 10: eaan2306. DOI: 10.1126/scitranslmed.aan2306
    [20]
    Szymula A, Rosenthal J, Szczerba BM, et al. T cell epitope mimicry between Sjögren's syndrome Antigen A (SSA)/Ro60 and oral, gut, skin and vaginal bacteria[J]. Clin Immunol, 2014, 152: 1-9. DOI: 10.1016/j.clim.2014.02.004
    [21]
    Zhang L, Zhang YJ, Chen J, et al. The association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: A systematic review[J]. Microb Pathog, 2018, 117: 49-54. DOI: 10.1016/j.micpath.2018.02.020
    [22]
    Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504: 446-450. DOI: 10.1038/nature12721
    [23]
    Sivaprakasam S, Prasad PD, Singh N. Benefits of Short-chain fatty acids and their receptors in inflammation and carcinogenesis[J]. Pharmacol Ther, 2016, 164: 144-151. DOI: 10.1016/j.pharmthera.2016.04.007
    [24]
    Rosser EC, Piper CJM, Matei DE, et al. Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells[J]. Cell Metab, 2020, 31: 837-851. e10. DOI: 10.1016/j.cmet.2020.03.003
    [25]
    Sanchez HN, Moroney JB, Gan H, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids[J]. Nat Commun, 2020, 11: 60. DOI: 10.1038/s41467-019-13603-6
    [26]
    Kidd BA, Ho PP, Sharpe O, et al. Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination[J]. Arthritis Res Ther, 2008, 10: R119. DOI: 10.1186/ar2523
    [27]
    Bagavant H, Araszkiewicz AM, Ingram JK, et al. Immune Response to Enterococcus gallinarum in Lupus Patients Is Associated With a Subset of Lupus-Associated Autoantibodies[J]. Front Immunol, 2021, 12: 635072. DOI: 10.3389/fimmu.2021.635072
    [28]
    Hsu TC, Huang CY, Liu CH, et al. Lactobacillus paracasei GMNL-32, Lactobacillus reuteri GMNL-89 and L. reuteri GMNL-263 ameliorate hepatic injuries in lupus-prone mice[J]. Br J Nutr, 2017, 117: 1066-1074. DOI: 10.1017/S0007114517001039
    [29]
    Yeh YL, Lu MC, Tsai BC, et al. Heat-Killed Lactobacillus reuteri GMNL-263 Inhibits Systemic Lupus Erythematosus-Induced Cardiomyopathy in NZB/W F1 Mice[J]. Probiotics Antimicrob Proteins, 2021, 13: 51-59. DOI: 10.1007/s12602-020-09668-1
    [30]
    Tzang BS, Liu CH, Hsu KC, et al. Effects of oral Lactobacillus administration on antioxidant activities and CD4+CD25+forkhead box P3 (FoxP3)+ T cells in NZB/W F1 mice[J]. Br J Nutr, 2017, 118: 333-342. DOI: 10.1017/S0007114517002112
    [31]
    Li Y, Wang HF, Li X, et al. Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus[J]. Clin Sci (Lond), 2019, 133: 821-838. DOI: 10.1042/CS20180841
    [32]
    Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359: 91-97. DOI: 10.1126/science.aan3706
    [33]
    Artacho A, Isaac S, Nayak R, et al. The Pretreatment Gut Microbiome Is Associated With Lack of Response to Methotrexate in New-Onset Rheumatoid Arthritis[J]. Arthritis Rheumatol, 2021, 73: 931-942. DOI: 10.1002/art.41622
    [34]
    Nayak RR, Alexander M, Deshpande I, et al. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation[J]. Cell Host Microbe, 2021, 29: 362-377. e11. DOI: 10.1016/j.chom.2020.12.008
    [35]
    Zaragoza-Garcia O, Castro-Alarcon N, Perez-Rubio G, et al. DMARDs-Gut Microbiota Feedback: Implications in the Response to Therapy[J]. Biomolecules, 2020, 10: 1479. DOI: 10.3390/biom10111479
    [36]
    Araya RE, Goldszmid RS. Two Bugs a NOD Away from Improving Cancer Therapy Efficacy[J]. Immunity, 2016, 45: 714-716. DOI: 10.1016/j.immuni.2016.10.007
    [37]
    Chen J, Wright K, Davis JM, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis[J]. Genome Med, 2016, 8: 43. DOI: 10.1186/s13073-016-0299-7
    [38]
    Flannigan KL, Taylor MR, Pereira SK, et al. An intact microbiota is required for the gastrointestinal toxicity of the immunosuppressant mycophenolate mofetil[J]. J Heart Lung Transplant, 2018, 37: 1047-1059. DOI: 10.1016/j.healun.2018.05.002
    [39]
    Taylor MR, Flannigan KL, Rahim H, et al. Vancomycin relieves mycophenolate mofetil-induced gastrointestinal toxicity by eliminating gut bacterial beta-glucuronidase activity[J]. Sci Adv, 2019, 5: eaax2358. DOI: 10.1126/sciadv.aax2358
    [40]
    Kim DS, Park Y, Choi JW, et al. Lactobacillus acidophilus Supplementation Exerts a Synergistic Effect on Tacrolimus Efficacy by Modulating Th17/Treg Balance in Lupus-Prone Mice via the SIGNR3 Pathway[J]. Front Immunol, 2021, 12: 696074. DOI: 10.3389/fimmu.2021.696074
    [41]
    Furukawa M, Moriya K, Nakayama J, et al. Gut dysbiosis associated with clinical prognosis of patients with primary biliary cholangitis[J]. Hepatol Res, 2020, 50: 840-852. DOI: 10.1111/hepr.13509
    [42]
    Bazin T, Hooks KB, Barnetche T, et al. Microbiota Composition May Predict Anti-Tnf Alpha Response in Spondyloarthritis Patients: an Exploratory Study[J]. Sci Rep, 2018, 8: 5446. DOI: 10.1038/s41598-018-23571-4
    [43]
    Yin J, Sternes PR, Wang M, et al. Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition[J]. Ann Rheum Dis, 2020, 79: 132-140. DOI: 10.1136/annrheumdis-2019-215763
    [44]
    Zhou Y, Xu ZZ, He Y, et al. Gut Microbiota Offers Universal Biomarkers across Ethnicity in Inflammatory Bowel Disease Diagnosis and Infliximab Response Prediction[J]. mSystems, 2018, 3: e00188-17.
