LIN Yi, WANG Zhiliang, ZHAO Haiyan, ZHANG Lijuan, CHANG Hong. Changes and Clinical Significance of Serum Degraded Monosaccharides in Children with Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 292-298. DOI: 10.12290/xhyxzz.2022-0681
Citation: LIN Yi, WANG Zhiliang, ZHAO Haiyan, ZHANG Lijuan, CHANG Hong. Changes and Clinical Significance of Serum Degraded Monosaccharides in Children with Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 292-298. DOI: 10.12290/xhyxzz.2022-0681

Changes and Clinical Significance of Serum Degraded Monosaccharides in Children with Systemic Lupus Erythematosus

Funds: 

National Natural Science Foundation of China 81672585

More Information
  • Corresponding author:

    CHANG Hong, E-mail: 18661802671@yeah.net

  • Received Date: November 28, 2022
  • Accepted Date: January 31, 2023
  • Issue Publish Date: March 29, 2023
  •   Objective  To investigate the characteristics of changes in serum degraded monosaccharide levels in children with systemic lupus erythematosus (SLE) and its relationship with the severity of the disease and immune dysfunction.
      Methods  Children firstly diagnosed as SLE and hospitalized in the Affiliated Hospital of Qingdao University from January 2019 to March 2022 were enrolled in the SLE group, healthy childrenwho underwent physical examination at the same period were chosen as the control and matched in a ration of 1∶1 in age and sex with the SLE group. The clinical data of both groups were collected. The serum levels of five kinds of degraded monosaccharides, which were mannose, glucosamine, aminogalactose, N-acetyl glucosamine and galactose, were analyzed in both groups. The correlations between serum levels of degraded monosaccharides and SLE disease activity and immunologic markers were analyzed with Pearson correlation coefficient.
      Results  Totally 45 children with SLE (13 with mild disease activity, 15 with moderate disease activity, and 17 with severe disease activity) and 50 healthy children were enrolled in the experiment. Compared with the control group, the SLE group showed elevated levels of serum mannose, glucosamine, aminogalactose, N-acetyl glucosamine, and galactose (all P < 0.05); and serum levels of mannose, N-acetyl glucosamine, and galactose gradually increased with increasing disease activity (all P < 0.05). There was no significant difference in glucosamine and aminogalactose levels in children with SLE of different disease activity (all P > 0.05). Pearson correlation coefficient showed that serum degraded monosaccharide levels were positively correlated with disease activity indexes and various immunologic markers.
      Conclusions  Serum levels of degraded monosaccharides in children with SLE are elevated and some of which are correlated with disease activity and immune dysfunction.
  • [1]
    李文根, 古奕文, 张科, 等. 儿童与成人系统性红斑狼疮临床特点分析[J]. 中华实用儿科临床杂志, 2015, 30: 672-675. DOI: 10.3760/cma.j.issn.2095-428X.2015.09.009
    [2]
    Flores-Mendoza G, Sanson SP, Rodriguez-Castro S, et al. Mechanisms of Tissue Injury in Lupus Nephritis[J]. Trends Mol Med, 2018, 24: 364-378. DOI: 10.1016/j.molmed.2018.02.003
    [3]
    Morel L. Immunometabolism in systemic lupus erythematosus[J]. Nat Rev Rheumatol, 2017, 13: 280-290. DOI: 10.1038/nrrheum.2017.43
    [4]
    Stathopoulou C, Nikoleri D, Bertsias G. Immunometabo-lism: an overview and therapeutic prospects in autoimmune diseases[J]. Immunotherapy, 2019, 11: 813-829. DOI: 10.2217/imt-2019-0002
    [5]
    Alves I, Vicente MM, Dias AM, et al. The Role of Glycosylation in Inflammatory Diseases[J]. Adv Exp Med Biol, 2021, 1325: 265-283.
