LIU Mohan, ZHOU Xingtong, SUN Qiang. Research Progress on Bone Metastasis of Breast Cancer: from Basic to Clinical Research[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 638-645. DOI: 10.12290/xhyxzz.2022-0600
Citation: LIU Mohan, ZHOU Xingtong, SUN Qiang. Research Progress on Bone Metastasis of Breast Cancer: from Basic to Clinical Research[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 638-645. DOI: 10.12290/xhyxzz.2022-0600

Research Progress on Bone Metastasis of Breast Cancer: from Basic to Clinical Research

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-038

More Information
  • Corresponding author:

    SUN Qiang, E-mail: xhsunq@163.com

  • Received Date: October 17, 2022
  • Accepted Date: December 01, 2022
  • Available Online: December 28, 2022
  • Issue Publish Date: May 29, 2023
  • Bone is the most common metastatic site of advanced breast cancer. Bone related events caused by bone metastasis seriously affect the quality of life and survival time of patients. Therefore, in order to improve the quality of life and prolong the survival time of breast cancer patients with bone metastases, it is of great clinical value to investigate the occurrence and development mechanism of bone metastases, explore early diagnosis methods, and pursue abundant and effective treatment methods and drugs for bone metastases. This article mainly reviews the new research progress of bone metastasis of breast cancer from the aspects of molecular mechanism, imaging and biological diagnosis methods, systematic treatment, in order to provide more reference for clinical diagnosis and treatment.
  • [1]
    Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71: 209-249. DOI: 10.3322/caac.21660
    [2]
    Ording AG, Heide-Jorgensen U, Christiansen CF, et al. Site of metastasis and breast cancer mortality: a Danish nationwide registry-based cohort study[J]. Clin Exp Metastasis, 2017, 34: 93-101. DOI: 10.1007/s10585-016-9824-8
    [3]
    Awolaran O, Brooks SA, Lavender V. Breast cancer osteomimicry and its role in bone specific metastasis; an integrative, systematic review of preclinical evidence[J]. Breast, 2016, 30: 156-171. DOI: 10.1016/j.breast.2016.09.017
    [4]
    DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69: 438-451. DOI: 10.3322/caac.21583
    [5]
    Wang R, Zhu Y, Liu X, et al. The Clinicopathological features and survival outcomes of patients with different metastatic sites in stage Ⅳ breast cancer[J]. BMC Cancer, 2019, 19: 1091. DOI: 10.1186/s12885-019-6311-z
    [6]
    Shinoda Y, Sawada R, Yoshikawa F, et al. Factors related to the quality of life in patients with bone metastases[J]. Clin Exp Metastasis, 2019, 36: 441-448. DOI: 10.1007/s10585-019-09983-0
    [7]
    Yong M, Jensen AÖ, Jacobsen JB, et al. Survival in breast cancer patients with bone metastases and skeletal-related events: a population-based cohort study in Denmark (1999-2007)[J]. Breast Cancer Res Treat, 2011, 129: 495-503. DOI: 10.1007/s10549-011-1475-5
    [8]
    Cleeland C, von Moos R, Walker MS, et al. Burden of symptoms associated with development of metastatic bone disease in patients with breast cancer[J]. Support Care Cancer, 2016, 24: 3557-3565. DOI: 10.1007/s00520-016-3154-x
    [9]
    Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989, 8: 98-101. http://jcp.bmj.com/lookup/external-ref?access_num=2673568&link_type=MED&atom=%2Fjclinpath%2F61%2F5%2F570.atom
    [10]
    Pece S, Tosoni D, Confalonieri S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content[J]. Cell, 2010, 140: 62-73. DOI: 10.1016/j.cell.2009.12.007
    [11]
    Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells[J]. Nature, 2016, 529: 298-306. DOI: 10.1038/nature17038
    [12]
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis[J]. Science, 2011, 331: 1559-1564. DOI: 10.1126/science.1203543
    [13]
    Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells-mechanisms of immune surveillance and escape[J]. Nat Rev Clin Oncol, 2017, 14: 155-167. DOI: 10.1038/nrclinonc.2016.144
    [14]
    Walker ND, Patel J, Munoz JL, et al. The bone marrow niche in support of breast cancer dormancy[J]. Cancer Lett, 2016, 380: 263-271. DOI: 10.1016/j.canlet.2015.10.033
    [15]
    Wu X, Li F, Dang L, et al. RANKL/RANK System-Based Mechanism for Breast Cancer Bone Metastasis and Related Therapeutic Strategies[J]. Front Cell Dev Biol, 2020, 8: 76. DOI: 10.3389/fcell.2020.00076
    [16]
    Deng R, Zhang HL, Huang JH, et al. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis[J]. Autophagy, 2021, 17: 3011-3029. DOI: 10.1080/15548627.2020.1850609
    [17]
    Zuo H, Yang D, Wan Y. Fam20C Regulates Bone Resorption and Breast Cancer Bone Metastasis through Osteopontin and BMP4[J]. Cancer Res, 2021, 81: 5242-5254. DOI: 10.1158/0008-5472.CAN-20-3328
    [18]
    Sun J, Huang J, Lan J, et al. Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer[J]. Cancer Cell Int, 2019, 19: 264. DOI: 10.1186/s12935-019-0986-8
    [19]
    Pang X, Gong K, Zhang X, et al. Osteopontin as a multifaceted driver of bone metastasis and drug resistance[J]. Pharmacol Res, 2019, 144: 235-244. DOI: 10.1016/j.phrs.2019.04.030
    [20]
    Hofbauer LC, Bozec A, Rauner M, et al. Novel approaches to target the microenvironment of bone metastasis[J]. Nat Rev Clin Oncol, 2021, 18: 488-505. DOI: 10.1038/s41571-021-00499-9
    [21]
    Xu WH, Liu ZB, Yang C, et al. Expression of dickkopf-1 and beta-catenin related to the prognosis of breast cancer patients with triple negative phenotype[J]. PLoS One, 2012, 7: e37624. DOI: 10.1371/journal.pone.0037624
    [22]
    Wu K, Feng J, Lyu F, et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer[J]. Nat Commun, 2021, 12: 5196. DOI: 10.1038/s41467-021-25473-y
    [23]
    翟士军, 张玉娜, 米宝明, 等. SPECT/CT融合骨显像对乳腺癌骨转移的诊断价值[J]. 中国辐射卫生, 2016, 25: 746-748, 752. DOI: 10.13491/j.cnki.issn.1004-714x.2016.06.037

