Citation: | ZHOU Yanyan, DENG Yang, BAO Ji, BU Hong. Trusted Artificial Intelligence for Pathology: From Theory to Practice[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 525-529. DOI: 10.12290/xhyxzz.2022-0184 |
[1] |
Li BH, Hou BC, Yu WT, et al. Applications of artificial intelligence in intelligent manufacturing: a review[J]. Front Inform Technol Electron Eng, 2017, 18: 86-96. DOI: 10.1631/FITEE.1601885
|
[2] |
Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine[J]. Nat Med, 2022, 28: 31-38. DOI: 10.1038/s41591-021-01614-0
|
[3] |
European Commission. White Paper On Artificial Intelli-gence-A European approach to excellence and trust[EB/OL]. (2020-02-19)[2022-04-05]. https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf.
|
[4] |
中国信息通信研究院. 可信人工智能白皮书[EB/OL]. (2021-07-09)[2022-04-05]. http://www.caict.ac.cn/k-xyj/qwfb/bps/202107/P020210709319866413974.pdf.
|
[5] |
Parwani A. Whole Slide Imaging[M]. Switzerland: Springer Nature Switzerland AG, 2022: 223-236.
|
[6] |
Willemink MJ, Koszek WA, Hardell C, et al. Preparing Medical Imaging Data for Machine Learning[J]. Radiology, 2020, 295: 4-15. DOI: 10.1148/radiol.2020192224
|
[7] |
European Commission. General Data Protection Regulation[EB/OL]. (2016-04-27)[2022-04-05]. https://gdpr.eu/article-1-subject-matter-and-objectives-overview/.
|
[8] |
Law Reform Commission. Hong Kong Person Date Privacy Ordinance[EB/OL]. (2012-10-01)[2022-04-05]. https://www.pcpd.org.hk/english/data_privacy_law/ordinance_at_a_Glance/ordinance.html.
|
[9] |
Kaissis GA, Makowski MR, Rückert D, et al. Secure, privacy-preserving and federated machine learning in medical imaging[J]. Nat Machine Intel, 2020, 2: 305-311. DOI: 10.1038/s42256-020-0186-1
|
[10] |
Zhou SK, Greenspan H, Davatzikos C, et al. A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises[J]. Proc IEEE Inst Electr Electron Eng, 2021, 109: 820-838. DOI: 10.1109/JPROC.2021.3054390
|
[11] |
刘再毅, 石镇维, 梁长虹. 推进联邦学习技术在医学影像人工智能中的应用[J]. 中华医学杂志, 2022, 102: 318-320.
Liu ZY, Shi ZW, Liang CH. Promoting the application of federated learning in medical imaging artificial intelligence[J]. Zhonghua Yixue Zazhi, 2022, 102: 318-320.
|
[12] |
Yang D, Xu Z, Li WQ, et al. Federated Semi-Supervised Learning for COVID Region Segmentation in Chest CT using Multi-National Data from China, Italy, Japan[J]. Med Image Anal, 2021, 70: e101992. DOI: 10.1016/j.media.2021.101992
|
[13] |
Lu MY, Chen RJ, Kong DH, et al. Federated learning for computational pathology on gigapixel whole slide images[J]. Med Image Anal, 2022, 76: e102298. DOI: 10.1016/j.media.2021.102298
|
[14] |
Du MN, Liu NH, Hu X. Techniques for Interpretable Machine Learning[J]. Commun ACM, 2020, 63: 68-77.
|
[15] |
Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization[J]. Int J Comput Vis, 2020, 128: 336-359. DOI: 10.1007/s11263-019-01228-7
|
[16] |
Yu K, Wang F, Berry GJ, et al. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks[J]. J Am Med Inform Assoc, 2020, 27: 757-769. DOI: 10.1093/jamia/ocz230
|
[17] |
Sousa I, Vellasco M, Silva E. Local Interpretable Model-Agnostic Explanations for Classification of Lymph Node Metastases[J]. Sensors, 2019, 19: 1-18. DOI: 10.1109/JSEN.2019.2912688
|
[18] |
Saporta A, Gui XT, Agrawal A, et al. Deep learning saliency maps do not accurately highlight diagnostically relevant regions for medical image interpretation[J]. MedRxiv, 2021. https://doi.org/10.1101/2021.02.28.21252634.
|
[19] |
Ehsan U, Passi S, Liao QV, et al. The Who in Explainable AI: How AI Background Shapes Perceptions of AI Explanations[J]. Arxiv, 2021. https://arxiv.org/abs/2107.13509.
|
[20] |
Li X, Dvornek NC, Zhou Y, et al. Efficient Interpretation of Deep Learning Models Using Graph Structure and Coopera-tive Game Theory: Application to ASD Biomarker Discovery[J]. Inf Process Med Imaging, 2019, 11492: 718-730.
|
[21] |
Li X, Zhou Y, Dvornek NC, et al. Efficient Shapley Explana-tion for Features Importance Estimation Under Uncertainty[J]. Med Image Comput Assist Interv, 2020, 12261: 792-801.
|
[22] |
Sarder SP. From What to Why, the Growing Need for a Focus Shift Toward Explainability of AI in Digital Pathology[J]. Front Physiol, 2022, 12: e821217.
|
[23] |
Hegde N, Hipp JD, Liu Y, et al. Similar Image Search for Histopathology: SMILY[J]. NPJ Digit Med, 2019, 2: 56-65.
|
[24] |
Li X, Duncan J. BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis[J]. Med Image Anal, 2021, 74, e102233.
|
[25] |
Li X, Zhou Y, Dvornek NC, et al. Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis[J]. Med Image Comput Assist Interv, 2020, 12267: 625-635.
|
[26] |
Amit S. Introducing the knowledge graph[R]. America: Official Blog of Google, 2012.
|
[27] |
崔洁. 面向乳腺肿瘤诊断的知识图谱及辅助决策研究[D]. 上海: 东华大学, 2018.
|
1. |
刘敏,杨金苹,赵金颜,乔建红. 老年共病患者自我感知老化、抑郁情绪与生活质量的相关性研究. 心理月刊. 2024(21): 58-60 .
![]() |