    [45]
    Aden K, Rehman A, Waschina S, et al. Metabolic Functions of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases[J]. Gastroenterology, 2019, 157: 1279-1292. e11. DOI: 10.1053/j.gastro.2019.07.025
    [46]
    Pan H, Guo R, Ju Y, et al. A single bacterium restores the microbiome dysbiosis to protect bones from destruction in a rat model of rheumatoid arthritis[J]. Microbiome, 2019, 7: 107. DOI: 10.1186/s40168-019-0719-1
    [47]
    Zamani B, Golkar HR, Farshbaf S, et al. Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial[J]. Int J Rheum Dis, 2016, 19: 869-879. DOI: 10.1111/1756-185X.12888
    [48]
    Alpizar-Rodriguez D, Lesker TR, Gronow A, et al. Prevo-tella copri in individuals at risk for rheumatoid arthritis[J]. Ann Rheum Dis, 2019, 78: 590-593. DOI: 10.1136/annrheumdis-2018-214514
    [49]
    Marietta EV, Murray JA, Luckey DH, et al. Suppression of Inflammatory Arthritis by Human Gut-Derived Prevotella histicola in Humanized Mice[J]. Arthritis Rheumatol, 2016, 68: 2878-2888. DOI: 10.1002/art.39785
    [50]
    Mandel DR, Eichas K, Holmes J. Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial[J]. BMC Complement Altern Med, 2010, 10: 1. DOI: 10.1186/1472-6882-10-1
    [51]
    Shokryazdan P, Faseleh Jahromi M, Navidshad B, et al. Effects of prebiotics on immune system and cytokine expression[J]. Med Microbiol Immunol, 2017, 206: 1-9. DOI: 10.1007/s00430-016-0481-y
    [52]
    Wilson B, Eyice O, Koumoutsos I, et al. Prebiotic Galactooligosaccharide Supplementation in Adults with Ulcerative Colitis: Exploring the Impact on Peripheral Blood Gene Expression, Gut Microbiota, and Clinical Symptoms[J]. Nutrients, 2021, 13: 3598. DOI: 10.3390/nu13103598
    [53]
    Ho J, Nicolucci AC, Virtanen H, et al. Effect of Prebiotic on Microbiota, Intestinal Permeability, and Glycemic Control in Children With Type 1 Diabetes[J]. J Clin Endocrinol Metab, 2019, 104: 4427-4440. DOI: 10.1210/jc.2019-00481
    [54]
    Moro G, Arslanoglu S, Stahl B, et al. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age[J]. Arch Dis Child, 2006, 91: 814-819. DOI: 10.1136/adc.2006.098251
    [55]
    Zeng J, Peng L, Zheng W, et al. Fecal microbiota transplantation for rheumatoid arthritis: A case report[J]. Clin Case Rep, 2020, 9: 906-909.
