Citation: | WANG Hui, ZHANG Jinjin, CHEN Lili, XING Yanchao. In Vitro Production of Red Blood Cells: Progress and Challenge[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 166-171. DOI: 10.12290/xhyxzz.2023-0299 |
[1] |
中华人民共和国国家卫生健康委员会规划发展与信息化司. 2021年我国卫生健康事业发展统计公报[EB/OL]. (2022-07-12)[2023-06-18]. http://www.nhc.gov.cn/guihuaxxs/s3586s/202207/51b55216c2154332a660157abf28b09d.shtml.
Planning, Development and Informatization Department of the National Health Commission of the People's Republic of China. Statistical bulletin on the development of health care in China in 2021[EB/OL]. (2022-07-12)[2023-06-18]. http://www.nhc.gov.cn/guihuaxxs/s3586s/202207/51b55216c2154332a660157abf28b09d.shtml.
|
[2] |
Franchini M, Forni G L, Marano G, et al. Red blood cell alloimmunisation in transfusion-dependent thalassaemia: a systematic review[J]. Blood Transfus, 2019, 17(1): 4-15.
|
[3] |
Jahr J S, Guinn N R, Lowery D R, et al. Blood substitutes and oxygen therapeutics: a review[J]. Anesth Analg, 2021, 132(1): 119-129. DOI: 10.1213/ANE.0000000000003957
|
[4] |
Bernecker C, Matzhold E M, Kolb D, et al. Membrane properties of human induced pluripotent stem cell-derived cultured red blood cells[J]. Cells, 2022, 11(16): 2473. DOI: 10.3390/cells11162473
|
[5] |
Wang S H, Zhao H Z, Zhang H, et al. Analyses of erythropoiesis from embryonic stem cell-CD34+ and cord blood-CD34+ cells reveal mechanisms for defective expansion and enucleation of embryomic stem cell-erythroid cells[J]. J Cell Mol Med, 2022, 26(8): 2404-2416. DOI: 10.1111/jcmm.17263
|
[6] |
Bernecker C, Ackermann M, Lachmann N, et al. Enhanced ex vivo generation of erythroid cells from human induced pluripotent stem cells in a simplified cell culture system with low cytokine support[J]. Stem Cells Dev, 2019, 28(23): 1540-1551. DOI: 10.1089/scd.2019.0132
|
[7] |
Rallapalli S, Guhathakurta S, Narayan S, et al. Generation of clinical-grade red blood cells from human umbilical cord blood mononuclear cells[J]. Cell Tissue Res, 2019, 375(2): 437-449. DOI: 10.1007/s00441-018-2919-6
|
[8] |
Liu S Q, Wu M Y, Lancelot M, et al. BMI1 enables extensive expansion of functional erythroblasts from human peripheral blood mononuclear cells[J]. Mol Ther, 2021, 29(5): 1918-1932. DOI: 10.1016/j.ymthe.2021.01.022
|
[9] |
Daniels D E, Ferguson D C J, Griffiths R E, et al. Reproducible immortalization of erythroblasts from multiple stem cell sources provides approach for sustainable RBC therapeutics[J]. Mol Ther Methods Clin Dev, 2021, 22: 26-39. DOI: 10.1016/j.omtm.2021.06.002
|
[10] |
Ackermann M, Liebhaber S, Klusmann J H, et al. Lost in translation: pluripotent stem cell-derived hematopoiesis[J]. EMBO Mol Med, 2015, 7(11): 1388-1402. DOI: 10.15252/emmm.201505301
|
[11] |
Di Buduo C A, Aguilar A, Soprano P M, et al. Latest culture techniques: cracking the secrets of bone marrow to mass-produce erythrocytes and platelets ex vivo[J]. Haematologica, 2021, 106(4): 947-957.
