WANG Min, HU Zhao, XU Xiaowei, ZHENG Si, LI Jiao, YAO Yan. Constructing A Knowledge-driven and Data-driven Hybrid Decision Model for Etiological Diagnosis of Ventricular Tachycardia[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 454-461. DOI: 10.12290/xhyxzz.2024-0381
Citation: WANG Min, HU Zhao, XU Xiaowei, ZHENG Si, LI Jiao, YAO Yan. Constructing A Knowledge-driven and Data-driven Hybrid Decision Model for Etiological Diagnosis of Ventricular Tachycardia[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 454-461. DOI: 10.12290/xhyxzz.2024-0381

Constructing A Knowledge-driven and Data-driven Hybrid Decision Model for Etiological Diagnosis of Ventricular Tachycardia

Funds: 

CAMS Innovation Fund for Medical Sciences 2021-I2M-1-056

National High Level Hospital Clinical Research Funding 2022-GSP-GG-25

More Information
  • Corresponding author:

    LI Jiao, E-mail: jiao.li@pumc.edu.cn

    YAO Yan, E-mail: ianyao@263.net.cn

  • Received Date: May 31, 2024
  • Accepted Date: September 01, 2024
  • Available Online: November 21, 2024
  • Publish Date: November 20, 2024
  • Issue Publish Date: March 29, 2025
  • Objective 

    To construct a hybrid decision-making model that integrates knowledge-driven and data-driven approaches, and to apply it to the etiological diagnosis of ventricular tachycardia (VT).

    Methods 

    Clinical practice guidelines, expert consensus documents, and medical literature in the field of arrhythmia diseases from 2018 to 2023 were retrieved as knowledge sources. Retrospective electronic medical record data of VT patients from Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, from 2013 to 2023 were collected as the dataset. A knowledge-driven model was constructed using a knowledge-rule-based approach to establish clinical pathways. A three-class machine learning model for VT etiology diagnosis was developed based on real-world data, and the best-performing model was selected as the representative of the data-driven approach. The machine learning model was embedded into the decision nodes of the clinical pathway in the form of custom operators, forming the hybrid model. The precision, recall, and F1 score of the three models were evaluated.

    Results 

    Three clinical practice guidelines were included as knowledge sources for the knowledge-driven model. A total of 1305 patient records were collected as the dataset, and five machine learning models were constructed, with the XGBoost model performing the best. The hybrid model adopted a knowledge-driven decision-making framework, embedding the XGBoost model into the decision nodes of a two-level classification. The precision, recall, and F1 scores of the three models were as follows: the knowledge-driven model achieved 80.4%, 79.1%, and 79.7%; the data-driven model achieved 88.4%, 88.5%, and 88.4%; and the hybrid model achieved 90.4%, 90.2%, and 90.3%.

    Conclusions 

    The hybrid model integrating knowledge-driven and data-driven approaches demonstrated higher accuracy, and all its decision outcomes were based on evidence-based practices, aligning more closely with the actual diagnostic reasoning of clinicians. Further rigorous validation is needed to assess the feasibility of widely applying the hybrid model in the medical field.

  • [1]
    Bal M, Amasyali M F, Sever H, et al. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system[J]. ScientificWorldJournal, 2014, 2014: 137896.
    [2]
    陆瑶, 刘佳宁, 王冕, 等. 人工智能在医患共同决策中的应用[J]. 协和医学杂志, 2024, 15(3): 661-667. DOI: 10.12290/xhyxzz.2023-0209

    Lu Y, Liu J N, Wang M, et al. Artificial intelligence in shared decision making[J]. Med J PUMCH, 2024, 15(3): 661-667. DOI: 10.12290/xhyxzz.2023-0209
    [3]
    Hak F, Guimarães T, Santos M. Towards effective clinical decision support systems: a systematic review[J]. PLoS One, 2022, 17(8): e0272846. DOI: 10.1371/journal.pone.0272846
    [4]
    郑锐, 于广军. 临床辅助决策支持系统研究综述[J]. 中国数字医学, 2023, 18(11): 70-77.

