Citation: | SUN Yuxin, GUO Xiaoyuan, ZHENG Xueqing, CHEN Shi, YANG Hongbo, PAN Hui. Application Status and Research Progress of Imaging Assessment of Skeletal Maturity in Adolescents and Children[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1456-1462. DOI: 10.12290/xhyxzz.2024-0217 |
Skeletal maturity can reflect an individual's developmental status and predict their future growth potential, provide clinicians with valuable diagnostic information. In recent years, significant progress has been made in imaging techniques for assessing skeletal maturity. This article aims to review the application status and research progress of X-ray, MRI and ultrasound in assessing skeletal maturity in adolescents and children, with a view of providing clinical reference.
[1] |
Lazar L, Phillip M. Pubertal disorders and bone maturation[J]. Endocrinol Metab Clin North Am, 2012, 41(4): 805-825. DOI: 10.1016/j.ecl.2012.08.003
|
[2] |
周星旭, 袁红梅. 影像学方法评估骨龄的现状及研究进展[J]. 国际儿科学杂志, 2023, 50(12): 837-840. DOI: 10.3760/cma.j.issn.1673-4408.2023.12.011
Zhou X X, Yuan H M. Current status and progress of imaging methods in evaluating bone age[J]. Int J Pediatr, 2023, 50(12): 837-840. DOI: 10.3760/cma.j.issn.1673-4408.2023.12.011
|
[3] |
Dahlberg P S, Mosdøl A, Ding Y P, et al. A systematic review of the agreement between chronological age and skeletal age based on the Greulich and Pyle atlas[J]. Eur Radiol, 2019, 29(6): 2936-2948. DOI: 10.1007/s00330-018-5718-2
|
[4] |
Subramanian S, Viswanathan V K. Bone age[M/OL]//StatPearls[Internet]. Treasure Island: StatPearls Publish-ing, 2023: NBK537051[网络访问日期缺失]. https://pubmed.ncbi.nlm.nih.gov/30725736/.
|
[5] |
Prokop-Piotrkowska M, Marszałek-Dziuba K, Moszczyńska E, et al. Traditional and new methods of bone age assessment-an overview[J]. J Clin Res Pediatr Endocrinol, 2021, 13(3): 251-262. DOI: 10.4274/jcrpe.galenos.2020.2020.0091
|
[6] |
彭丽珍, 陈俊杰, 顾林, 等. 中华05法和G-P图谱法在儿童青少年骨龄评估中的效果对比研究[J]. 影像研究与医学应用, 2022, 6(20): 86-88. DOI: 10.3969/j.issn.2096-3807.2022.20.028
Peng L Z, Chen J J, Gu L, et al. Comparative study on the effects of Zhonghua 05 method and G-P atlas method in bone age assessment of children and adolescents[J]. J Imaging Res Med Appl, 2022, 6(20): 86-88. DOI: 10.3969/j.issn.2096-3807.2022.20.028
|
[7] |
张绍岩, 马振国, 沈勋章, 等. 中国人手腕骨发育标准-中华05. Ⅳ. 中国儿童手腕骨发育特征[J]. 中国运动医学杂志, 2007, 26(4): 452-455. DOI: 10.3969/j.issn.1000-6710.2007.04.014
Zhang S Y, Ma Z G, Shen X Z, et al. The standards of skeletal maturity of hand and wrist for Chinese-China 05 Ⅳ. The characteristics of skeletal development in Chinese children[J]. Chin J Sports Med, 2007, 26(4): 452-455. DOI: 10.3969/j.issn.1000-6710.2007.04.014
|
[8] |
潘其乐, 张洪, 周慧康, 等. Greulich-Pyle图谱法、CHN法和中华05法评估儿童青少年骨龄的比较[J]. 中国组织工程研究, 2021, 25(5): 662-667.
Pan Q L, Zhang H, Zhou H K, et al. Comparison of the Greulich-Pyle method, the CHN method and the China 05 method for assessing bone age in children and adolescents[J]. Chin J Tissue Eng Res, 2021, 25(5): 662-667.
|
[9] |
程龙龙, 汤鹏, 罗方亮, 等. 应用医学影像学技术评定骨龄的研究进展[J]. 中国法医学杂志, 2019, 34(1): 62-66.
