Citation: | NING Yating, YANG Qiwen, CHEN Xinfei, YU Jinhan, LI Xue, XU Yingchun. Current Situation and Prospect of New Techniques for Rapid Clinical Microbiological Testing[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 427-432. DOI: 10.12290/xhyxzz.2021-0387 |
[1] |
Vazquez-Guillamet C, Scolari M, Zilberberg MD, et al. Using the number needed to treat to assess appropriate antimicrobial therapy as a determinant of outcome in severe sepsis and septic shock[J]. Crit Care Med, 2014, 42: 2342-2349. DOI: 10.1097/CCM.0000000000000516
|
[2] |
武洁, 王荃. 病原微生物检测在感染判定的意义[J]. 中国小儿急救医学, 2020, 27: 175-176. DOI: 10.3760/cma.j.issn.1673-4912.2020.03.004
Wu J, Wang Q. The significance of pathogenic microor-ganism tests in infection determination[J]. Zhongguo Xiaoer Jijiu Yixue, 2020, 27: 175-176. DOI: 10.3760/cma.j.issn.1673-4912.2020.03.004
|
[3] |
Martiny D, Busson L, Wybo I, et al. Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Clin Microbiol, 2012, 50: 1313-1325. DOI: 10.1128/JCM.05971-11
|
[4] |
Handal N, Bakken Jørgensen S, Smith Tunsjø H, et al. Anaerobic blood culture isolates in a Norwegian university hospital: identification by MALDI-TOF MS vs 16S rRNA sequencing and antimicrobial susceptibility profiles[J]. APMIS, 2015, 123: 749-758. DOI: 10.1111/apm.12410
|
[5] |
Li Y, Wang H, Hou X, et al. Identification by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Antifungal Susceptibility Testing of Non-Aspergillus Molds[J]. Front Microbiol, 2020, 11: 922. DOI: 10.3389/fmicb.2020.00922
|
[6] |
Vidal-Acuña MR, Ruiz-Pérez de Pipaón M, Torres-Sánchez MJ, et al. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)[J]. Med Mycol, 2018, 56: 838-846. DOI: 10.1093/mmy/myx115
|
[7] |
Seng P, Drancourt M, Gouriet F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Clin Infect Dis, 2009, 49: 543-551. DOI: 10.1086/600885
|
[8] |
Zhang L, Xiao M, Wang H, et al. Yeast identification algorithm based on use of the Vitek MS system selectively supplemented with ribosomal DNA sequencing: proposal of a reference assay for invasive fungal surveillance programs in China[J]. J Clin Microbiol, 2014, 52: 572-577. DOI: 10.1128/JCM.02543-13
|
[9] |
马坚, 俞万钧, 胡必杰, 等. 通过基质辅助激光解析电离飞行时间质谱系统直接快速鉴定阳性血培养[J]. 中华医院感染学杂志, 2017, 27: 2676-2679.
Ma J, Yu WJ, Hu BJ, et al. Rapid method for direct identification of bacteria in blood culture broth using matrix-assisted laser desorption/ionization time-of-flight mass spectro-metry[J]. Zhonghua Yiyuan Ganranxue Zazhi, 2017, 27: 2676-2679.
|
[10] |
刘振波, 夏苏苏, 康琳, 等. 基质辅助激光解吸电离飞行时间质谱在病原微生物鉴定中的应用[J]. 中国国境卫生检疫杂志, 2019, 42: 225-228.
Liu ZB, Xia SS, Kang L, et al. The application of matrix-assisted laser desorption/ionization time-of flight mass spectrometry in pathogenic microorganisms identification[J]. Zhongguo Guojing Weisheng Jianyi Zazhi, 2019, 42: 225-228.
|
[11] |
Wang XY, Yang JY, Wang YT, et al. M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus[J]. Talanta, 2021, 221: 121668. DOI: 10.1016/j.talanta.2020.121668
|
[12] |
Hu S, Kang H, Gu F, et al. Rapid Detection Method for Pathogenic Candida Captured by Magnetic Nanoparticles and Identified Using SERS via AgNPs[J]. Int J Nanomedicine, 2021, 16: 16941-16950. http://www.ncbi.nlm.nih.gov/pubmed/33603361
|
[13] |
Sundaram J, Park B, Kwon Y, et al. Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens[J]. Int J Food Microbiol, 2013, 167: 67-73. DOI: 10.1016/j.ijfoodmicro.2013.05.013
|
[14] |
Wang K, Li S, Petersen M, et al. Detection and Characterization of Antibiotic-Resistant Bacteria Using Surface-Enhanced Raman Spectroscopy[J]. Nanomaterials (Basel), 2018, 8: 762 DOI: 10.3390/nano8100762
|
[15] |
崔丽, 杨凯, 朱永官. 一种基于拉曼光谱-重水同位素标记的耐药菌药敏性快速检测方法和判断合理用药的方法: CN108267436B[P]. 2018-07-10.
