NING Yating, YANG Qiwen, CHEN Xinfei, YU Jinhan, LI Xue, XU Yingchun. Current Situation and Prospect of New Techniques for Rapid Clinical Microbiological Testing[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 427-432. DOI: 10.12290/xhyxzz.2021-0387
Citation: NING Yating, YANG Qiwen, CHEN Xinfei, YU Jinhan, LI Xue, XU Yingchun. Current Situation and Prospect of New Techniques for Rapid Clinical Microbiological Testing[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 427-432. DOI: 10.12290/xhyxzz.2021-0387

Current Situation and Prospect of New Techniques for Rapid Clinical Microbiological Testing

Funds: 

Beijing Key Clinical Specialty for Laboratory Medicine-Excellent Project ZK201000

Discipline Construction Project of Peking Union Medicial College 201920200101

More Information
  • Corresponding author:

    XU Yingchun  Tel: 86-10-69159766, E-mail: xycpumch@139.com

  • Received Date: May 11, 2021
  • Accepted Date: June 02, 2021
  • Available Online: June 27, 2021
  • Issue Publish Date: July 29, 2021
  • Infectious diseases begin and progress rapidly, so early accurate identification and detection of pathogen resistance is crucial for the prognosis of patients and the curb on drug resistance. Conventional clinical microbiological technology has been unable to meet the needs of rapid diagnosis and treatment. Therefore, rapid detection technology becomes the focus of clinic and clinical laboratory. This paper reviews the research status of the latest technology for rapid identification and detection of drug sensitivity, and discusses their problems and the key points of future development, providing reference to the introduction of new technologies in the clinical microbiological laboratory in the future.
  • [1]
    Vazquez-Guillamet C, Scolari M, Zilberberg MD, et al. Using the number needed to treat to assess appropriate antimicrobial therapy as a determinant of outcome in severe sepsis and septic shock[J]. Crit Care Med, 2014, 42: 2342-2349. DOI: 10.1097/CCM.0000000000000516
    [2]
    武洁, 王荃. 病原微生物检测在感染判定的意义[J]. 中国小儿急救医学, 2020, 27: 175-176. DOI: 10.3760/cma.j.issn.1673-4912.2020.03.004

    Wu J, Wang Q. The significance of pathogenic microor-ganism tests in infection determination[J]. Zhongguo Xiaoer Jijiu Yixue, 2020, 27: 175-176. DOI: 10.3760/cma.j.issn.1673-4912.2020.03.004
    [3]
    Martiny D, Busson L, Wybo I, et al. Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Clin Microbiol, 2012, 50: 1313-1325. DOI: 10.1128/JCM.05971-11
    [4]
    Handal N, Bakken Jørgensen S, Smith Tunsjø H, et al. Anaerobic blood culture isolates in a Norwegian university hospital: identification by MALDI-TOF MS vs 16S rRNA sequencing and antimicrobial susceptibility profiles[J]. APMIS, 2015, 123: 749-758. DOI: 10.1111/apm.12410
    [5]
    Li Y, Wang H, Hou X, et al. Identification by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Antifungal Susceptibility Testing of Non-Aspergillus Molds[J]. Front Microbiol, 2020, 11: 922. DOI: 10.3389/fmicb.2020.00922
    [6]
    Vidal-Acuña MR, Ruiz-Pérez de Pipaón M, Torres-Sánchez MJ, et al. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)[J]. Med Mycol, 2018, 56: 838-846. DOI: 10.1093/mmy/myx115
    [7]
    Seng P, Drancourt M, Gouriet F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Clin Infect Dis, 2009, 49: 543-551. DOI: 10.1086/600885
    [8]
    Zhang L, Xiao M, Wang H, et al. Yeast identification algorithm based on use of the Vitek MS system selectively supplemented with ribosomal DNA sequencing: proposal of a reference assay for invasive fungal surveillance programs in China[J]. J Clin Microbiol, 2014, 52: 572-577. DOI: 10.1128/JCM.02543-13
    [9]
    马坚, 俞万钧, 胡必杰, 等. 通过基质辅助激光解析电离飞行时间质谱系统直接快速鉴定阳性血培养[J]. 中华医院感染学杂志, 2017, 27: 2676-2679.