Cheng L L, Tang P, Luo F L, et al. Progress in skeletal age estimation with radiological technology[J]. Chin J Forensic Med, 2019, 34(1): 62-66.
|
[10] |
Schmeling A, Schulz R, Reisinger W, et al. Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography[J]. Int J Legal Med, 2004, 118(1): 5-8. DOI: 10.1007/s00414-003-0404-5
|
[11] |
Thodberg H H. Clinical review: an automated method for determination of bone age[J]. J Clin Endocrinol Metab, 2009, 94(7): 2239-2244. DOI: 10.1210/jc.2008-2474
|
[12] |
Thodberg H H, Jenni O G, Caflisch J, et al. Prediction of adult height based on automated determination of bone age[J]. J Clin Endocrinol Metab, 2009, 94(12): 4868-4874. DOI: 10.1210/jc.2009-1429
|
[13] |
张义, 朱文文, 李凯, 等. 人工智能在儿童骨龄影像评估的应用进展[J]. 中华放射学杂志, 2023, 57(4): 420-423. DOI: 10.3760/cma.j.cn112149-20220309-00215
Zhang Y, Zhu W W, Li K, et al. Application and development of artificial intelligence in bone age imaging assessment of children[J]. Chin J Radiol, 2023, 57(4): 420-423. DOI: 10.3760/cma.j.cn112149-20220309-00215
|
[14] |
Yang Z C, Cong C, Pagnucco M, et al. Multi-scale multi-reception attention network for bone age assessment in X-ray images[J]. Neural Netw, 2023, 158: 249-257. DOI: 10.1016/j.neunet.2022.11.002
|
[15] |
Beheshtian E, Putman K, Santomartino S M, et al. Generalizability and bias in a deep learning pediatric bone age prediction model using hand radiographs[J]. Radiology, 2023, 306(2): e220505. DOI: 10.1148/radiol.220505
|
[16] |
Widek T, Genet P, Ehammer T, et al. Bone age estimation with the Greulich-Pyle atlas using 3T MR images of hand and wrist[J]. Forensic Sci Int, 2021, 319: 110654. DOI: 10.1016/j.forsciint.2020.110654
|
[17] |
Urschler M, Krauskopf A, Widek T, et al. Applicability of Greulich-Pyle and Tanner-Whitehouse grading methods to MRI when assessing hand bone age in forensic age estimation: a pilot study[J]. Forensic Sci Int, 2016, 266: 281-288. DOI: 10.1016/j.forsciint.2016.06.016
|
[18] |
Tomei E, Sartori A, Nissman D, et al. Value of MRI of the hand and the wrist in evaluation of bone age: preliminary results[J]. J Magn Reson Imaging, 2014, 39(5): 1198-1205. DOI: 10.1002/jmri.24286
|
[19] |
Pennock A T, Bomar J D, Manning J D. The creation and validation of a knee bone age atlas utilizing MRI[J]. J Bone Joint Surg Am, 2018, 100(4): e20. DOI: 10.2106/JBJS.17.00693
|
[20] |
Dedouit F, Auriol J, Rousseau H, et al. Age assessment by magnetic resonance imaging of the knee: a preliminary study[J]. Forensic Sci Int, 2012, 217(1/3): 232. e1-232. e7.