|
[16] |
Pilat Z, Bernatova S, Jezek J, et al. Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress[J]. Sensors (Basel), 2018, 18: 1623. DOI: 10.3390/s18051623
|
[17] |
Bec KB, Grabska J, Huck CW. Near-Infrared Spectroscopy in Bio-Applications[J]. Molecules, 2020, 25: 2948. DOI: 10.3390/molecules25122948
|
[18] |
Ferone M, Gowen A, Fanning S, et al. Microbial detection and identification methods: Bench top assays to omics approaches[J]. Compr Rev Food Sci Food Saf, 2020, 19: 3106-3129. DOI: 10.1111/1541-4337.12618
|
[19] |
Wu J, Liu Y, Cui Y, et al. A laser-induced breakdown spectroscopy-integrated lateral flow strip (LIBS-LFS) sensor for rapid detection of pathogen[J]. Biosens Bioelectron, 2019, 142: 111508. DOI: 10.1016/j.bios.2019.111508
|
[20] |
Liao JC, Mastali M, Gau V, et al. Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens[J]. J Clin Microbiol, 2006, 44: 561-570. DOI: 10.1128/JCM.44.2.561-570.2006
|
[21] |
Mach KE, Mohan R, Baron EJ, et al. A biosensor platform for rapid antimicrobial susceptibility testing directly from clinical samples[J]. J Urol, 2011, 185: 148-153. DOI: 10.1016/j.juro.2010.09.022
|
[22] |
Mach KE, Du CB, Phull H, et al. Multiplex pathogen identification for polymicrobial urinary tract infections using biosensor technology: a prospective clinical study[J]. J Urol, 2009, 182: 2735-2741. DOI: 10.1016/j.juro.2009.08.028
|
[23] |
Beck ET, Buchan BW, Reymann GC, et al. Comparison of ESwab and Wound Fiber Swab Specimen Collection Devices for Use with Xpert SA Nasal Complete Assay[J]. J Clin Microbiol, 2016, 54: 1904-1906. DOI: 10.1128/JCM.00449-16
|
[24] |
Gill CM, Asempa TE, Tickler IA, et al. Evaluation of the Xpert Carba-R NxG Assay for Detection of Carbapenemase Genes in a Global Challenge Set of Pseudomonas aeruginosa Isolates[J]. J Clin Microbiol, 2020, 58: e01098-20. http://www.researchgate.net/publication/347279448_Evaluation_of_the_Xpert_Carba-R_NxG_Assay_for_Detection_of_Carbapenemase_Genes_in_a_Global_Challenge_Set_of_Pseudomonas_aeruginosa_Isolates
|
[25] |
Popowitch EB, Miller MB. Comparison of the Xpert Flu/RSV XC and Xpress Flu/RSV Assays[J]. J Clin Microbiol, 2018, 56: e00278-18. http://europepmc.org/abstract/MED/29769281
|
[26] |
Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis[J]. Lancet Respir Med, 2015, 3: 451-461. DOI: 10.1016/S2213-2600(15)00095-8
|
[27] |
Dinnes J, Deeks JJ, Adriano A, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection[J]. Cochrane Database Syst Rev, 2020(8): CD013705.
|
[28] |
Poritz MA, Blaschke AJ, Byington CL, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection[J]. PLoS One, 2011, 6: e26047. DOI: 10.1371/journal.pone.0026047
|
[29] |
Miller RR, Montoya V, Gardy JL, et al. Metagenomics for pathogen detection in public health[J]. Genome Med, 2013, 5: 81. DOI: 10.1186/gm485
|
[30] |
Goldberg B, Sichtig H, Geyer C, et al. Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics[J]. mBio, 2015, 6: e1815-e1888.