    Ma J, Yu WJ, Hu BJ, et al. Rapid method for direct identification of bacteria in blood culture broth using matrix-assisted laser desorption/ionization time-of-flight mass spectro-metry[J]. Zhonghua Yiyuan Ganranxue Zazhi, 2017, 27: 2676-2679.
    [10]
    刘振波, 夏苏苏, 康琳, 等. 基质辅助激光解吸电离飞行时间质谱在病原微生物鉴定中的应用[J]. 中国国境卫生检疫杂志, 2019, 42: 225-228.

    Liu ZB, Xia SS, Kang L, et al. The application of matrix-assisted laser desorption/ionization time-of flight mass spectrometry in pathogenic microorganisms identification[J]. Zhongguo Guojing Weisheng Jianyi Zazhi, 2019, 42: 225-228.
    [11]
    Wang XY, Yang JY, Wang YT, et al. M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus[J]. Talanta, 2021, 221: 121668. DOI: 10.1016/j.talanta.2020.121668
    [12]
    Hu S, Kang H, Gu F, et al. Rapid Detection Method for Pathogenic Candida Captured by Magnetic Nanoparticles and Identified Using SERS via AgNPs[J]. Int J Nanomedicine, 2021, 16: 16941-16950. http://www.ncbi.nlm.nih.gov/pubmed/33603361
    [13]
    Sundaram J, Park B, Kwon Y, et al. Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens[J]. Int J Food Microbiol, 2013, 167: 67-73. DOI: 10.1016/j.ijfoodmicro.2013.05.013
    [14]
    Wang K, Li S, Petersen M, et al. Detection and Characterization of Antibiotic-Resistant Bacteria Using Surface-Enhanced Raman Spectroscopy[J]. Nanomaterials (Basel), 2018, 8: 762 DOI: 10.3390/nano8100762
    [15]
    崔丽, 杨凯, 朱永官. 一种基于拉曼光谱-重水同位素标记的耐药菌药敏性快速检测方法和判断合理用药的方法: CN108267436B[P]. 2018-07-10.
    [16]
    Pilat Z, Bernatova S, Jezek J, et al. Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress[J]. Sensors (Basel), 2018, 18: 1623. DOI: 10.3390/s18051623
    [17]
    Bec KB, Grabska J, Huck CW. Near-Infrared Spectroscopy in Bio-Applications[J]. Molecules, 2020, 25: 2948. DOI: 10.3390/molecules25122948
    [18]
    Ferone M, Gowen A, Fanning S, et al. Microbial detection and identification methods: Bench top assays to omics approaches[J]. Compr Rev Food Sci Food Saf, 2020, 19: 3106-3129. DOI: 10.1111/1541-4337.12618
    [19]
    Wu J, Liu Y, Cui Y, et al. A laser-induced breakdown spectroscopy-integrated lateral flow strip (LIBS-LFS) sensor for rapid detection of pathogen[J]. Biosens Bioelectron, 2019, 142: 111508. DOI: 10.1016/j.bios.2019.111508
    [20]
    Liao JC, Mastali M, Gau V, et al. Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens[J]. J Clin Microbiol, 2006, 44: 561-570. DOI: 10.1128/JCM.44.2.561-570.2006
    [21]
    Mach KE, Mohan R, Baron EJ, et al. A biosensor platform for rapid antimicrobial susceptibility testing directly from clinical samples[J]. J Urol, 2011, 185: 148-153. DOI: 10.1016/j.juro.2010.09.022
    [22]
    Mach KE, Du CB, Phull H, et al. Multiplex pathogen identification for polymicrobial urinary tract infections using biosensor technology: a prospective clinical study[J]. J Urol, 2009, 182: 2735-2741. DOI: 10.1016/j.juro.2009.08.028
    [23]
    Beck ET, Buchan BW, Reymann GC, et al. Comparison of ESwab and Wound Fiber Swab Specimen Collection Devices for Use with Xpert SA Nasal Complete Assay[J]. J Clin Microbiol, 2016, 54: 1904-1906. DOI: 10.1128/JCM.00449-16
    [24]
    Gill CM, Asempa TE, Tickler IA, et al. Evaluation of the Xpert Carba-R NxG Assay for Detection of Carbapenemase Genes in a Global Challenge Set of Pseudomonas aeruginosa Isolates[J]. J Clin Microbiol, 2020, 58: e01098-20. http://www.researchgate.net/publication/347279448_Evaluation_of_the_Xpert_Carba-R_NxG_Assay_for_Detection_of_Carbapenemase_Genes_in_a_Global_Challenge_Set_of_Pseudomonas_aeruginosa_Isolates
    [25]
    Popowitch EB, Miller MB. Comparison of the Xpert Flu/RSV XC and Xpress Flu/RSV Assays[J]. J Clin Microbiol, 2018, 56: e00278-18. http://europepmc.org/abstract/MED/29769281
    [26]
    Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis[J]. Lancet Respir Med, 2015, 3: 451-461. DOI: 10.1016/S2213-2600(15)00095-8
    [27]
    Dinnes J, Deeks JJ, Adriano A, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection[J]. Cochrane Database Syst Rev, 2020(8): CD013705.
    [28]
    Poritz MA, Blaschke AJ, Byington CL, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection[J]. PLoS One, 2011, 6: e26047. DOI: 10.1371/journal.pone.0026047
    [29]
    Miller RR, Montoya V, Gardy JL, et al. Metagenomics for pathogen detection in public health[J]. Genome Med, 2013, 5: 81. DOI: 10.1186/gm485
    [30]
    Goldberg B, Sichtig H, Geyer C, et al. Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics[J]. mBio, 2015, 6: e1815-e1888.
    [31]
    Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descrip-tive study[J]. Chin Med J (Engl), 2020, 133: 1015-1024. DOI: 10.1097/CM9.0000000000000722
    [32]
    《中华传染病杂志》编辑委员会. 中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J]. 中华传染病杂志, 2020, 38: 681-689. DOI: 10.3760/cma.j.cn311365-20200731-00732
    [33]
    Chiu CY, Miller SA. Clinical metagenomics[J]. Nat Rev Genet, 2019, 20: 341-355. DOI: 10.1038/s41576-019-0113-7
    [34]
    杨紫瑜, 李敏. 抗菌药物敏感性试验快速检测新技术[J]. 中华检验医学杂志, 2021, 44: 89-93. DOI: 10.3760/cma.j.cn114452-20200818-00671
    [35]
    Cangelosi GA, Meschke JS. Dead or alive: molecular assessment of microbial viability[J]. Appl Environ Microbiol, 2014, 80: 5884-5891. DOI: 10.1128/AEM.01763-14
    [36]
    Flentie K, Spears BR, Chen F, et al. Microplate-based surface area assay for rapid phenotypic antibiotic susceptibility testing[J]. Sci Rep, 2019, 9: 237. DOI: 10.1038/s41598-018-35916-0
    [37]
    Nordmann P, Jayol A, Poirel L. Rapid Detection of Polymyxin Resistance in Enterobacteriaceae[J]. Emerg Infect Dis, 2016, 22: 1038-1043. DOI: 10.3201/eid2206.151840
  • Related Articles

