Citation: | CIDAN Wangjiu, LABA Dunzhu, WANG Fengdan, GU Xiao, CHEN Shi, LIU Yongliang, SHI Lei, PAN Hui, YIN Wu, JIN Zhengyu. Comparison of Three Methods of Assessing the Bone Age in Tibetan Children and the Features of Their Skeletal Maturity[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 411-416. DOI: 10.12290/xhyxzz.20200259 |
[1] |
Martin DD, Wit JM, Hochberg Z, et al. The use of bone age in clinical practice-part 1[J]. Horm Res Paediatr, 2011, 76: 1-9. http://content.karger.com/ProdukteDB/produkte.asp?Aktion=ShowPDF&ArtikelNr=329372&Ausgabe=255394&ProduktNr=224036&filename=329372.pdf
|
[2] |
Creo AL, Schwenk WF. Bone age: A handy tool for pediatric providers[J]. Pediatrics, 2017, 140: e20171486. DOI: 10.1542/peds.2017-1486
|
[3] |
Greulich WW, Pyle SI. Radiographic atlas of skeletal development of hand wrist[M]. Stanford: Stanford Universtiy Press, 1971.
|
[4] |
Tanner JM, Healy MJR, Goldstein H, et al. Assessment of skeletal maturity and prediction of adult height (TW3 method)[M]. 3rd ed. London: WB Saunders, 2001.
|
[5] |
张绍岩, 马振国, 沈勋章, 等. 中国人手腕骨发育标准——中华05. IV. 中国儿童手腕骨发育特征[J]. 中国运动医学杂志, 2007, 26: 452-455. DOI: 10.3969/j.issn.1000-6710.2007.04.014
Zhang SY, Ma ZG, Shen XZ, et al. The skeletal development standards of hand and wrist for Chinese Children—China 05. IV.Features of hand and wrist for Chinese children[J]. Zhongguo Yun Dong Yi Xue Za Zhi, 2007, 26: 452-455. DOI: 10.3969/j.issn.1000-6710.2007.04.014
|
[6] |
Gertych A, Zhang A, Sayre J, et al. Bone age assessment of children using a digital hand atlas[J]. Comput Med Imag Grap, 2007, 31: 322-331. DOI: 10.1016/j.compmedimag.2007.02.012
|
[7] |
Bianba B, Yangzong Y, Gonggalanzi G, et al. Anthropometric measures of 9- to 10-year-old native Tibetan children living at 3700 and 4300 m above sea level and Han Chinese living at 3700 m[J]. Medicine (Baltimore), 2015, 94: e1516. DOI: 10.1097/MD.0000000000001516
|
[8] |
Wang F, Gu X, Chen S, et al. Artificial intelligence system can achieve comparable results to experts for bone age assessment of Chinese children with abnormal growth and development[J]. Peer J, 2020, 8: e8854. DOI: 10.7717/peerj.8854
|
[9] |
Van RR, Lequin MH, Robben SG, et al. Is the Greulich and Pyle atlas still valid for Dutch Caucasian children today?[J]. Pediatr Radiol, 2001, 31: 748-752. DOI: 10.1007/s002470100531
|
[10] |
Bken B, Safak AA, Yazici B, et al. Is the assessment of bone age by the Greulich-Pyle method reliable at forensic age estimation for Turkish children?[J]. Forensic Sci Int, 2007, 173: 146-153. DOI: 10.1016/j.forsciint.2007.02.023
|
[11] |
Zhang A, Sayre JW, Vachon L, et al. Racial differences in growth patterns of children assessed on the basis of bone age[J]. Radiology, 2009, 250: 228-235. DOI: 10.1148/radiol.2493080468
|
[12] |
Mirza WA, Memon M, Mahmood SM, et al. Bone age practices in infants and older children among practicing radiologists in Pakistan: developing world perspective[J]. Cureus, 2019, 11: e3936. http://www.researchgate.net/publication/330550531_Bone_Age_Practices_in_Infants_and_Older_Children_among_Practicing_Radiologists_in_Pakistan_Developing_World_Perspective
|
[13] |
Govender D, Goodier RM. Bone of contention: the applicability of the Greulich-Pyle method for skeletal age assessment in South Africa[J]. SA J Radiol, 2018, 22: 1348-1354. http://www.ncbi.nlm.nih.gov/pubmed/31754503
|
[14] |
Zafar AM, Nadeem N, Husen Y, et al. An appraisal of Greulich-Pyle Atlas for skeletal age assessment in Pakistan[J]. J PakMed Assoc, 2010, 60: 552-555.
