Citation: | ZHAO Ying, XU Yingchun. Research Progress on Novel Antimicrobial Susceptibility Testing Methods[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1137-1145. DOI: 10.12290/xhyxzz.2024-0001 |
Antimicrobial susceptibility testing (AST) helps guide clinical rational selection of antibiotics, enabling patients to achieve better prognosis and reducing the development of drug resistance. However, traditional AST is time-consuming and labor-intensive, meaning that clinicians are not able to obtain susceptibility results in a timely manner, and have to rely on experience based on bacterial species and epidemiological data for empirical drug selection. This may be one of the reasons for the continuous increase in the number of drug-resistant strains. In recent years, researchers have focused on the development of rapid and simple AST assays and have made relevant research progress. This article reviews the new AST technologies based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), microfluidic chip systems, nucleic acid detection methods, immunological detection, and flow cytometry, in the hope of providing reference for improving the efficiency of AST testing in clinical microbiology laboratories.
[1] |
Baquero F. Threats of antibiotic resistance: an obliged reappraisal[J]. Int Microbiol, 2021, 24(4): 499-506. DOI: 10.1007/s10123-021-00184-y
|
[2] |
Christaki E, Marcou M, Tofarides A. Antimicrobial resist-ance in bacteria: mechanisms, evolution, and persistence[J]. J Mol Evol, 2020, 88(1): 26-40. DOI: 10.1007/s00239-019-09914-3
|
[3] |
Lau A F, Wang H H, Weingarten R A, et al. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae[J]. J Clin Microbiol, 2014, 52(8): 2804-2812. DOI: 10.1128/JCM.00694-14
|
[4] |
Gaibani P, Galea A, Fagioni M, et al. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of KPC-producing Klebsiella pneumoniae[J]. J Clin Microbiol, 2016, 54(10): 2609-2613. DOI: 10.1128/JCM.01242-16
|
[5] |
Gaibani P, Ambretti S, Tamburini M V, et al. Clinical application of Bruker Biotyper MALDI-TOF/MS system for real-time identification of KPC production in Klebsiella pneumoniae clinical isolates[J]. J Glob Antimicrob Resist, 2018, 12: 169-170. DOI: 10.1016/j.jgar.2018.01.016
|
[6] |
Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours[J]. J Clin Microbiol, 2011, 49(9): 3321-3324. DOI: 10.1128/JCM.00287-11
|
[7] |
Hrabák J, Walková R, Studentová V, et al. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Clin Microbiol, 2011, 49(9): 3222-3227. DOI: 10.1128/JCM.00984-11
|
[8] |
Rotova V, Papagiannitsis C C, Skalova A, et al. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity[J]. J Microbiol Methods, 2017, 137: 30-33. DOI: 10.1016/j.mimet.2017.04.003
|
[9] |
Oho M, Funashima Y, Nagasawa Z, et al. Rapid detection method of carbapenemase-producing Enterobacteriaceae by MALDI-TOF MS with imipenem/cilastatin (KB) disc and zinc sulfate solution[J]. J Infect Chemother, 2021, 27(2): 205-210. DOI: 10.1016/j.jiac.2020.09.013
|
[10] |
Josten M, Dischinger J, Szekat C, et al. Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry[J]. Int J Med Microbiol, 2014, 304(8): 1018-1023. DOI: 10.1016/j.ijmm.2014.07.005
|
[11] |
Burckhardt I, Zimmermann S. Susceptibility testing of bacteria using MALDI-TOF mass spectrometry[J]. Front Microbiol, 2018, 9: 1744. DOI: 10.3389/fmicb.2018.01744
|
[12] |