|
[12] |
Sun S M, Peng Y L, Liu J. Research advances in erythrocyte regeneration sources and methods in vitro[J]. Cell Regen, 2018, 7(2): 45-49. DOI: 10.1016/j.cr.2018.10.001
|
[13] |
Seo Y, Shin K H, Kim H H, et al. Current advances in red blood cell generation using stem cells from diverse sources[J]. Stem Cells Int, 2019, 2019: 9281329.
|
[14] |
Focosi D, Pistello M. Effect of induced pluripotent stem cell technology in blood banking[J]. Stem Cells Transl Med, 2016, 5(3): 269-274. DOI: 10.5966/sctm.2015-0257
|
[15] |
Hansen M, Von Lindern M, Van Den Akker E, et al. Human-induced pluripotent stem cell-derived blood products: state of the art and future directions[J]. FEBS Lett, 2019, 593(23): 3288-3303. DOI: 10.1002/1873-3468.13599
|
[16] |
Trakarnsanga K, Ferguson D, Daniels D E, et al. Vimentin expression is retained in erythroid cells differentiated from human iPSC and ESC and indicates dysregulation in these cells early in differentiation[J]. Stem Cell Res Ther, 2019, 10(1): 130. DOI: 10.1186/s13287-019-1231-z
|
[17] |
Zhang Y, Wang C, Wang L, et al. Large-scale ex vivo generation of human red blood cells from cord blood CD34+ cells[J]. Stem Cells Transl Med, 2017, 6(8): 1698-1709. DOI: 10.1002/sctm.17-0057
|
[18] |
Xie X Y, Yao H L, Han X Y, et al. Therapeutic use of red blood cells and platelets derived from human cord blood stem cells[J]. Stem Cells Transl Med, 2021, 10(Suppl 2): S48-S53.
|
[19] |
Heshusius S, Heideveld E, Burger P, et al. Large-scale in vitro production of red blood cells from human peripheral blood mononuclear cells[J]. Blood Adv, 2019, 3(21): 3337-3350. DOI: 10.1182/bloodadvances.2019000689
|
[20] |
Cervellera C F, Mazziotta C, Di Mauro G, et al. Immorta-lized erythroid cells as a novel frontier for in vitro blood production: current approaches and potential clinical application[J]. Stem Cell Res Ther, 2023, 14(1): 139. DOI: 10.1186/s13287-023-03367-8
|
[21] |
Kurita R, Suda N, Sudo K, et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells[J]. PLoS One, 2013, 8(3): e59890. DOI: 10.1371/journal.pone.0059890
|
[22] |
Trakarnsanga K, Griffiths R E, Wilson M C, et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells[J]. Nat Commun, 2017, 8: 14750. DOI: 10.1038/ncomms14750
|
[23] |
Daniels D E, Downes D J, Ferrer-Vicens I, et al. Comparing the two leading erythroid lines BEL-A and HUDEP-2[J]. Haematologica, 2020, 105(8): e389-e394. DOI: 10.3324/haematol.2019.229211
|
[24] |
Bagchi A, Nath A, Thamodaran V, et al. Direct generation of immortalized erythroid progenitor cell lines from peripheral blood mononuclear cells[J]. Cells, 2021, 10(3): 523. DOI: 10.3390/cells10030523
|
[25] |
Soboleva S, Kurita R, Kajitani N, et al. Establishment of an immortalized human erythroid cell line sustaining differentiation potential without inducible gene expression system[J]. Hum Cell, 2022, 35(1): 408-417. DOI: 10.1007/s13577-021-00652-7
|
[26] |
Mujahid A, Dickert F L. Blood group typing: from classical strategies to the application of synthetic antibodies generated by molecular imprinting[J]. Sensors (Basel), 2015, 16(1): 51. DOI: 10.3390/s16010051
|
[27] |
Kupzig S, Parsons S F, Curnow E, et al. Superior survival of ex vivo cultured human reticulocytes following transfusion into mice[J]. Haematologica, 2017, 102(3): 476-483. DOI: 10.3324/haematol.2016.154443