    [6]
    Panda AK, Parida JR, Tripathy R, et al. Mannose binding lectin: a biomarker of systemic lupus erythematosus disease activity[J]. Arthritis Res Ther, 2012, 14: R218. DOI: 10.1186/ar4057
    [7]
    王健, 李晞. 蛋白质糖基化修饰在自身免疫反应中的研究进展[J]. 检验医学与临床, 2021, 18: 128-131. DOI: 10.3969/j.issn.1672-9455.2021.01.040
    [8]
    Vuckovic F, Kristic J, Gudelj I, et al. Association of systemic lupus erythematosus with decreased immunosuppres-sive potential of the IgG glycome[J]. Arthritis Rheumatol, 2015, 67: 2978-2989. DOI: 10.1002/art.39273
    [9]
    Han J, Zhou Z, Zhang R, et al. Fucosylation of anti-dsDNA IgG1 correlates with disease activity of treatment-naive systemic lupus erythematosus patients[J]. EBioMedicine, 2022, 77: 103883. DOI: 10.1016/j.ebiom.2022.103883
    [10]
    王晓龙, 王秀然, 卢天成. 蛋白质糖基化修饰的研究进展[J]. 基因组学与应用生物学, 2017, 36: 4380-4384. DOI: 10.13417/j.gab.036.004380
    [11]
    Mardinoglu A, Stancakova A, Lotta LA, et al. Plasma Mannose Levels Are Associated with Incident Type 2 Diabetes and Cardiovascular Disease[J]. Cell Metab, 2017, 26: 281-283. DOI: 10.1016/j.cmet.2017.07.006
    [12]
    王志亮, 盛楷迪, 林毅, 等. 过敏性紫癜患儿血清降解单糖水平的变化及意义[J]. 中国当代儿科杂志, 2022, 24: 894-898. DOI: 10.7499/j.issn.1008-8830.2202125
    [13]
    Petri M, Orbai AM, Alarcon GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus[J]. Arthritis Rheum, 2012, 64: 2677-2686. DOI: 10.1002/art.34473
    [14]
    田新平, 李梦涛, 曾小峰. 从我国系统性红斑狼疮的诊治现状寻找可能的解决方案: 来自《中国系统性红斑狼疮发展报告2020》的启示[J]. 协和医学杂志, 2022, 13: 169-173. DOI: 10.12290/xhyxzz.2022-0020
    [15]
    中华医学会儿科学分会免疫学组, 中华儿科杂志编辑委员会. 中国儿童系统性红斑狼疮诊断与治疗指南[J]. 中华儿科杂志, 2021, 59: 1009-1024. DOI: 10.3760/cma.j.cn112140-20210905-00743
    [16]
    Li M, Wang Q, Zhao J, et al. Chinese SLE Treatment and Research group (CSTAR) registry: Ⅱ. Prevalence and risk factors of pulmonary arterial hypertension in Chinese patients with systemic lupus erythematosus[J]. Lupus, 2014, 23: 1085-1091. DOI: 10.1177/0961203314527366
    [17]
    Varki A. Biological roles of glycans[J]. Glycobiology, 2017, 27: 3-49. DOI: 10.1093/glycob/cww086
    [18]
    章晓联. 蛋白糖基化与免疫[J]. 中国免疫学杂志, 2004, 20: 290-293. DOI: 10.3321/j.issn:1000-484X.2004.04.019
    [19]
    Zhou JY, Oswald DM, Oliva KD, et al. The Glycoscience of Immunity[J]. Trends Immunol, 2018, 39: 523-535. DOI: 10.1016/j.it.2018.04.004
    [20]
    Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation[J]. Science, 2006, 313: 670-673. DOI: 10.1126/science.1129594
    [21]
    Fiebiger BM, Maamary J, Pincetic A, et al. Protection in antibody- and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type Ⅱ FcRs[J]. Proc Natl Acad Sci U S A, 2015, 112: E2385-E2394.
    [22]
    Cheng HD, Stockmann H, Adamczyk B, et al. High-throughput characterization of the functional impact of IgG Fc glycan aberrancy in juvenile idiopathic arthritis[J]. Glycobiology, 2017, 27: 1099-1108. DOI: 10.1093/glycob/cwx082
    [23]
    Sjowall C, Zapf J, von Lohneysen S, et al. Altered glycosylation of complexed native IgG molecules is associated with disease activity of systemic lupus erythematosus[J]. Lupus, 2015, 24: 569-581. DOI: 10.1177/0961203314558861
    [24]
    Szabo E, Hornung A, Monostori E, et al. Altered Cell Surface N-Glycosylation of Resting and Activated T Cells in Systemic Lupus Erythematosus[J]. Int J Mol Sci, 2019, 20: 4455. DOI: 10.3390/ijms20184455
    [25]
    Zhang M, Zhang Y, Ma X, et al. Using a PCR instrument to hydrolyze polysaccharides for monosaccharide composition analyses[J]. Carbohydr Polym, 2020, 240: 116338. DOI: 10.1016/j.carbpol.2020.116338
  • Related Articles