    [56]
    Kragsnaes MS, Kjeldsen J, Horn HC, et al. Efficacy and safety of faecal microbiota transplantation in patients with psoriatic arthritis: protocol for a 6-month, double-blind, randomised, placebo-controlled trial[J]. BMJ Open, 2018, 8: e019231. DOI: 10.1136/bmjopen-2017-019231
    [57]
    Picchianti Diamanti A, Panebianco C, Salerno G, et al. Impact of Mediterranean Diet on Disease Activity and Gut Microbiota Composition of Rheumatoid Arthritis Patients[J]. Microorganisms, 2020, 8: 1989. DOI: 10.3390/microorganisms8121989
    [58]
    Gutierrez-Diaz I, Fernandez-Navarro T, Sanchez B, et al. Mediterranean diet and faecal microbiota: a transversal study[J]. Food Funct, 2016, 7: 2347-2356. DOI: 10.1039/C6FO00105J
    [59]
    Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease[J]. Nature, 2017, 551: 585-589. DOI: 10.1038/nature24628
    [60]
    Zhang H, Liao X, Sparks JB, et al. Dynamics of gut microbiota in autoimmune lupus[J]. Appl Environ Microbiol, 2014, 80: 7551-7560. DOI: 10.1128/AEM.02676-14
  • Related Articles

    [1]ZHANG Ning, YANG Chenhao, ZHOU Liangrui, SUN Xiaohong, LIU Xiaohong, KANG Lin, LI Ji, LI Hailong. Cronkhite-Canada Syndrome Combined with Asymptomatic Novel Coronavirus Infection: A Case Report[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 406-412. DOI: 10.12290/xhyxzz.2023-0476
    [2]ZHANG Lu, LI Jian. Castleman Disease in China: State-of-the-art Technology Before the Era of IL-6 Targeted Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 911-914. DOI: 10.12290/xhyxzz.2023-0227
    [3]ZHU Shikun, ZHANG Shu, LUO Yaping. SPECT/CT in Localization of Sentinel Lymph Node of Skin Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 795-801. DOI: 10.12290/xhyxzz.2023-0170
    [4]HUANG Ziyu, ZUO Tao, LAN Ping. Gastrointestinal Diseases and Gut Microbiome Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 732-739. DOI: 10.12290/xhyxzz.2022-0208
    [5]FANG Yuan, PAN Yuanlong, ZHU Baoli. Human Gut Microbiome and Diseases: Current Status, Opportunity and Challenges[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 713-718. DOI: 10.12290/xhyxzz.2022-0288
    [6]Rare Diseases Society of Chinese Research Hospital Association, National Rare Diseases Committee, Beijing Rare Disease Diagnosis, Treatment and Protection Society, Gitelman Syndrome Consensus Working Group. Expert Consensus for the Diagnosis and Treatment of Gitelman Syndrome in China (2021)[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 902-912. DOI: 10.12290/xhyxzz.2021-0555
    [7]Zhi-tong GE, Jian-chu LI. Application of Ultrasonic Intervention in the Treatment of Vascular Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 62-67. DOI: 10.3969/j.issn.1674-9081.20190210
    [8]Li-wei WANG, Zhi-min DUAN, Jian-bo TONG, Rong ZENG, Hao-xiang XU, Min LI. Diversity Analysis of Intestinal Microbiota in Psoriasis Patients: A Single-center Prospective Study[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 223-230. DOI: 10.3969/j.issn.1674-9081.2019.03.007
    [9]Ming-sheng MA, Xü-de ZHANG, Min WEI, Shi-min ZHAO, Zheng-qing QIU. Efficacy of Low Dose Corticosteroid Therapy in Duchenne Muscular Dystrophy[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 384-388. DOI: 10.3969/j.issn.1674-9081.2014.04.006
    [10]Jie LIU, Yue-ping ZENG, Chun-xia HE, Qin LONG, Hong-zhong JIN, Qiu-ning SUN. Corticosteroids plus Intravenous Immunoglobulin in the Treatment of 7 Cases with Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(4): 381-385. DOI: 10.3969/j.issn.1674-9081.2012.04.004
  • Cited by

    Periodical cited type(7)

    1. 张家豪,吕冰洁,程翔. 肠道菌群通过调节免疫细胞参与肠外疾病的研究进展. 中华内科杂志. 2024(01): 100-106 .
    2. 黄焕荣,李朋举,江小柯,罗晓英,白阳秋,张炳勇. 活泼瘤胃球菌在炎症性肠病发病中的作用. 中国临床研究. 2024(10): 1608-1612 .
    3. 徐晓华,刘睿艳,林颖,朱丽,章雯珺,黄晨旭,周达新,潘文志,孙鹰英,凌华兴. 国内首批经导管三尖瓣环缩术治疗重度三尖瓣反流的围手术期护理. 复旦学报(医学版). 2023(03): 231-236 .
    4. 张彬彬,易琼,戴飞跃. 基于“肺与大肠相表里”探讨肺-肠-重症肺炎关联性. 亚太传统医药. 2023(06): 213-216 .
    5. 杨扬,洪青,刘振民. 益生菌对自身免疫性疾病干预策略的研究进展. 乳业科学与技术. 2023(03): 38-45 .
    6. 刘盼茹,郭玺,唐乙朝,王海丹,郭云柯,殷爱玲,李永明,周伟. 自身免疫性疾病与肠道菌群互作及中药干预研究进展. 南京中医药大学学报. 2023(07): 693-700 .
    7. 李亚彤,赵珈华,刘洋,桂金秋,杨恬怡,唐小云. 粪菌移植对肠道菌群失调小鼠SLE发生发展的影响及机制. 热带医学杂志. 2023(12): 1678-1684+1793 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (3914) PDF downloads (86) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close