|
[31] |
Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descrip-tive study[J]. Chin Med J (Engl), 2020, 133: 1015-1024. DOI: 10.1097/CM9.0000000000000722
|
[32] |
《中华传染病杂志》编辑委员会. 中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J]. 中华传染病杂志, 2020, 38: 681-689. DOI: 10.3760/cma.j.cn311365-20200731-00732
|
[33] |
Chiu CY, Miller SA. Clinical metagenomics[J]. Nat Rev Genet, 2019, 20: 341-355. DOI: 10.1038/s41576-019-0113-7
|
[34] |
杨紫瑜, 李敏. 抗菌药物敏感性试验快速检测新技术[J]. 中华检验医学杂志, 2021, 44: 89-93. DOI: 10.3760/cma.j.cn114452-20200818-00671
|
[35] |
Cangelosi GA, Meschke JS. Dead or alive: molecular assessment of microbial viability[J]. Appl Environ Microbiol, 2014, 80: 5884-5891. DOI: 10.1128/AEM.01763-14
|
[36] |
Flentie K, Spears BR, Chen F, et al. Microplate-based surface area assay for rapid phenotypic antibiotic susceptibility testing[J]. Sci Rep, 2019, 9: 237. DOI: 10.1038/s41598-018-35916-0
|
[37] |
Nordmann P, Jayol A, Poirel L. Rapid Detection of Polymyxin Resistance in Enterobacteriaceae[J]. Emerg Infect Dis, 2016, 22: 1038-1043. DOI: 10.3201/eid2206.151840
|
[1] | ZHAO Ying, XU Yingchun. Research Progress on Novel Antimicrobial Susceptibility Testing Methods[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1137-1145. DOI: 10.12290/xhyxzz.2024-0001 |
[2] | DIAO Zhenli, LI Jinming. Metagenomic Next-generation Sequencing: Current Status, Challenges and Prospects of Clinical Application[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 905-910. DOI: 10.12290/xhyxzz.2023-0089 |
[3] | LIU Wen-jing, XU Ying-chun, YANG Qi-wen, WANG Yao, SUN Hong-li, ZHAO Ying, DOU Hong-tao, LIU Ya-li, GUO Li-na, ZHU Ren-yuan, ZHANG Li, XIAO Meng, ZHANG Xiao-jiang. Analysis of Antimicrobial Resistance in Peking Union Medical College Hospital in 2019[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 202-209. DOI: 10.3969/j.issn.1674-9081.2020.00.015 |
[4] | Chinese Committee on Antimicrobial Susceptibility Testing, European Committee on Antimicrobial Susceptibility Testing, European Society of Clinical Microbiology and Infectious Diseases, Expert Committee on Infectious Diseases, China Medical Education Association, YANG Qi-wen, MA Xiao-ling, HU Fu-pin, ZHANG Jing, SUN Tong-wen, CHEN Bai-yi, XU Ying-chun, LIU You-ning. Expert Consensus on Polymyxin Antimicrobial Susceptibility Testing and Clinical Interpretation[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 559-570. DOI: 10.3969/j.issn.1674-9081.2020.05.011 |
[5] | Dan MEI, Yang HU, Yang YANG. Management of Antimicrobial Agents: from the Experience of Peking Union Medical College Hospital to the National Standard[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(5): 531-538. DOI: 10.3969/j.issn.1674-9081.2019.05.018 |
[6] | Xiao-jiang ZHANG, Qi-wen YANG, Yao WANG, He WANG, Hong-li SUN, Ying ZHAO, Ya-li LIU, Li-na GUO, Hong-tao DOU, Wen-jing LIU, Ren-yuan ZHU, Li ZHANG, Meng XIAO, Ying-chun XU. Surveillance of Antimicrobial Resistance in Peking Union Medical College Hospital in 2016[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(6): 364-370. DOI: 10.3969/j.issn.1674-9081.2017.06.009 |
[7] | Xiao-jiang ZHANG, Qi-wen YANG, Yao WANG, Hong-li SUN, He WANG, Li-na GUO, Ying ZHAO, Hong-tao DOU, Ya-li LIU, Ying-chun XU. Surveillance of Antimicrobial Resistance in Peking Union Medical College Hospital in 2015[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(5): 334-341. DOI: 10.3969/j.issn.1674-9081.2016.05.003 |
[9] | Xin FAN, Meng XIAO, Qi-wen YANG, Hong-tao DOU, Li-na GUO, He WANG, Ying YUAN, Peng WANG, Ying ZHAO, Qi ZHANG, Yong-hong XIAO, Ying-chun XU. Antimicrobial Susceptibility of Multi-drug Resistant Acinetobacter Baumannii and Pseudomonas Aeruginosa Isolates from 27 Hospitals in China[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(3): 253-258. DOI: 10.3969/j.issn.1674-9081.2014.03.002 |
[10] | Xiao-jiang ZHANG, Yu CHEN, Ren-yuan ZHU, Hui ZHANG, Qi-wen YANG, Hong-li SUN, Yao WANG, He WANG, Ying-chun XU. Surveillance of Antimicrobial Resistance among Clinical Isolates from Medical Wards in Peking Union Medical College Hospital[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(4): 417-424. DOI: 10.3969/j.issn.1674-9081.2013.04.015 |