    Zhai SJ, Zhang YN, Mi BM, et al. The Diagnostic Value of SPECT/CT Fusion Bone Imaging for Bone Metastases of Breast Cancer[J]. Zhongguo Fushe Weisheng, 2016, 25: 746-748, 752. DOI: 10.13491/j.cnki.issn.1004-714x.2016.06.037
    [24]
    Kuji I, Yamane T, Seto A, et al. Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer[J]. Eur J Hybrid Imaging, 2017, 1: 2. DOI: 10.1186/s41824-017-0006-y
    [25]
    Zhao Z, Pi Y, Jiang L, et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis[J]. Sci Rep, 2020, 10: 17046. DOI: 10.1038/s41598-020-74135-4
    [26]
    Paydary K, Seraj SM, Zadeh MZ, et al. The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer[J]. Mol Imaging Biol, 2019, 21: 1-10. http://www.onacademic.com/detail/journal_1000040230568610_2e47.html
    [27]
    van Es SC, Velleman T, Elias SG, et al. Assessment of Bone Lesions with (18)F-FDG PET Compared with (99m)Tc Bone Scintigraphy Leads to Clinically Relevant Differences in Metastatic Breast Cancer Management[J]. J Nucl Med, 2021, 62: 177-183. DOI: 10.2967/jnumed.120.244640
    [28]
    Damle NA, Bal C, Bandopadhyaya GP, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan[J]. Jpn J Radiol, 2013, 31: 262-269. DOI: 10.1007/s11604-013-0179-7
    [29]
    Choi J, Raghavan M. Diagnostic imaging and image-guided therapy of skeletal metastases[J]. Cancer Control, 2012, 19: 102-112. DOI: 10.1177/107327481201900204
    [30]
    Choi J, Gyamfi J, Jang H, et al. The role of tumor-associated macrophage in breast cancer biology[J]. Histol Histopathol, 2018, 33: 133-145. http://d.wanfangdata.com.cn/periodical/cd19a6171cf085ce1cb4411ac0cf77b0
    [31]
    Daldrup-Link HE, Golovko D, Ruffell B, et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles[J]. Clin Cancer Res, 2011, 17: 5695-5704. DOI: 10.1158/1078-0432.CCR-10-3420
    [32]
    Shih YY, Hsu YH, Duong TQ, et al. Longitudinal study of tumor-associated macrophages during tumor expansion using MRI[J]. NMR Biomed, 2011, 24: 1353-1360. DOI: 10.1002/nbm.1698
    [33]
    Makela AV, Gaudet JM, Foster PJ. Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking[J]. Sci Rep, 2017, 7: 42109. DOI: 10.1038/srep42109
    [34]
    杨志, 杨贵生, 李宁, 等. 全身骨显像联合CA15-3和CEA检测对乳腺癌骨转移的诊断价值[J]. 中华肿瘤防治杂志, 2016, 23: 1229-1123. DOI: 10.16073/j.cnki.cjcpt.2016.18.005

