Citation: | XIONG Xuechun, WU Huanwen, REN Fei, CUI Li, LIANG Zhiyong, ZHAO Ze. An Automatic Quantitative Analysis Method of Ki-67 Index for Breast Cancer Immunohistochemistry Based on Fusion of Spatial and Multi-scale Features[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 581-589. DOI: 10.12290/xhyxzz.2022-0158 |
[1] |
Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134: 783-791. DOI: 10.1097/CM9.0000000000001474
|
[2] |
Skjervold AH, Pettersen HS, Valla M, et al. Visual and digital assessment of Ki-67 in breast cancer tissue-a comparison of methods[J]. Diagn Pathol, 2022, 17: 45. DOI: 10.1186/s13000-022-01225-4
|
[3] |
Li L, Han D, Yu Y, et al. Artificial intelligence-assisted interpretation of Ki-67 expression and repeatability in breast cancer[J]. Diagn Pathol, 2022, 17: 20. DOI: 10.1186/s13000-022-01196-6
|
[4] |
Nielsen TO, Leung SCY, Rimm DL, et al. Assessment of Ki-67 in breast cancer: updated recommendations from the international Ki-67 in breast cancer working group[J]. J Natl Cancer Inst, 2021, 113: 808-819. DOI: 10.1093/jnci/djaa201
|
[5] |
刘月平. 国际乳腺癌Ki-67工作组Ki-67评估更新的主要内容解读[J]. 中华病理学杂志, 2021, 50: 704-709. DOI: 10.3760/cma.j.cn112151-20210303-00179
Liu YP. Interpretation of Ki-67 assessment update of International Ki-67 in Breast Cancer Working Group[J]. Zhonghua Binglixue Zazhi, 2021, 50: 704-709. DOI: 10.3760/cma.j.cn112151-20210303-00179
|
[6] |
Zhou SK, Greenspan H, Davatzikos C, et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proc IEEE, 2021, arXiv: 2008.09104.
|
[7] |
Rimm DL, Leung SCY, McShane LM, et al. An interna-tional multicenter study to evaluate reproducibility of automated scoring for assessment of Ki-67 in breast cancer[J]. Mod Pathol, 2019, 32: 59-69. DOI: 10.1038/s41379-018-0109-4
|
[8] |
Li C, Li XT, Rahaman MM, et al. A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches[J]. Artif Intell Rev, 2022, ArXiv: 2102.10553.
|
[9] |
Xing F, Cornish TC, Bennett T, et al. Pixel-to-pixel learning with weak supervision for single-stage nucleus recognition in Ki-67 images[J]. IEEE Trans Biomed Eng, 2019, 66: 3088-3097. DOI: 10.1109/TBME.2019.2900378
|
[10] |
Negahbani F, Sabzi R, Pakniyat Jahromi B, et al. PathoNet introduced as a deep neural network backend for evaluation of Ki-67 and tumor-infiltrating lymphocytes in breast cancer[J]. Sci Rep, 2021, 11: 8489. DOI: 10.1038/s41598-021-86912-w
|
[11] |
Shete PG, Kharate GK. Evaluation of Immunohistochemistry (Ihc) Marker Her2 In Breast Cancer[J]. ICTACT J Image Video Proc, 2016, 7: 1318-1323. DOI: 10.21917/ijivp.2016.0192
|
[12] |
Ko CC, Chen YR, Lin WY. Improving the evaluation accuracies of histopathologic grade and Ki-67 immunohistochemistry expression of breast carcinoma using computer image processing(Ⅱ)[C]. 2016 International Computer Symposium (ICS). IEEE, 2016: 410-414.
|
[13] |
Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies[J]. J Roy Statist Soc: Series D, 1983, 32: 307-317.
|
[14] |
Hou L, Samaras D, Kurc T M, et al. Patch-based convolutional neural network for whole slide tissue image classifica-tion[C]. Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, 2016: 2424-2433.
|
[15] |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transact Syst Man Cyb, 1979, 9: 62-66. DOI: 10.1109/TSMC.1979.4310076
|
[16] |
Abubakar M, Figueroa J, Ali HR, et al. Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer[J]. Mod Pathol, 2019, 32: 1244-1256. DOI: 10.1038/s41379-019-0270-4
|
[17] |
Stepec D, Skocaj D. Unsupervised detection of cancerous regions in histology imagery using image-to-image translation[C]. Proceedings of the IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, 2021: 3785-3792.
|
[18] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014. https://doi.org/10.48550/arXiv.1409.1556.
|
[19] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[20] |
Howard AG, Zhu M, Chen B, et al. Mobilenets: Effi-cient convolutional neural networks for mobile vision applications[J]. arXiv, 2017. https://doi.org/10.48550/arXiv.1704.04861.