|
[21] |
Ording Muller L S, Adolfsson J, Forsberg L, et al. Magnetic resonance imaging of the knee for chronological age estimation-a systematic review[J]. Eur Radiol, 2023, 33(8): 5258-5268. DOI: 10.1007/s00330-023-09546-8
|
[22] |
Jopp E, Schröder I, Maas R, et al. Proximale tibiaepiphyse im magnetresonanztomogramm: Neue Möglichkeit zur Altersbestimmung bei Lebenden?[J]. Rechtsmedizin, 2010, 20(6): 464-468. DOI: 10.1007/s00194-010-0705-1
|
[23] |
Krämer J A, Schmidt S, Jürgens K U, et al. Forensic age estimation in living individuals using 3.0T MRI of the distal femur[J]. Int J Legal Med, 2014, 128(3): 509-514. DOI: 10.1007/s00414-014-0967-3
|
[24] |
Vieth V, Schulz R, Heindel W, et al. Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages[J]. Eur Radiol, 2018, 28(8): 3255-3262. DOI: 10.1007/s00330-017-5281-2
|
[25] |
Kvist O F, Dallora A L, Nilsson O, et al. Comparison of reliability of magnetic resonance imaging using cartilage and T1-weighted sequences in the assessment of the closure of the growth plates at the knee[J]. Acta Radiol Open, 2020, 9(9): 2058460120962732. DOI: 10.1177/2058460120962732
|
[26] |
Daghighi M H, Pourisa M, Javanpour-Heravi H, et al. Application of knee MRI in forensic age estimation: a retrospective cohort[J]. Radiography (Lond), 2021, 27(1): 108-114. DOI: 10.1016/j.radi.2020.06.019
|
[27] |
Politzer C S, Bomar J D, Pehlivan H C, et al. Creation and validation of a shorthand magnetic resonance imaging bone age assessment tool of the knee as an alternative skeletal maturity assessment[J]. Sports Med, 2021, 49(11): 2955-2959. DOI: 10.1177/03635465211032986
|
[28] |
Seinsheimer F 3rd, Sledge C B. Parameters of longitudinal growth rate in rabbit epiphyseal growth plates[J]. J Bone Joint Surg Am, 1981, 63(4): 627-630. DOI: 10.2106/00004623-198163040-00013
|
[29] |
Buckwalter J A, Mower D, Ungar R, et al. Morphometric analysis of chondrocyte hypertrophy[J]. J Bone Joint Surg Am, 1986, 68(2): 243-255. DOI: 10.2106/00004623-198668020-00010
|
[30] |
Farnum C E, Lee R, O'Hara K, et al. Volume increase in growth plate chondrocytes during hypertrophy: the contribution of organic osmolytes[J]. Bone, 2002, 30(4): 574-581. DOI: 10.1016/S8756-3282(01)00710-4
|
[31] |
Bai X, Zhou Z B, Guo X Y, et al. Magnetic resonance imaging of knees: a novel approach to predict recombinant human growth hormone therapy response in short-stature children in late puberty[J]. World J Pediatr, 2024, 20(7): 723-734. DOI: 10.1007/s12519-023-00758-y
|
[32] |
Barrera C A, Bedoya M A, Delgado J, et al. Correlation between diffusion tensor imaging parameters of the distal femoral physis and adjacent metaphysis, and subsequent adolescent growth[J]. Pediatr Radiol, 2019, 49(9): 1192-1200. DOI: 10.1007/s00247-019-04443-z
|
[33] |
Jaramillo D, Duong P, Nguyen J C, et al. Diffusion tensor imaging of the knee to predict childhood growth[J]. Radiology, 2022, 303(3): 655-663. DOI: 10.1148/radiol.210484
|
[34] |
Bilgili Y, Hizel S, Kara S A, et al. Accuracy of skeletal age assessment in children from birth to 6 years of age with the ultrasonographic version of the Greulich-Pyle atlas[J]. J Ultrasound Med, 2003, 22(7): 683-690. DOI: 10.7863/jum.2003.22.7.683
|
[35] |
Torenek Ağirman K, Bilge O M, Milo ğ lu Ö. Ultrasono-graphy in determining pubertal growth and bone age[J]. Dentomaxillofac Radiol, 2018, 47(7): 20170398. DOI: 10.1259/dmfr.20170398
|
[36] |
Wan J, Zhao Y, Feng Q Q, et al. Potential value of conventional ultrasound in estimation of bone age in patients from birth to near adulthood[J]. Ultrasound Med Biol, 2019, 45(11): 2878-2886. DOI: 10.1016/j.ultrasmedbio.2019.07.681
|
[37] |
Wan J, Zhao Y, Feng Q Q, et al. Summation of ossification ratios of radius, ulna and femur: a new parameter to evaluate bone age by ultrasound[J]. Ultrasound Med Biol, 2020, 46(7): 1761-1768. DOI: 10.1016/j.ultrasmedbio.2020.03.021
|
[38] |
Lv P, Zhang C. Tanner-Whitehouse skeletal maturity score derived from ultrasound images to evaluate bone age[J]. Eur Radiol, 2023, 33(4): 2399-2406.