    Yang Z, Yang GS, Li N, et al. Diagnostic value of combined whole body bone scintigraphy and serum CA15-3, CEA in breast cancer with bone metastases[J]. Zhonghua Zhongliu Fangzhi Zazhi, 2016, 23: 1229-1123. DOI: 10.16073/j.cnki.cjcpt.2016.18.005
    [35]
    Yazdani A, Dorri S, Atashi A, et al. Bone Metastasis Prognostic Factors in Breast Cancer[J]. Breast Cancer (Auckl), 2019, 13: 1178223419830978.
    [36]
    Fakhari A, Gharepapagh E, Dabiri S, et al. Correlation of cancer antigen 15-3 (CA15-3) serum level and bony metastases in breast cancer patients[J]. Med J Islam Repub Iran, 2019, 33: 142. http://doc.paperpass.com/foreign/rgArti20194820470.html
    [37]
    Sarvari BK, Sankara Mahadev D, Rupa S, et al. Detection of Bone Metastases in Breast Cancer (BC) Patients by Serum Tartrate-Resistant Acid Phosphatase 5b (TRACP 5b), a Bone Resorption Marker and Serum Alkaline Phosphatase (ALP), a Bone Formation Marker, in Lieu of Whole Body Skeletal Scintigraphy with Technetium99m MDP[J]. Indian J Clin Biochem, 2015, 30: 66-71.
    [38]
    吴春娇, 马丽霞, 朱晶, 等. 联合检测乳腺癌骨转移患者中尿Ⅰ型胶原氨基末端肽和Ⅰ型胶原羧基末端肽的临床意义[J]. 中华肿瘤杂志, 2016, 38: 693-697.