|
[15] |
Proos LA, Nnerholm LT, Jonsson B, et al. Can the TW3 bone age determination method provide additional criteria for growth hormone treatment in adopted girls with early puberty? A comparison of the Tanner-Whitehouse 3 method with the Greulich-Pyle and the Tanner-Whitehouse 2 methods[J]. Horm Res Paediatr, 2010, 73: 35-40. DOI: 10.1159/000271914
|
[16] |
Lynnerup N, Belard E, Buch-Olsen K, et al. Intra- and interobserver error of the Greulich-Pyle method as used on a Danish forensic sample[J]. Forensic Sci Int, 2008, 179: 242. e1-6. http://europepmc.org/abstract/MED/18602233
|
[17] |
李春山, 李长勇, 席焕久, 等. 拉萨藏族青少年手腕部骨龄发育评价[J]. 中国临床康复, 2005, 9: 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF200523021.htm
Li CS, Li CY, Xi HJ, et al. Assessment of development of wrist skeletal age of Tibet adolescent in Lhasa[J]. Zhongguo Lin Chuang Kang Fu, 2005, 9: 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF200523021.htm
|
[18] |
李春山, 李长勇, 任甫, 等. 那曲地区藏族青少年腕部骨龄评价[J]. 解剖学杂志, 2006, 29: 414-416. https://www.cnki.com.cn/Article/CJFDTOTAL-JPXZ200604010.htm
Li CS, Li CY, Ren F, et al. Assessment of Tibetan adolescents skeletal age of wrist in Naqu district[J]. Jie Pou Xue Za Zhi, 2006, 29: 414-416. https://www.cnki.com.cn/Article/CJFDTOTAL-JPXZ200604010.htm
|
[19] |
Dang S, Yan H, Wang D. Implication of World Health Organization growth standards on estimation of malnutrition in young Chinese children: Two examples from rural western China and the Tibet region[J]. J Child Health Care, 2014, 18: 358-368. DOI: 10.1177/1367493513496669
|
[20] |
Argnani L, Cogo A, Gualdi-Russso E. Growth and nutri-tional status of Tibetan children at high altitude[J]. Coll Antropol, 2008, 32: 807-812. http://www.ncbi.nlm.nih.gov/pubmed/18982755
|
[21] |
Tajmir SH, Lee H, Shailam R, et al. Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability[J]. Skeletal Radiol, 2019, 48: 275-283. DOI: 10.1007/s00256-018-3033-2
|
[22] |
Spampinato C, Palazzo S, Giordano D, et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Med Image Anal, 2017, 36: 41-51. DOI: 10.1016/j.media.2016.10.010
|
[23] |
Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment[J]. J Digit Imaging, 2017, 30: 427-441. DOI: 10.1007/s10278-017-9955-8
|
[24] |
Larson DB, Chen MC, Lungren MP, et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs[J]. Radiology, 2018, 287: 313-322. DOI: 10.1148/radiol.2017170236
|
[25] |
Zhou XL, Wang EG, Lin Q, et al. Diagnostic performance of convolutional neural network-based Tanner-Whitehouse 3 bone age assessment system[J]. Quant Imaging Med Surg, 2020, 10: 657-667. DOI: 10.21037/qims.2020.02.20
|
[1] | LIU Qixing, WANG Huogen, CIDAN Wangjiu, TUDAN Awang, YANG Meijie, PUQIONG Qiongda, YANG Xiao, PAN Hui, WANG Fengdan. Construction and Validation of A Deep Learning-based Bone Age Prediction Model for Children Living in Both Plain and Highland Regions[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1439-1446. DOI: 10.12290/xhyxzz.2023-0651 |
[2] | LUO Xufei, LYU Han, SONG Zaiwei, LIU Hui, WANG Zhixiang, LI Haodong, WANG Ye, ZHU Di, ZHANG Lu, CHEN Yaolong. The Impact of Generative Artificial Intelligence on the Development, Evaluation, and Application of Clinical Practice Guidelines[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1173-1181. DOI: 10.12290/xhyxzz.2024-0602 |
[3] | FU Yifan, WENG Guihu, CAO Zhe, ZHANG Taiping. Application of Artificial Intelligence in the Diagnosis and Treatment of Pancreatic Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 747-750. DOI: 10.12290/xhyxzz.2024-0256 |
[4] | LU Yao, LIU Jianing, WANG Mian, HUANG Jiajie, HAN Baojin, SUN Mingyao, CHENG Qianji, NING Jinling, GE Long. Artificial Intelligence in Shared Decision Making[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 661-667. DOI: 10.12290/xhyxzz.2023-0209 |
[5] | LIU Shuai, ZHU Huadong. Application of Artificial Intelligence in Cardiopulmonary Resuscitation[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 453-458. DOI: 10.12290/xhyxzz.2022-0711 |
[6] | LI Yang, DU Leilei, XU Fei, LI Yixuan, QIAO En. Big Data and Artificial Intelligence in Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 184-189. DOI: 10.12290/xhyxzz.2022-0182 |
[7] | WU Jun, FEI Sijia, SHEN Bo, ZHANG Hanwen, HUANG Jianfeng, PAN Qi, ZHAO Jianchun, DING Dayong. Artificial Intelligence Analysis of Nerve Fibers Based on Corneal Confocal Microscopy[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 736-741. DOI: 10.12290/xhyxzz.2021-0510 |
[8] | WANG Yao, SUN Hongli, ZHAO Ying, ZHANG Li, ZHU Renyuan, DOU Hongtao, YUAN Ying, LIU Yali, LIU Wenjing, XU Yingchun. Accuracy Assessment of the Morphological Analysis System with Automated Microscopy and Artificial Intelligence for Gram-stained Vaginal Discharge Smears[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 503-509. DOI: 10.12290/xhyxzz.2021-0412 |
[9] | Rui-feng LIU, Yu XIA, Yu-xin JIANG. Application of Artificial Intelligence in Ultrasound Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 453-457. DOI: 10.3969/j.issn.1674-9081.2018.05.015 |
[10] | Zheng-yu JIN. Prospects and Challenges:when Medical Imaging Meets Artificial Intelligence[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 2-4. DOI: 10.3969/j.issn.1674-9081.2018.01.001 |