    Zheng R, Yu G J. A review of clinical assisted decision-making support system[J]. Chin Digit Med, 2023, 18(11): 70-77.
    [5]
    张山, 崔薇, 吴瑛. 以智能化谵妄护理临床决策辅助支持系统为例探讨规则驱动的临床护理决策支持系统的基本组成[J]. 护理研究, 2022, 36(24): 4464-4468. DOI: 10.12102/j.issn.1009-6493.2022.24.028

    Zhang S, Cui W, Wu Y. Basic components of a rule-driven clinical nursing decision support system: an example of an intelligent delirium nursing clinical decision aid support system[J]. Chin Nurs Res, 2022, 36(24): 4464-4468. DOI: 10.12102/j.issn.1009-6493.2022.24.028
    [6]
    周祎灵, 石清阳, 陈向阳, 等. 本体在糖尿病临床决策支持系统中的应用[J]. 四川大学学报(医学版), 2023, 54(1): 208-216.

    Zhou Y L, Shi Q Y, Chen X Y, et al. Ontologies applied in clinical decision support systems for diabetes[J]. J Sichuan Univ(Med Sci), 2023, 54(1): 208-216.
    [7]
    Rajula H S R, Verlato G, Manchia M, et al. Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment[J]. Medicina (Kaunas), 2020, 56(9): 455. DOI: 10.3390/medicina56090455
    [8]
    Tutun S, Johnson M E, Ahmed A, et al. An AI-based decision support system for predicting mental health disorders[J]. Inf Syst Front, 2023, 25(3): 1261-1276. DOI: 10.1007/s10796-022-10282-5
    [9]
    王敏, 胡兆, 徐晓巍, 等. 面向心律失常疾病的临床决策支持系统交互性研究与实现[J]. 医学信息学杂志, 2024, 45(4): 70-77.

    Wang M, Hu Z, Xu X W, et al. Research and implementation of interactivity in the clinical decision support system for arrhythmia diseases[J]. J Med Intell, 2024, 45(4): 70-77.
    [10]
    龚欢欢, 柯晓伟, 王爱民, 等. 可解释机器学习模型预测心脏骤停患者院内死亡风险: 基于MIMIC-Ⅳ 2.0数据库[J]. 协和医学杂志, 2023, 14(3): 528-535. DOI: 10.12290/xhyxzz.2022-0733

    Gong H H, Ke X W, Wang A M, et al. An interpretable machine learning model for predicting in-hospital death risk in patients with cardiac arrest: based on US medical information mart for intensive care database Ⅳ2.0[J]. Med J PUMCH, 2023, 14(3): 528-535. DOI: 10.12290/xhyxzz.2022-0733
    [11]
    Trottet C, Vogels T, Keitel K, et al. Modular Clinical Decision Support Networks (MoDN)-updatable, interpretable, and portable predictions for evolving clinical environments[J]. PLOS Digital Health, 2023, 2(7): e0000108. DOI: 10.1371/journal.pdig.0000108
    [12]
    Buschmeyer K, Hatfield S, Zenner J. Psychological assessment of AI-based decision support systems: tool development and expected benefits[J]. Front Artif Intell, 2023, 6: 1249322. DOI: 10.3389/frai.2023.1249322
    [13]
    Phillips-Wren G, Adya M. Decision making under stress: the role of information overload, time pressure, complexity, and uncertainty[J]. J Decis Syst, 2020, 29(S1): 213-225.
    [14]
    Rosen S, Saban M. Can ChatGPT assist with the initial triage? A case study of stroke in young females[J]. Int Emerg Nurs, 2023, 70: 101340. DOI: 10.1016/j.ienj.2023.101340
    [15]
    Rosen S, Saban M. Evaluating the reliability of ChatGPT as a tool for imaging test referral: a comparative study with a clinical decision support system[J]. Eur Radiol, 2024, 34(5): 2826-2837.
    [16]
    Hussain M, Afzal M, Ali T, et al. Data-driven knowledge acquisition, validation, and transformation into HL7 Arden Syntax[J]. Artif Intell Med, 2018, 92: 51-70. DOI: 10.1016/j.artmed.2015.09.008
    [17]
    Brown D, Aldea A, Harrison R, et al. Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support[J]. Artif Intell Med, 2018, 85: 28-42. DOI: 10.1016/j.artmed.2017.09.007
    [18]
    Jiao Y, Zhang Z, Zhang T, et al. Development of an artificial intelligence diagnostic model based on dynamic uncertain causality graph for the differential diagnosis of dyspnea[J]. Front Med, 2020, 14(4): 488-497. DOI: 10.1007/s11684-020-0762-0
    [19]
    Vilhena J, Rosário Martins M, Vicente H, et al. An integrated soft computing approach to Hughes syndrome risk assessment[J]. J Med Syst, 2017, 41(3): 40. DOI: 10.1007/s10916-017-0688-5
    [20]
    Roberts-Thomson K C, Lau D H, Sanders P. The diagnosis and management of ventricular arrhythmias[J]. Nat Rev Cardiol, 2011, 8(6): 311-321. DOI: 10.1038/nrcardio.2011.15
    [21]
    Hu Z, Wang M, Zheng S, et al. Clinical decision support requirements for ventricular tachycardia diagnosis within the frameworks of knowledge and practice: survey study[J]. JMIR Hum Factors, 2024, 11: e55802. DOI: 10.2196/55802
    [22]
    覃露, 徐晓巍, 丁玲玲, 等. 面向决策支持的临床指南知识表示方法研究[J]. 中华医学图书情报杂志, 2020, 29(2): 1-8.