|
[39] |
Herrmann J, Säring D, Auf Der Mauer M, et al. Forensic age assessment of the knee: proposal of a new classification system using two-dimensional ultrasound volumes and comparison to MRI[J]. Eur Radiol, 2021, 31(5): 3237-3247. DOI: 10.1007/s00330-020-07343-1
|
[40] |
Daneff M, Casalis C, Bruno C H, et al. Bone age assessment with conventional ultrasonography in healthy infants from 1 to 24 months of age[J]. Pediatr Radiol, 2015, 45(7): 1007-1015. DOI: 10.1007/s00247-014-3253-0
|
[41] |
Dillman J R, Ayyala R S. Point-of-care bone age evaluation: the increasing role of US in resource-limited populations[J]. Radiology, 2020, 296(1): 170-171. DOI: 10.1148/radiol.2020201168
|
[42] |
Nicholas J L, Douglas K E, Waters W, et al. US evaluation of bone age in rural Ecuadorian children: association with anthropometry and nutrition[J]. Radiology, 2020, 296(1): 161-169. DOI: 10.1148/radiol.2020190606
|
[1] | LIU Xiaoyu, YAN Chaowu, WU Dong, DANZENG Pingcuo, XU Zhonghui. Preliminary Screening of Health Status Among Preschool Children in Extremely High Altitude Areas of Tibet, China[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-1056 |
[2] | CHEN Yingyu, WANG Ou, XING Xiaoping. Genetic and Clinical Characteristics of Pediatric Primary Hyperparathyroidism[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0731 |
[3] | LIU Qixing, WANG Huogen, CIDAN Wangjiu, TUDAN Awang, YANG Meijie, PUQIONG Qiongda, YANG Xiao, PAN Hui, WANG Fengdan. Construction and Validation of A Deep Learning-based Bone Age Prediction Model for Children Living in Both Plain and Highland Regions[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1439-1446. DOI: 10.12290/xhyxzz.2023-0651 |
[4] | YANG Yamei, ZHANG Li, ZHANG Yixuan, ZHAO Zeqing, GU Yilin, CHEN Shi, PAN Hui, WANG Fengdan, YANG Xiao, LI Jianchu. Area Ossification Ratio: A New Parameter for Quantitative Assessment of Adolescent Bone Age by Conventional Ultrasonography[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1192-1197. DOI: 10.12290/xhyxzz.2024-0202 |
[5] | ZHAO Zeqing, CHEN Shi, ZHANG Li, ZHANG Yixuan, Yang Yamei, Gu Yilin, WANG Fengdan, PAN Hui, YANG Xiao, LI Jianchu. Correlation Analysis Between Ultrasonic Epiphysis Cartilage Thickness and Bone Age[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 694-701. DOI: 10.12290/xhyxzz.2024-0093 |
[6] | CHEN Fei, ZHANG Yuguan, ZHU Bo. Prospects of Digital Medicine in Postoperative Pain Management in Children[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 279-284. DOI: 10.12290/xhyxzz.2023-0429 |
[7] | LIN Yi, WANG Zhiliang, ZHAO Haiyan, ZHANG Lijuan, CHANG Hong. Changes and Clinical Significance of Serum Degraded Monosaccharides in Children with Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 292-298. DOI: 10.12290/xhyxzz.2022-0681 |
[8] | LIU Haimei, ZHANG Tianyu, MA Le, ZHANG Zhiyong, XU Meng, ZHANG Tao, XU Hong, TANG Xuemei, YANG Sirui, YU Haiguo, SONG Hongmei, SUN Li. Clinical Features and Treatment Outcomes of Chronic Nonbacterial Osteomyelitis in Children: A Multicenter Study in China[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 278-284. DOI: 10.12290/xhyxzz.2022-0712 |
[9] | CIDAN Wangjiu, LABA Dunzhu, WANG Fengdan, GU Xiao, CHEN Shi, LIU Yongliang, SHI Lei, PAN Hui, YIN Wu, JIN Zhengyu. Comparison of Three Methods of Assessing the Bone Age in Tibetan Children and the Features of Their Skeletal Maturity[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 411-416. DOI: 10.12290/xhyxzz.20200259 |
[10] | Xue-zhen ZHAO, Juan XIAO, Li-juan GOU, Ji LI, Ming-ming HU, Ming LI, Chang-yan WANG, Chen WANG, Lin WANG. Primary Intramedullary Spinal Cord Mixed Germinoma in Children: Report of One Case and Review of Literature[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 393-398. DOI: 10.3969/j.issn.1674-9081.2014.04.008 |