|
[28] |
Trakarnsanga K, Tipgomut C, Metheetrairut C, et al. Generation of an immortalised erythroid cell line from haematopoietic stem cells of a haemoglobin E/β-thalassemia patient[J]. Sci Rep, 2020, 10(1): 16798. DOI: 10.1038/s41598-020-73991-4
|
[29] |
Satchwell T J, Wright K E, Haydn-Smith K L, et al. Genetic manipulation of cell line derived reticulocytes enables dissection of host malaria invasion requirements[J]. Nat Commun, 2019, 10(1): 3806. DOI: 10.1038/s41467-019-11790-w
|
[30] |
Satchwell T J. Generation of red blood cells from stem cells: achievements, opportunities and perspectives for malaria research[J]. Front Cell Infect Microbiol, 2022, 12: 1039520. DOI: 10.3389/fcimb.2022.1039520
|
[31] |
Jiang Y, Yuan Y, Peng F, et al. Erythrocyte-based drug delivery: how far from clinical application?[J]. Curr Drug Deliv, 2024, 21(1): 52-64. DOI: 10.2174/1567201820666230320103529
|
[32] |
Zhang G S, Huang X F, Xiu H Q, et al. Extracellular vesicles: natural liver-accumulating drug delivery vehicles for the treatment of liver diseases[J]. J Extracell Vesicles, 2020, 10(2): e12030. DOI: 10.1002/jev2.12030
|
[33] |
Thangaraju K, Neerukonda S N, Katneni U, et al. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy[J]. Int J Mol Sci, 2020, 22(1): 153. DOI: 10.3390/ijms22010153
|
[34] |
Izzati Mat Rani N N, Alzubaidi Z M, Azhari H, et al. Novel engineering: biomimicking erythrocyte as a revolutionary platform for drugs and vaccines delivery[J]. Eur J Pharmacol, 2021, 900: 174009. DOI: 10.1016/j.ejphar.2021.174009
|
[35] |
Li W S, Su Z G, Hao M X, et al. Cytopharmaceuticals: an emerging paradigm for drug delivery[J]. J Control Release, 2020, 328: 313-324. DOI: 10.1016/j.jconrel.2020.08.063
|
[36] |
Yang L, Huang S Q, Zhang Z R, et al. Roles and applications of red blood cell-derived extracellular vesicles in health and diseases[J]. Int J Mol Sci, 2022, 23(11): 5927. DOI: 10.3390/ijms23115927
|
[37] |
Kweon S, Kim S, Baek E J. Current status of red blood cell manufacturing in 3D culture and bioreactors[J]. Blood Res, 2023, 58(S1): S46-S51. DOI: 10.5045/br.2023.2023008
|
[38] |
Mei Y, Liu Y J, Ji P. Understanding terminal erythro-poiesis: an update on chromatin condensation, enucleation, and reticulocyte maturation[J]. Blood Rev, 2021, 46: 100740. DOI: 10.1016/j.blre.2020.100740
|
[39] |
Soboleva S, Miharada K. Induction of enucleation in primary and immortalized erythroid cells[J]. Int J Hematol, 2022, 116(2): 192-198. DOI: 10.1007/s12185-022-03386-w
|
[40] |
Zhang R R, Zhu X F. Relationship between macrophages and erythropoiesis[J]. Chin J Contemp Pediatr, 2016, 18(1): 94-99.
|
[41] |
Sivalingam J, SuE Y, Lim Z R, et al. A scalable suspension platform for generating high-density cultures of universal red blood cells from human induced pluripotent stem cells[J]. Stem Cell Reports, 2021, 16(1): 182-197. DOI: 10.1016/j.stemcr.2020.11.008
|
[42] |
Pellegrin S, Severn C E, Toye A M. Towards manufactured red blood cells for the treatment of inherited anemia[J]. Haematologica, 2021, 106(9): 2304-2311.
|
[43] |
Seghatchian J, Amiral J. Spotlight on the current perspectives on applications of human blood cell culture and organoids: Introductory remarks[J]. Transfus Apher Sci, 2020, 59(4): 102861.