    [1]ZHAO Ying, XU Yingchun. Research Progress on Novel Antimicrobial Susceptibility Testing Methods[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1137-1145. DOI: 10.12290/xhyxzz.2024-0001
    [2]DIAO Zhenli, LI Jinming. Metagenomic Next-generation Sequencing: Current Status, Challenges and Prospects of Clinical Application[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 905-910. DOI: 10.12290/xhyxzz.2023-0089
    [3]LIU Wen-jing, XU Ying-chun, YANG Qi-wen, WANG Yao, SUN Hong-li, ZHAO Ying, DOU Hong-tao, LIU Ya-li, GUO Li-na, ZHU Ren-yuan, ZHANG Li, XIAO Meng, ZHANG Xiao-jiang. Analysis of Antimicrobial Resistance in Peking Union Medical College Hospital in 2019[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 202-209. DOI: 10.3969/j.issn.1674-9081.2020.00.015
    [4]Chinese Committee on Antimicrobial Susceptibility Testing, European Committee on Antimicrobial Susceptibility Testing, European Society of Clinical Microbiology and Infectious Diseases, Expert Committee on Infectious Diseases, China Medical Education Association, YANG Qi-wen, MA Xiao-ling, HU Fu-pin, ZHANG Jing, SUN Tong-wen, CHEN Bai-yi, XU Ying-chun, LIU You-ning. Expert Consensus on Polymyxin Antimicrobial Susceptibility Testing and Clinical Interpretation[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 559-570. DOI: 10.3969/j.issn.1674-9081.2020.05.011
    [5]Dan MEI, Yang HU, Yang YANG. Management of Antimicrobial Agents: from the Experience of Peking Union Medical College Hospital to the National Standard[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(5): 531-538. DOI: 10.3969/j.issn.1674-9081.2019.05.018
    [6]Xiao-jiang ZHANG, Qi-wen YANG, Yao WANG, He WANG, Hong-li SUN, Ying ZHAO, Ya-li LIU, Li-na GUO, Hong-tao DOU, Wen-jing LIU, Ren-yuan ZHU, Li ZHANG, Meng XIAO, Ying-chun XU. Surveillance of Antimicrobial Resistance in Peking Union Medical College Hospital in 2016[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(6): 364-370. DOI: 10.3969/j.issn.1674-9081.2017.06.009
    [7]Xiao-jiang ZHANG, Qi-wen YANG, Yao WANG, Hong-li SUN, He WANG, Li-na GUO, Ying ZHAO, Hong-tao DOU, Ya-li LIU, Ying-chun XU. Surveillance of Antimicrobial Resistance in Peking Union Medical College Hospital in 2015[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(5): 334-341. DOI: 10.3969/j.issn.1674-9081.2016.05.003
    [9]Xin FAN, Meng XIAO, Qi-wen YANG, Hong-tao DOU, Li-na GUO, He WANG, Ying YUAN, Peng WANG, Ying ZHAO, Qi ZHANG, Yong-hong XIAO, Ying-chun XU. Antimicrobial Susceptibility of Multi-drug Resistant Acinetobacter Baumannii and Pseudomonas Aeruginosa Isolates from 27 Hospitals in China[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(3): 253-258. DOI: 10.3969/j.issn.1674-9081.2014.03.002
    [10]Xiao-jiang ZHANG, Yu CHEN, Ren-yuan ZHU, Hui ZHANG, Qi-wen YANG, Hong-li SUN, Yao WANG, He WANG, Ying-chun XU. Surveillance of Antimicrobial Resistance among Clinical Isolates from Medical Wards in Peking Union Medical College Hospital[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(4): 417-424. DOI: 10.3969/j.issn.1674-9081.2013.04.015
  • Cited by

