Citation: | XIONG Xuechun, WU Huanwen, REN Fei, CUI Li, LIANG Zhiyong, ZHAO Ze. An Automatic Quantitative Analysis Method of Ki-67 Index for Breast Cancer Immunohistochemistry Based on Fusion of Spatial and Multi-scale Features[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 581-589. DOI: 10.12290/xhyxzz.2022-0158 |
[1] |
Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134: 783-791. DOI: 10.1097/CM9.0000000000001474
|
[2] |
Skjervold AH, Pettersen HS, Valla M, et al. Visual and digital assessment of Ki-67 in breast cancer tissue-a comparison of methods[J]. Diagn Pathol, 2022, 17: 45. DOI: 10.1186/s13000-022-01225-4
|
[3] |
Li L, Han D, Yu Y, et al. Artificial intelligence-assisted interpretation of Ki-67 expression and repeatability in breast cancer[J]. Diagn Pathol, 2022, 17: 20. DOI: 10.1186/s13000-022-01196-6
|
[4] |
Nielsen TO, Leung SCY, Rimm DL, et al. Assessment of Ki-67 in breast cancer: updated recommendations from the international Ki-67 in breast cancer working group[J]. J Natl Cancer Inst, 2021, 113: 808-819. DOI: 10.1093/jnci/djaa201
|
[5] |
刘月平. 国际乳腺癌Ki-67工作组Ki-67评估更新的主要内容解读[J]. 中华病理学杂志, 2021, 50: 704-709. DOI: 10.3760/cma.j.cn112151-20210303-00179
Liu YP. Interpretation of Ki-67 assessment update of International Ki-67 in Breast Cancer Working Group[J]. Zhonghua Binglixue Zazhi, 2021, 50: 704-709. DOI: 10.3760/cma.j.cn112151-20210303-00179
|
[6] |
Zhou SK, Greenspan H, Davatzikos C, et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proc IEEE, 2021, arXiv: 2008.09104.
|
[7] |
Rimm DL, Leung SCY, McShane LM, et al. An interna-tional multicenter study to evaluate reproducibility of automated scoring for assessment of Ki-67 in breast cancer[J]. Mod Pathol, 2019, 32: 59-69. DOI: 10.1038/s41379-018-0109-4
|
[8] |
Li C, Li XT, Rahaman MM, et al. A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches[J]. Artif Intell Rev, 2022, ArXiv: 2102.10553.
|
[9] |
Xing F, Cornish TC, Bennett T, et al. Pixel-to-pixel learning with weak supervision for single-stage nucleus recognition in Ki-67 images[J]. IEEE Trans Biomed Eng, 2019, 66: 3088-3097. DOI: 10.1109/TBME.2019.2900378
|
[10] |
Negahbani F, Sabzi R, Pakniyat Jahromi B, et al. PathoNet introduced as a deep neural network backend for evaluation of Ki-67 and tumor-infiltrating lymphocytes in breast cancer[J]. Sci Rep, 2021, 11: 8489. DOI: 10.1038/s41598-021-86912-w
|
[11] |
Shete PG, Kharate GK. Evaluation of Immunohistochemistry (Ihc) Marker Her2 In Breast Cancer[J]. ICTACT J Image Video Proc, 2016, 7: 1318-1323. DOI: 10.21917/ijivp.2016.0192
|
[12] |
Ko CC, Chen YR, Lin WY. Improving the evaluation accuracies of histopathologic grade and Ki-67 immunohistochemistry expression of breast carcinoma using computer image processing(Ⅱ)[C]. 2016 International Computer Symposium (ICS). IEEE, 2016: 410-414.
|
[13] |
Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies[J]. J Roy Statist Soc: Series D, 1983, 32: 307-317.
|
[14] |
Hou L, Samaras D, Kurc T M, et al. Patch-based convolutional neural network for whole slide tissue image classifica-tion[C]. Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, 2016: 2424-2433.
|
[15] |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transact Syst Man Cyb, 1979, 9: 62-66. DOI: 10.1109/TSMC.1979.4310076
|
[16] |
Abubakar M, Figueroa J, Ali HR, et al. Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer[J]. Mod Pathol, 2019, 32: 1244-1256. DOI: 10.1038/s41379-019-0270-4
|
[17] |
Stepec D, Skocaj D. Unsupervised detection of cancerous regions in histology imagery using image-to-image translation[C]. Proceedings of the IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, 2021: 3785-3792.