|
[21] |
Ye J, Luo Y, Zhu C, et al. Breast cancer image classification on WSI with spatial correlations[C]. ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019: 1219-1223.
|
[22] |
Li Y, Ping W. Cancer metastasis detection with neural conditional random field[J]. arXiv, 2018. https://doi.org/10.48550/arXiv.1806.07064.
|
[23] |
Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]. Proc. 18th International Conf. on Machine Learning, 2001: 282-289.
|
[24] |
Zheng Y, Jiang Z, Zhang H, et al. Adaptive color deconvolution for histological WSI normalization[J]. Comput Methods Programs Biomed, 2019, 170: 107-120. DOI: 10.1016/j.cmpb.2019.01.008
|
[25] |
Geijs DJ, Intezar M, Litjens G, et al. Automatic color unmixing of IHC stained whole slide images[C]. Digit Pathol, 2018, 10581: 105810L.
|
[26] |
Kumar N, Gupta R, Gupta S. Whole slide imaging (WSI) in pathology: current perspectives and future directions[J]. J Digit Imaging, 2020, 33: 1034-1040. DOI: 10.1007/s10278-020-00351-z
|
[27] |
Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J]. Ann Oncol, 2013, 24: 2206-2223. DOI: 10.1093/annonc/mdt303
|
[1] | JIA Chunyu, WANG Gangan, WANG Jiahui, CHEN Gang, ZHENG Ke, LI Xuemei. Correlation Between Neutrophil-to-lymphocyte Ratio and eGFR in Diabetic Patients: A Cross-sectional Analysis Based on NHANES Data[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0908 |
[2] | YAO Ru, YANG Xu, QU Yang, LIAN Jie, ZHANG Jiahui, HUANG Xin, CHEN Chang, REN Xinyu, PAN Bo, ZHOU Yidong, SUN Qiang. PTEN Mutation Related Unilateral Multicentric, Synchronous and Metachronous Bilateral Breast Cancer: Three Case Reports[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 916-920. DOI: 10.12290/xhyxzz.2023-0550 |
[3] | WU Ziyan, FENG Futai, LI Haolong, XU Honglin, ZHANG Shulan, LI Yongzhe. Quantitative Analysis of Mitochondrial Damage in T Lymphocytes from Patients with Autoimmune Diseases and Evaluation of Its Clinical Value[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 991-998. DOI: 10.12290/xhyxzz.2023-0256 |
[4] | QIU Luyao, TANG Wenjing, YANG Lu, LYU Ge, CHEN Junjie, SUN Gan, WANG Yanping, ZHOU Lina, AN Yunfei, ZHANG Zhiyong, TANG Xuemei, ZHAO Xiaodong, DU Hongqiang. Clinical Phenotype and Immunological Characteristics of A Patient with De Novo Heterozygous Mutation of PTEN[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 373-378. DOI: 10.12290/xhyxzz.2023-0023 |
[5] | ZHAO Zhe, TANG Yan, ZHOU Jingya, CHEN Xiaoguang, ZHANG Lei, CHEN Limeng, YUAN Tao. Analysis of Clinical Manifestations and Drug Therapies of Gitelman Syndrome[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 277-286. DOI: 10.12290/xhyxzz.2021-0180 |
[6] | Yan-na ZHANG, Yi-dong ZHOU, Feng MAO, Ru YAO, Qiang SUN. Prognostic Value of Progesterone Receptor and Ki-67 Combination in Hormone Receptor Positive Grade 2 Early-stage Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(5): 539-545. DOI: 10.3969/j.issn.1674-9081.2019.05.019 |
[7] | MAIMAITI Nu-rong-gu-li, Hua-bing ZHANG, Xiao-ping XING. Clinical and Genetic Analysis of a Uyghur Patient with Gitelman's Syndrome[J]. Medical Journal of Peking Union Medical College Hospital, 2015, 6(6): 427-431. DOI: 10.3969/j.issn.1674-9081.2015.06.006 |
[8] | Yu-mei JIN, Feng-rong AI, Yan LUO, Ying LI. Comparison of Central Corneal Thickness Before and After Mydriasis Measured with A-ultrasound Pachymetry and Pentacam Scheimpflug System[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(4): 429-432. DOI: 10.3969/j.issn.1674-9081.2013.04.017 |
[9] | Zhi-lan MENG, Liang GAO, Jian-gang GU, Yu-feng LUO, Tao-ling ZHONG, Chen-yan ZHU. Application of Automatic DNA Image Cytometry in Diagnosis of Pleural Effusion[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 36-40. DOI: 10.3969/j.issn.1674-9081.2012.01.009 |
[10] | Jie SHI, Zhi-yong LIANG, Tong-hua LIU. Expression of Cyclin D1 in Invasive Lobular Carcinoma of the Breast and Its Significance[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 8-12. DOI: 10.3969/j.issn.1674-9081.2012.01.004 |