    Periodical cited type(10)

    1. 董文杰,杨彦,王伟,苏燕,李晓琳. 自主模拟临床诊断病毒感染性疾病教学模式初探. 中国多媒体与网络教学学报(上旬刊). 2024(06): 217-220 .
    2. 林慧珍,李泰阶,黄师,林青,王柏莲,蒋诚传,石姗以. 关于在MALDI-TOF MS技术背景下提高临床微生物检验实习教学能力的探讨. 中国卫生产业. 2024(02): 238-241 .
    3. 李秀珍,刘风琴,王芳,郭树静. 焦磷酸测序对药品中5种致病菌的快速鉴定方法. 中国医药科学. 2022(01): 55-58 .
    4. 李永军,王雅杰. 宏基因组耐药基因的报告与解读. 现代医学与健康研究电子杂志. 2022(06): 89-92 .
    5. 张江峰,马冰,楚亚菲,许俊红,徐文博,王山梅,曹雪芳,陈晓曦,李轶. 病原宏基因组测序技术及其在临床感染辅助诊断中的应用研究. 华西医学. 2022(08): 1134-1139 .
    6. 王婧,陈勃江,周永召,李为民. 宏基因组下一代测序技术检测呼吸道病原体耐药性的应用价值探讨. 华西医学. 2022(08): 1121-1127 .
    7. 贾贞,胡仁静,陈道桢. 青海省海东市二级以上公立医疗卫生机构微生物实验室现状调查. 检验医学与临床. 2022(20): 2863-2867 .
    8. 陆思芬,周永召,王刚,王婧,江娟,邓竹君,张文庚,李为民. 基于宏基因组二代测序技术的840例疑似肺部感染患者下呼吸道微生物特征分析. 中国呼吸与危重监护杂志. 2022(06): 403-411 .
    9. 黄炽燊,李抄,杜耀华. 生物传感器环形偶极子共振超表面的仿真设计. 医疗卫生装备. 2022(12): 15-20+26 .
    10. 高丹丹,冀旭峰,郭志敏,许建成. 实验诊断学临床微生物学实习课教学改革与探讨. 高校医学教学研究(电子版). 2021(04): 32-35 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (3360) PDF downloads (877) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close