|
[18] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014. https://doi.org/10.48550/arXiv.1409.1556.
|
[19] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[20] |
Howard AG, Zhu M, Chen B, et al. Mobilenets: Effi-cient convolutional neural networks for mobile vision applications[J]. arXiv, 2017. https://doi.org/10.48550/arXiv.1704.04861.
|
[21] |
Ye J, Luo Y, Zhu C, et al. Breast cancer image classification on WSI with spatial correlations[C]. ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019: 1219-1223.
|
[22] |
Li Y, Ping W. Cancer metastasis detection with neural conditional random field[J]. arXiv, 2018. https://doi.org/10.48550/arXiv.1806.07064.
|
[23] |
Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]. Proc. 18th International Conf. on Machine Learning, 2001: 282-289.
|
[24] |
Zheng Y, Jiang Z, Zhang H, et al. Adaptive color deconvolution for histological WSI normalization[J]. Comput Methods Programs Biomed, 2019, 170: 107-120. DOI: 10.1016/j.cmpb.2019.01.008
|
[25] |
Geijs DJ, Intezar M, Litjens G, et al. Automatic color unmixing of IHC stained whole slide images[C]. Digit Pathol, 2018, 10581: 105810L.
|
[26] |
Kumar N, Gupta R, Gupta S. Whole slide imaging (WSI) in pathology: current perspectives and future directions[J]. J Digit Imaging, 2020, 33: 1034-1040. DOI: 10.1007/s10278-020-00351-z
|
[27] |
Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J]. Ann Oncol, 2013, 24: 2206-2223. DOI: 10.1093/annonc/mdt303
|
[1] | YAN Xinchun, HUO Li. Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 911-915. DOI: 10.12290/xhyxzz.2024-0216 |
[2] | ZHANG Ning, YANG Chenhao, ZHOU Liangrui, SUN Xiaohong, LIU Xiaohong, KANG Lin, LI Ji, LI Hailong. Cronkhite-Canada Syndrome Combined with Asymptomatic Novel Coronavirus Infection: A Case Report[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 406-412. DOI: 10.12290/xhyxzz.2023-0476 |
[3] | Zhejiang University, National Institutes for Food and Drug Control, Shanghai Changzheng Hospital. Expert Consensus on General Methods for Performance Evaluation of Artificial Intelligence Medical Devices (2023)[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 494-503. DOI: 10.12290/xhyxzz.2023-0137 |
[4] | LIU Yuan, ZHAO Lin. Update and Interpretation of 2022 National Comprehensive Cancer Network Clinical Practice Guidelines for Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 999-1004. DOI: 10.12290/xhyxzz.2022-0271 |
[5] | Li-na GUO, Qi-wen YANG, Jie YI, Xiu-li XIE, Yao WANG, He WANG, Ying-chun XU. Performance Evaluation of Fluorescence Immunochromatography Kit in Detection of Procalcitonin[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(3): 208-211. DOI: 10.3969/j.issn.1674-9081.2016.03.010 |
[8] | Ming-sheng MA, Xü-de ZHANG, Min WEI, Shi-min ZHAO, Zheng-qing QIU. Efficacy of Low Dose Corticosteroid Therapy in Duchenne Muscular Dystrophy[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 384-388. DOI: 10.3969/j.issn.1674-9081.2014.04.006 |
[9] | Wei-ling SHOU, Wei WU, Lian-kai FAN, Tian XIE, Wei CUI. Performance Evaluation of Clinical Detection of Coagulation Factors, Protein S, Protein C, Anti-thrombin Ⅲ, and von Willebrand Factor Antigen[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(3): 278-282. DOI: 10.3969/j.issn.1674-9081.2014.03.007 |
[10] | Shuai TANG, Jie YI, Yu-guang HUANG. Cardiovascular Responses of Intubation with Shikani Seeing Optical Stylet and Macintosh Laryngoscope[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(3): 314-317. DOI: 10.3969/j.issn.1674-9081.2012.03.015 |