    Wu CJ, Ma LX, Zhu J, et al. Clinical significance of combined detection of urine NTX and serum ICTP for breast cancer patients with bone metastases[J]. Zhonghua Zhongliu Zazhi, 2016, 38: 693-697.
    [39]
    Zuo CT, Yin DC, Fan HX, et al. Study on diagnostic value of P1NP and beta-CTX in bone metastasis of patients with breast cancer and the correlation between them[J]. Eur Rev Med Pharmacol Sci, 2019, 23: 5277-5284.
    [40]
    Wong MHF, Stockler MR, Pavlakis N. Bisphosphonates and other bone agents for breast cancer[J]. Cochrane Database Syst Rev, 2012(2): CD003474. http://esmoopen.bmj.com/lookup/external-ref?access_num=22336790&link_type=MED&atom=%2Fesmoopen%2F1%2F2%2Fe000037.atom
    [41]
    Aft R, Naughton M, Trinkaus K, et al. Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial[J]. Lancet Oncol, 2010, 11: 421-428. DOI: 10.1016/S1470-2045(10)70054-1
    [42]
    Zagzag J, Hu MI, Fisher SB, et al. Hypercalcemia and cancer: Differential diagnosis and treatment[J]. CA Cancer J Clin, 2018, 68: 377-386. DOI: 10.3322/caac.21489
    [43]
    Sun W, Ge K, Jin Y, et al. Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis[J]. ACS Nano, 2019, 13: 7556-7567. DOI: 10.1021/acsnano.9b00097
    [44]
    Iranikhah M, Wilborn TW, Wensel TM, et al. Denosumab for the Prevention of Skeletal-Related Events in Patients with Bone Metastasis from Solid Tumor[J]. Pharmacotherapy, 2012, 32: 274-284. DOI: 10.1002/j.1875-9114.2011.01092.x
    [45]
    Gómez-Aleza C, Nguyen B, Yoldi G, et al. Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells[J]. Nat Commun, 2020, 11: 6335. DOI: 10.1038/s41467-020-20138-8
    [46]
    Vadhan-Raj S, von Moos R, Fallowfield LJ, et al. Clinical benefit in patients with metastatic bone disease: results of a phase 3 study of denosumab versus zoledronic acid[J]. Ann Oncol, 2012, 23: 3045-3051. DOI: 10.1093/annonc/mds175
    [47]
    Diel I, Ansorge S, Hohmann D, et al. Real-world use of denosumab and bisphosphonates in patients with solid tumours and bone metastases in Germany[J]. Support Care Cancer, 2020, 28: 5223-5233. DOI: 10.1007/s00520-020-05357-5
    [48]
    Barton MK. Denosumab an option for patients with bone metastasis from breast cancer[J]. Ca Cancer J Clin, 2011, 61: 135-136. DOI: 10.3322/caac.20116
    [49]
    Gnant M, Pfeiler G, Steger GG, et al. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2019, 20: 339-351. DOI: 10.1016/S1470-2045(18)30862-3
    [50]
    Coleman R, Finkelstein DM, Barrios C, et al. Adjuvant denosumab in early breast cancer (D-CARE): an interna-tional, multicentre, randomised, controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21: 60-72. DOI: 10.1016/S1470-2045(19)30687-4
    [51]
    Oruç Z, Kaplan MA, Arslan Ç. An update on the currently available and future chemotherapy for treating bone metastases in breast cancer patients[J]. Expert Opin Pharmacother, 2018, 19: 1305-1316. DOI: 10.1080/14656566.2018.1504922
    [52]
    Vashum Y, Kottaiswamy A, Bupesh G, et al. Inhibitory Effects of Cathepsin K Inhibitor (ODN-MK-0822) on the Paracrine Pro-Osteoclast Factors of Breast Cancer Cells[J]. Curr Mol Pharmacol, 2021, 14: 1134-1145. DOI: 10.2174/1874467214666210211162118
    [53]
    Clézardin P. Therapeutic targets for bone metastases in breast cancer[J]. Breast Cancer Res, 2011, 13: 207. DOI: 10.1186/bcr2835
    [54]
    De Felice M, Lambert D, Holen I, et al. Effects of Src-kinase inhibition in cancer-induced bone pain[J]. Mol Pain, 2016, 12: 1744806916643725. DOI: 10.1177_1744806916643725.pdf
    [55]
    Paul D, Vukelja SJ, Ann Holmes F, et al. Randomized phase-Ⅱ evaluation of letrozole plus dasatinib in hormone receptor positive metastatic breast cancer patients[J]. NPJ Breast Cancer, 2019, 5: 36. DOI: 10.1038/s41523-019-0132-8
    [56]
    Schott AF, Barlow WE, Van Poznak CH, et al. Phase Ⅱ studies of two different schedules of dasatinib in bone metastasis predominant metastatic breast cancer: SWOG S0622[J]. Breast Cancer Res Treat, 2016, 159: 87-95. DOI: 10.1007/s10549-016-3911-z
    [57]
    Hesse E, Schr der S, Brandt D, et al. Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness[J]. JCI Insight, 2019, 5: e125543.
    [58]
    Jaschke N, Kleymann A, Hofbauer LC, et al. Dorsomorphin: A novel inhibitor of Dickkopf-1 in breast cancer[J]. Biochem Biophys Res Commun, 2020, 524: 360-365. DOI: 10.1016/j.bbrc.2020.01.106
    [59]
    Tanja S, Vivek V, Robert F, et al. Randomized phase Ⅱ trial evaluating pain response in patients with spinal metastases following stereotactic body radiotherapy versus three-dimensional conformal radiotherapy[J]. Radiother Oncol, 2018, 128: 274-282. DOI: 10.1016/j.radonc.2018.04.030
    [60]
    Sprave T, Verma V, Förster R, et al. Local response and pathologic fractures following stereotactic body radiotherapy versus three-dimensional conformal radiotherapy for spinal metastases-a randomized controlled trial[J]. BMC Cancer, 2018, 18: 859. DOI: 10.1186/s12885-018-4777-8
    [61]
    Suominen MI, Rissanen JP, Kakonen R, et al. Survival benefit with radium-223 dichloride in a mouse model of breast cancer bone metastasis[J]. J Natl Cancer Inst, 2013, 105: 908-916. DOI: 10.1093/jnci/djt116
    [62]
    Takalkar A, Adams S, Subbiah V. Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone[J]. Exp Hematol Oncol, 2014, 3: 23. DOI: 10.1186/2162-3619-3-23
    [63]
    Ueno NT, Tahara RK, Fujii T, et al. Phase Ⅱ study of Radium-223 dichloride combined with hormonal therapy for hormone receptor-positive, bone-dominant metastatic breast cancer[J]. Cancer Med, 2020, 9: 1025-1032. DOI: 10.1002/cam4.2780
  • Related Articles