|
[44] |
Gallego-Murillo J S, Iacono G, Van Der Wielen L A M, et al. Expansion and differentiation of ex vivo cultured erythroblasts in scalable stirred bioreactors[J]. Biotechnol Bioeng, 2022, 119(11): 3096-3116.
|
[45] |
Giarratana M C, Rouard H, Dumont A, et al. Proof of principle for transfusion of in vitro-generated red blood cells[J]. Blood, 2011, 118(19): 5071-5079.
|
[46] |
National Health Service. First ever clinical trial of laboratory grown red blood cells being transfused into another person[EB/OL]. (2022-11-07)[2023-06-18]. https://www.nhsbt.nhs.uk/news/first-ever-clinical-trial-of-labora-tory-grown-red-blood-cells-being-transfused-into-another-person/.
|
[1] | WANG Haiying, ZHANG Jinjin, SUN Xiaoli, XING Yanchao. Risk of Circulating Tumor Cells and Clinical Blood Transfusion[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0493 |
[2] | XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231 |
[3] | TANG Bo, XU Xiaohan, ZHANG Yuelun, HUANG Yuguang. A Longitudinal Study of Perioperative Allogeneic Red Blood Cell Transfusion among Patients Undergoing Thoracotomy for Lobectomy in China[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 333-338. DOI: 10.12290/xhyxzz.2021-0140 |
[4] | Shu-bin WU, Wei-yun CHEN, Yu-guang HUANG. Non-antibody Mediated Transfusion Related Acute Lung Injury[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 294-299. DOI: 10.3969/j.issn.1674-9081.2017.05.019 |
[5] | Xiao-feng LI, Chao-ji ZHANG, Jian-zhou LIU, Guo-tao MA, Xing-rong LIU, Qi MIAO. Correlation Between Blood Transfusion and Postoperative Outcomes following Cardiac Surgery: A Systematic Review[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(6): 426-431. DOI: 10.3969/j.issn.1674-9081.2016.06.005 |
[6] | Jia-yuan DAI, Sheng-yong XU, Jun XU, Ye-cheng LIU, Ji-hai LIU, Hua-dong ZHU, Xue-zhong YU. Current Situation and Strategy of Blood Transfusion in Emergency Department of Peking Union Medical College Hospital[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(5): 384-387. DOI: 10.3969/j.issn.1674-9081.2016.05.012 |
[7] | Yi ZHAO, Jin LIN, Han-zhong LI, Yuan-xiang FANG, Shuang WANG. Blood Use in Surgical Patients with Red Blood Cell Transfusion of Over 20 Units during Single Hospital Stay[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(5): 367-370. DOI: 10.3969/j.issn.1674-9081.2016.05.009 |
[8] | Tao WANG, Jin-song GAO, Keng SHEN, Ling-ya PAN, Yang XIANG, Lan ZHU. Current Status and Characteristics of Perioperative Transfusion in Gynecologic Patients[J]. Medical Journal of Peking Union Medical College Hospital, 2015, 6(5): 357-360. DOI: 10.3969/j.issn.1674-9081.2015.05.009 |
[9] | Yi-feng ZHONG, Jian-qiu YANG, Tao WANG, Jing HU, Jun-tao LIU, Jin-song GAO. Retrospective Analysis for Causes of Perinatal Blood Transfusion[J]. Medical Journal of Peking Union Medical College Hospital, 2015, 6(4): 296-299. DOI: 10.3969/j.issn.1674-9081.2015.04.013 |
[10] | Xiao-hua SHI, Zhi-yong LIANG, Huan-wen WU, Xin-yu REN, Tong-hua LIU. Effect of RNA Interference Plasmid on the Expression of Oncogene AKT2 in Pancreatic Cancer Cell Line Panc-1[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 102-108. DOI: 10.3969/j.issn.1674-9081.2012.01.021 |