    Qin L, Xu X W, Ding L L, et al. Knowledge representation methods of clinical guidelines for clinical decision support system[J]. Chin J Med Libr Inf Sci, 2020, 29(2): 1-8.
    [23]
    闵令通, 段会龙, 吕旭东. 基于openEHR的医疗信息建模方法[J]. 中华医学图书情报杂志, 2018, 27(3): 1-4.

    Min L T, Duan H L, Lyu X D. Medical information modeling based on openEHR[J]. Chin J Med Libr Inf Sci, 2018, 27(3): 1-4.
    [24]
    Pedersen C T, Kay G N, Kalman J, et al. EHRA/HRS/APHRS expert consensus on ventricular arrhythmias[J]. Europace, 2014, 16(9): 1257-1283. DOI: 10.1093/europace/euu194
    [25]
    European Heart Rhythm Association, Heart Rhythm Society. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for practice guidelines (Writing Committee to Develop Guidelines for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death)[J]. J Am Coll Cardiol, 2006, 48(5): e247-e346. DOI: 10.1016/j.jacc.2006.07.010
    [26]
    Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death[J]. Eur Heart J, 2022, 43(40): 3997-4126.
    [27]
    Breiman L. Random forests[J]. Mach Learn, 2001, 45(1): 5-32.
    [28]
    Chen T Q, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2016: 785-794.
    [29]
    Ke G L, Meng Q, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 3149-3157.
    [30]
    Noble W S. What is a support vector machine?[J]. Nat Biotechnol, 2006, 24(12): 1565-1567.
    [31]
    Boeddinghaus J, Doudesis D, Lopez-Ayala P, et al. Machine learning for myocardial infarction compared with guideline-recommended diagnostic pathways[J]. Circulation, 2024, 149(14): 1090-1101.
    [32]
    Zhao K K, Zhu Y J, Chen X Y, et al. Machine learning in hypertrophic cardiomyopathy: nonlinear model from clinical and CMR features predicting cardiovascular events[J]. JACC Cardiovasc Imaging, 2024, 17(8): 880-893.
    [33]
    D'Ascenzo F, De Filippo O, Gallone G, et al. Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets[J]. Lancet, 2021, 397(10270): 199-207.
    [34]
    Sutton R T, Pincock D, Baumgart D C, et al. An overview of clinical decision support systems: benefits, risks, and strategies for success[J]. NPJ Digit Med, 2020, 3: 17.
    [35]
    Khairat S, Marc D, Crosby W, et al. Reasons for physicians not adopting clinical decision support systems: critical analysis[J]. JMIR Med Inform, 2018, 6(2): e24.
    [36]
    Shoaip N, El-Sappagh S, Abuhmed T, et al. A dynamic fuzzy rule-based inference system using fuzzy inference with semantic reasoning[J]. Sci Rep, 2024, 14(1): 4275.
    [37]
    张知非, 杨郑鑫, 黄运有, 等. 医学大数据与人工智能标准体系: 现状、机遇与挑战[J]. 协和医学杂志, 2021, 12(5): 614-620. DOI: 10.12290/xhyxzz.2021-0472