Paskova V, Chudejova K, Sramkova A, et al. Insufficient repeatability and reproducibility of MALDI-TOF MS-based identification of MRSA[J]. Folia Microbiol (Praha), 2020, 65(5): 895-900. DOI: 10.1007/s12223-020-00799-0
|
[13] |
Griffin P M, Price G R, Schooneveldt J M, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak[J]. J Clin Microbiol, 2012, 50(9): 2918-2931. DOI: 10.1128/JCM.01000-12
|
[14] |
Candela A, Arroyo M J, Sánchez-Molleda Á, et al. Rapid and reproducible MALDI-TOF-based method for the detec-tion of vancomycin-resistant Enterococcus faecium using classifying algorithms[J]. Diagnostics (Basel), 2022, 12(2): 328. DOI: 10.3390/diagnostics12020328
|
[15] |
Idelevich E A, Sparbier K, Kostrzewa M, et al. Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay[J]. Clin Microbiol Infect, 2018, 24(7): 738-743. DOI: 10.1016/j.cmi.2017.10.016
|
[16] |
Barth P O, Volpato F C Z, Moreira N K, et al. Evaluation of a rapid susceptibility test of polymyxin B by MALDI-TOF[J]. Front Microbiol, 2022, 13: 1075650. DOI: 10.3389/fmicb.2022.1075650
|
[17] |
Larson E A, Rensner J J, Larsen K R, et al. Rapid antibiotic susceptibility testing by deuterium labeling of bacterial lipids in on-target microdroplet cultures[J]. J Am Soc Mass Spectrom, 2022, 33(7): 1221-1228. DOI: 10.1021/jasms.2c00056
|
[18] |
Qin N, Zhao P, Ho E A, et al. Microfluidic technology for antibacterial resistance study and antibiotic susceptibility testing: review and perspective[J]. ACS Sens, 2021, 6(1): 3-21. DOI: 10.1021/acssensors.0c02175
|
[19] |
Nguyen AV, Azizi M, Yaghoobi M, et al. Diffusion-convection fybrid microfluidic platform for rapid antibiotic susceptibility testing[J]. Anal Chem, 2021, 93(14): 5789-5796. DOI: 10.1021/acs.analchem.0c05248
|
[20] |
Li S J, Wan C, Wang B F, et al. Handyfuge microfluidic for on-site antibiotic susceptibility testing[J]. Anal Chem, 2023, 95(14): 6145-6155. DOI: 10.1021/acs.analchem.3c00557
|
[21] |
Mizoguchi M, Matsumoto Y, Saito R, et al. Direct antibiotic susceptibility testing of blood cultures of gram-negative bacilli using the Drug Susceptibility Testing Microfluidic (DSTM) device[J]. J Infect Chemother, 2020, 26(6): 554-562. DOI: 10.1016/j.jiac.2020.01.014
|
[22] |
Nguyen M H, Clancy C J, Pasculle A W, et al. Perfor-mance of the T2Bacteria panel for diagnosing bloodstream infections: a diagnostic accuracy study[J]. Ann Intern Med, 2019, 170(12): 845-852. DOI: 10.7326/M18-2772
|
[23] |
Athamanolap P, Hsieh K, Chen L B, et al. Integrated bacterial identification and antimicrobial susceptibility testing using PCR and high-resolution melt[J]. Anal Chem, 2017, 89(21): 11529-11536. DOI: 10.1021/acs.analchem.7b02809
|
[24] |
Serpa P H, Deng X D, Abdelghany M, et al. Metagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infections[J]. Genome Med, 2022, 14(1): 74. DOI: 10.1186/s13073-022-01072-4
|
[25] |
Liu H B, Zhang Y, Yang J, et al. Application of mNGS in the etiological analysis of lower respiratory tract infections and the prediction of drug resistance[J]. Microbiol Spectr, 2022, 10(1): e0250221. DOI: 10.1128/spectrum.02502-21
|
[26] |
Mendez-Sotelo B J, López-Jácome L E, Colín-Castro C A, et al. Comparison of lateral flow immunochromatography and phenotypic assays to PCR for the detection of carbapene-mase-producing gram-negative bacteria, a multicenter experience in Mexico[J]. Antibiotics (Basel), 2023, 12(1): 96. DOI: 10.3390/antibiotics12010096
|
[27] |