    [1]XU Kexin, LI Guozhuang, WU Zhihong, ZHANG Jianguo, DISCO(Deciphering Disorders Involving Scoliosis & Comorbidities) Study Group, WU Nan. Progress in Clinical Diagnosis and Management of Short Stature in Ehlers-Danlos Syndromes[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 163-170. DOI: 10.12290/xhyxzz.2024-0173
    [2]ZHANG Shan, LIU Jie. Interpretation of NCCN Clinical Practice Guidelines for Primary Cutaneous Lymphomas (Version 1.2024) Based on the Current Diagnosis and Treatment Status of China[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1029-1037. DOI: 10.12290/xhyxzz.2024-0605
    [3]YAO Ru, YANG Xu, QU Yang, LIAN Jie, ZHANG Jiahui, HUANG Xin, CHEN Chang, REN Xinyu, PAN Bo, ZHOU Yidong, SUN Qiang. PTEN Mutation Related Unilateral Multicentric, Synchronous and Metachronous Bilateral Breast Cancer: Three Case Reports[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 916-920. DOI: 10.12290/xhyxzz.2023-0550
    [4]ZHANG Ning, YANG Chenhao, ZHOU Liangrui, SUN Xiaohong, LIU Xiaohong, KANG Lin, LI Ji, LI Hailong. Cronkhite-Canada Syndrome Combined with Asymptomatic Novel Coronavirus Infection: A Case Report[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 406-412. DOI: 10.12290/xhyxzz.2023-0476
    [5]Rare Diseases Society of Chinese Research Hospital Association, National Rare Diseases Committee, Beijing Rare Disease Diagnosis, Treatment and Protection Society, Gitelman Syndrome Consensus Working Group. Expert Consensus for the Diagnosis and Treatment of Gitelman Syndrome in China (2021)[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 902-912. DOI: 10.12290/xhyxzz.2021-0555
    [6]WANG Yanqing, CHEN Yeye, HUANG Cheng, GUO Feng, ZHANG Ye, ZHANG Jieshi, GUO Chao, WANG Guige, LI Shanqing. Progress in the Diagnosis and Treatment of Pulmonary Carcinoids[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 366-372. DOI: 10.3969/j.issn.1674-9081.2020.00.006
    [7]Hao GUO, Wen-da WANG, Yi CAI, Yu-shi ZHANG. Progress in Research on MicroRNA in Tuberous Sclerosis Complex Related Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 283-288. DOI: 10.3969/j.issn.1674-9081.2017.05.017
    [8]Ming-sheng MA, Xü-de ZHANG, Min WEI, Shi-min ZHAO, Zheng-qing QIU. Efficacy of Low Dose Corticosteroid Therapy in Duchenne Muscular Dystrophy[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 384-388. DOI: 10.3969/j.issn.1674-9081.2014.04.006
    [9]Jie LIU, Yue-ping ZENG, Chun-xia HE, Qin LONG, Hong-zhong JIN, Qiu-ning SUN. Corticosteroids plus Intravenous Immunoglobulin in the Treatment of 7 Cases with Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(4): 381-385. DOI: 10.3969/j.issn.1674-9081.2012.04.004
    [10]Zhi-lan MENG, Liang GAO, Jian-gang GU, Yu-feng LUO, Tao-ling ZHONG, Chen-yan ZHU. Application of Automatic DNA Image Cytometry in Diagnosis of Pleural Effusion[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 36-40. DOI: 10.3969/j.issn.1674-9081.2012.01.009
  • Cited by

    Periodical cited type(2)

    1. 何清安,杨昌毅,吴文飞,肖毅敏. 地舒单抗与唑来膦酸治疗乳腺癌骨转移的疗效与安全性比较. 北方药学. 2024(05): 111-114 .
    2. 熊炳钧,黄静,袁可玉,吕淑贞,李艳萍. 骨转换标志物与肿瘤标志物在骨转移诊断中的价值. 肿瘤代谢与营养电子杂志. 2023(05): 633-638 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1416) PDF downloads (268) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close