    Zhang Z F, Yang Z X, Huang Y Y, et al. Big medical data and medical AI standards: status quo, opportunities and challenges[J]. Med J PUMCH, 2021, 12(5): 614-620. DOI: 10.12290/xhyxzz.2021-0472
    [38]
    Tjoa E, Guan C T. A survey on explainable artificial intelligence (XAI): toward medical XAI[J]. IEEE Trans Neural Netw Learn Syst, 2021, 32(11): 4793-4813.
    [39]
    Zheng J X, Li X, Zhu J, et al. Interpretable machine learning for predicting chronic kidney disease progression risk[J]. Digit Health, 2024, 10: 20552076231224225.
    [40]
    Fan F L, Xiong J J, Li M Z, et al. On interpretability of artificial neural networks: a survey[J]. IEEE Trans Radiat Plasma Med Sci, 2021, 5(6): 741-760.
    [41]
    Park S, Lee S J, Weiss E, et al. Intra- and inter-fractional variation prediction of lung tumors using fuzzy deep learning[J]. IEEE J Transl Eng Health Med, 2016, 4: 4300112.
    [42]
    Lobach D F, Johns E B, Halpenny B, et al. Increasing complexity in rule-based clinical decision support: the symptom assessment and management intervention[J]. JMIR Med Inform, 2016, 4(4): e36.
  • Related Articles

    [1]BAO Xiaolin, WEI Hongjuan, BIAN Xinxin, MA Xiumei, GAO Yin, ZHANG Yingyan, LIU Wei, MA Yuexian, ZHANG Weixin, YANG Xuewen. Analysis and Prediction of Disease Burden of Depression in Old Age in China from 1990 to 2021[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 361-369. DOI: 10.12290/xhyxzz.2024-0664
    [2]WU Haotian, LIN Jianhao. Disease Burden and Harm of Osteoarthritis[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 5-12. DOI: 10.12290/xhyxzz.2024-0969
    [3]HUANG Danqi, YANG Min, XIONG Wei, LIU Jingyi, CHEN Wanqing, ZHAI Jingbo, LI Jiang. Analysis of Disease Burden and Attributable Risk Factors of Early-onset Female Breast Cancer in China and Globally from 1990 to 2021[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-1083
    [4]LAN Sihan, FENG Min. Phylogenetic Analyses of HPV53 and Prediction of B and T Cell Epitopes[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1364-1371. DOI: 10.12290/xhyxzz.2024-0138
    [5]LIU Huan, HUANG Xiaoling, DAI Mengying, GUO Jiejie, GAO feng. Clinical Characteristics and Inflammatory Markers of Omicron BA.5.2 Variant Infection in Hospitalized Patients and Their Predictive Role in Disease Prognosis[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 1038-1045. DOI: 10.12290/xhyxzz.2023-0055
    [6]ZHANG Li, KANG Mei, CHEN Zhongju, CAO Cunwei, MA Ling, ZHU Min, JIN Yan, XIA Yun, CHU Yunzhuo, LIU Wenen, GUO Dawen, HUANG Ying, DUAN Jinju, WANG Junrui, XU Xuesong, MA Xiaoling, LI Bin, LIAO Kang, ZHU Pengfei, WANG Yao, XU Yingchun, MING Liang. Epidemiology of Clinical Mold Infections in China: A Multicenter Retrospective Study[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 559-565. DOI: 10.12290/xhyxzz.2022-0654
    [7]SU Baiyan, QI Yafei, GUAN Hui, HE Yonglan, XUE Huadan, JIN Zhengyu. Texture Analysis of Sequential Images of T2-weighted Imaging and Diffusion-weighted Imaging for Predicting the Efficacy of Chemoradiotherapy in Cervical Squamous Cell Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 713-720. DOI: 10.12290/xhyxzz.2021-0380
    [8]ZHANG Gumuyang, XU Lili, MAO Li, LI Xiuli, JIN Zhengyu, SUN Hao. CT-based Radiomics to Predict Recurrence of Bladder Cancer after Resection in One Year: A Preliminary Study[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 698-704. DOI: 10.12290/xhyxzz.2021-0511
    [9]Yan-meng QI, Ye-cheng LIU, Hua-dong ZHU. Predictive Value of Ranson Score for Typing Moderately Severe and Severe Hyperlipidemic Acute Pancreatitis[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(5): 489-493. DOI: 10.3969/j.issn.1674-9081.2019.05.011
    [10]Hong-wei WEN, Jing-jing LU, Hui-guang HE. Application of Machine Learning in Diagnosis and Prediction of Neuropsychiatric Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 19-24. DOI: 10.3969/j.issn.1674-9081.2018.01.005

Catalog

    Article Metrics

    Article views (1347) PDF downloads (21) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close