Vasilakopoulou A, Karakosta P, Vourli S, et al. Detection of KPC, NDM and VIM-producing organisms directly from rectal swabs by a multiplex lateral flow immunoassay[J]. Microorganisms, 2021, 9(5): 942. DOI: 10.3390/microorganisms9050942
|
[28] |
Inglis T J J, Paton T F, Kopczyk M K, et al. Same-day antimicrobial susceptibility test using acoustic-enhanced flow cytometry visualized with supervised machine learning[J]. J Med Microbiol, 2020, 69(5): 657-669. DOI: 10.1099/jmm.0.001092
|
[29] |
Jindal S, Thampy H, Day P J R, et al. Very rapid flow cytometric assessment of antimicrobial susceptibility during the apparent lag phase of microbial (re)growth[J]. Microbiology (Reading), 2019, 165(4): 439-454. DOI: 10.1099/mic.0.000777
|
[30] |
Filbrun A B, Richardson J C, Khanal P C, et al. Rapid, label-free antibiotic susceptibility determined directly from positive blood culture[J]. Cytometry A, 2022, 101(7): 564-576. DOI: 10.1002/cyto.a.24560
|
[31] |
Mulroney K, Kopczyk M, Carson C, et al. Same-day confirmation of infection and antimicrobial susceptibility profiling using flow cytometry[J]. EBioMedicine, 2022, 82: 104145. DOI: 10.1016/j.ebiom.2022.104145
|
[32] |
Waagsbø B, Stuve N, Afset J E, et al. High levels of discordant antimicrobial therapy in hospital-acquired blood-stream infections is associated with increased mortality in an intensive care, low antimicrobial resistance setting[J]. Infect Dis (Lond), 2022, 54(10): 738-747. DOI: 10.1080/23744235.2022.2083672
|
[33] |
Silva-Dias A, Pérez-Viso B, Martins-Oliveira I, et al. Evaluation of FASTinov ultrarapid flow cytometry antimicrobial susceptibility testing directly from positive blood cultures[J]. J Clin Microbiol, 2021, 59(10): e0054421. DOI: 10.1128/JCM.00544-21
|
[34] |
Miłobedzka A, Ferreira C, Vaz-Moreira I, et al. Monitoring antibiotic resistance genes in wastewater environments: the challenges of filling a gap in the one-health cycle[J]. J Hazard Mater, 2022, 424(Pt C): 127407.
|
[35] |
Macedo G, Olesen A K, Maccario L, et al. Horizontal gene transfer of an IncP1 plasmid to soil bacterial community introduced by Escherichia coli through manure amendment in soil microcosms[J]. Environ Sci Technol, 2022, 56(16): 11398-11408. DOI: 10.1021/acs.est.2c02686
|
[36] |
Zhang H P, Song J J, Zheng Z R, et al. Fungicide exposure accelerated horizontal transfer of antibiotic resistance genes via plasmid-mediated conjugation[J]. Water Res, 2023, 233: 119789. DOI: 10.1016/j.watres.2023.119789
|
[37] |
赖丽莎, 邓任堂, 张露, 等. 基于AIE技术构建快速细菌药物敏感性试验新方法[J]. 中华检验医学杂志, 2023, 46(11): 1186-1192. DOI: 10.3760/cma.j.cn114452-20230921-00155
Lai L S, Deng R T, Zhang L, et al. Rapid detection of the bacterial drug susceptibility testing based on AIE technology[J]. Chin J Lab Med, 2023, 46(11): 1186-1192. DOI: 10.3760/cma.j.cn114452-20230921-00155
|
[38] |
Ishimaru M, Noda H, Matsumoto E, et al. Comparative study of rapid ATP bioluminescence assay and conventional plate count method for development of rapid disinfecting activity test[J]. Luminescence, 2021, 36(3): 826-833. DOI: 10.1002/bio.4014
|
[39] |
Cavallaro M, Moran E, Collyer B, et al. Informing antimicrobial stewardship with explainable AI[J]. PLoS Digit Health, 2023, 2(1): e0000162. DOI: 10.1371/journal.pdig.0000162
|
[40] |
Lugagne J B, Dunlop M J. Anticipating antibiotic resistance[J]. Science, 2022, 375(6583): 818-819. DOI: 10.1126/science.abn9969
|
1. |
庄海山,甘雨,陈燕红,陈荣. 结合DRG指标评价临床科室运营效率及影响因素研究. 现代医院. 2024(12): 1898-1901 .
![]() |