    [1]LIU Xiaoyu, YAN Chaowu, WU Dong, DANZENG Pingcuo, XU Zhonghui. Preliminary Screening of Health Status Among Preschool Children in Extremely High Altitude Areas of Tibet, China[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-1056
    [2]SUN Yuxin, GUO Xiaoyuan, ZHENG Xueqing, CHEN Shi, YANG Hongbo, PAN Hui. Application Status and Research Progress of Imaging Assessment of Skeletal Maturity in Adolescents and Children[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1456-1462. DOI: 10.12290/xhyxzz.2024-0217
    [3]CHEN Fei, ZHANG Yuguan, ZHU Bo. Prospects of Digital Medicine in Postoperative Pain Management in Children[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 279-284. DOI: 10.12290/xhyxzz.2023-0429
    [4]LIU Huan, HUANG Xiaoling, DAI Mengying, GUO Jiejie, GAO feng. Clinical Characteristics and Inflammatory Markers of Omicron BA.5.2 Variant Infection in Hospitalized Patients and Their Predictive Role in Disease Prognosis[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 1038-1045. DOI: 10.12290/xhyxzz.2023-0055
    [5]LIU Haimei, ZHANG Tianyu, MA Le, ZHANG Zhiyong, XU Meng, ZHANG Tao, XU Hong, TANG Xuemei, YANG Sirui, YU Haiguo, SONG Hongmei, SUN Li. Clinical Features and Treatment Outcomes of Chronic Nonbacterial Osteomyelitis in Children: A Multicenter Study in China[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 278-284. DOI: 10.12290/xhyxzz.2022-0712
    [6]ZHOU Yu, SONG Hongmei. Interpretation on the 2021 EULAR/American College of Rheumatology Points to Consider for Diagnosis, Management and Monitoring of the Interleukin-1 Mediated Autoinflammatory Diseases: Cryopyrin-Associated Periodic Syndromes, Tumour Necrosis Factor Receptor-Associated Periodic Syndrome, Mevalonate Kinase Deficiency, and Deficiency of the Interleukin-1 Receptor Antagonist[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 271-277. DOI: 10.12290/xhyxzz.2023-0043
    [7]MA Mingsheng, SONG Hongmei. Acceleration of Precision Medicine in Pediatric Rheumatic and Immunologic Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 229-233. DOI: 10.12290/xhyxzz.2023-0080
    [8]CIDAN Wangjiu, LABA Dunzhu, WANG Fengdan, GU Xiao, CHEN Shi, LIU Yongliang, SHI Lei, PAN Hui, YIN Wu, JIN Zhengyu. Comparison of Three Methods of Assessing the Bone Age in Tibetan Children and the Features of Their Skeletal Maturity[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 411-416. DOI: 10.12290/xhyxzz.20200259
    [9]Ying Liu, Hong Zhao, Jianping Zhang, Jinling Zhao, Xiaojuan Zhao, Lixia Chen. Relationship between Quality of Life and Joint Health in Hemophilic Children[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(1): 35-38. DOI: 10.3969/j.issn.1674-9081.2017.01.008
    [10]Xue-zhen ZHAO, Juan XIAO, Li-juan GOU, Ji LI, Ming-ming HU, Ming LI, Chang-yan WANG, Chen WANG, Lin WANG. Primary Intramedullary Spinal Cord Mixed Germinoma in Children: Report of One Case and Review of Literature[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 393-398. DOI: 10.3969/j.issn.1674-9081.2014.04.008

Catalog

    Article Metrics

    Article views (3131) PDF downloads (22) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close