ZHANG Xi, HUANG Bing, WANG Guipeng. Progress of NLRP3 Inflammasome and Myocardial Ischemia Reperfusion Injury[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 296-301. DOI: 10.12290/xhyxzz.2021-0619
Citation: ZHANG Xi, HUANG Bing, WANG Guipeng. Progress of NLRP3 Inflammasome and Myocardial Ischemia Reperfusion Injury[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 296-301. DOI: 10.12290/xhyxzz.2021-0619

Progress of NLRP3 Inflammasome and Myocardial Ischemia Reperfusion Injury

Funds: 

Natural Science Foundation of Xinjiang Uygur Autonomous Region 2021D01C445

More Information
  • Corresponding author:

    WANG Guipeng, E-mail: WFYWGP26@163.com

  • Received Date: August 26, 2021
  • Accepted Date: September 29, 2021
  • Available Online: January 29, 2022
  • Issue Publish Date: March 29, 2022
  • Timely recanalization of blocked coronary arteries is the key to reduce the mortality of acute myocardial infarction, but reperfusion may cause secondary injury to ischemic myocardium, namely myocardial ischemia reperfusion injury(MIRI). Nucleotide binding oligomerization domain-like receptor protein 3(NLRP3) inflammasome is involved in the whole process of MIRI by promoting cardiomyocyte scortosis, proinflammatory effects of cascade amplification and destruction of myocardial vascular endothelial cells, which has attracted extensive clinical attention. At the same time, related studies on NLRP3 inflammasome and its regulatory factors as drug targets are in full flow, which is expected to provide new ideas for the prevention and treatment of MIRI.
  • [1]
    胡盛涛, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34: 209-220. DOI: 10.3969/j.issn.1000-3614.2019.03.001

    Hu SS, Gao RL, Liu LS, et al. Summary of The Chinese Cardiovascular Disease Report 2018[J]. Zhongguo Xunhuan Zazhi, 2019, 34: 209-220. DOI: 10.3969/j.issn.1000-3614.2019.03.001
    [2]
    Takahashi J, Yamamoto M, Yasukawa H, et al. Interleukin-22 Directly Activates Myocardial STAT3 (Signal Transducer and Activator of Transcription-3) Signaling Pathway and Prevents Myocardial Ischemia Reperfusion Injury[J]. J Am Heart Assoc, 2020, 9: e014814. DOI: 10.1161/JAHA.119.014814
    [3]
    Wang Z, Zhang SM, Xiao Y, et al. NLRP3 Inflammasome and Inflammatory Diseases[J]. Oxid Med Cell Longev, 2020, 2020: 4063562.
    [4]
    Zeng C, Wang R, Tan H. Role of pyroptosis incardiovASCular diseases and its therapeutic implications[J]. Int J Biol Sci, 2019, 15: 1345-1357. DOI: 10.7150/ijbs.33568
    [5]
    Yang X, Lin G, Han Z, et al. Structural Biology of nod-Like Receptors[J]. Adv Exp Med Biol, 2019, 1172: 119-141.
    [6]
    Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflamma-somes[J]. Cell, 2014, 156: 1193-1206. DOI: 10.1016/j.cell.2014.02.008
    [7]
    Zheng DP, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms[J]. Cell Discov, 2020, 6: 36.
    [8]
    Gong W, Shi Y, Ren J. Research progresses of molecular mechanism of pyroptosis and its related diseases[J]. Immunobiology, 2020, 225: 151884. DOI: 10.1016/j.imbio.2019.11.019
    [9]
    Hooftman A, Angiari S, Hester S, et al. The Immunomodulatory Metabolite Itaconate Modifies NLRP3 and Inhibits Inflammasome Activation[J]. Cell Metab, 2020, 32: 468-478.e7. DOI: 10.1016/j.cmet.2020.07.016
    [10]
    Guo Q, Wu Y, Hou Y, et al. Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis[J]. Front Immunol, 2018, 9: 1197. DOI: 10.3389/fimmu.2018.01197
    [11]
    Yu P, Li YG, Fu WW, et al. Panax quinquefolius L. Saponins Protect Myocardial ischemia Reperfusion No-Reflow Through Inhibiting the Activation of NLRP3 Inflammasome via TLR4/MyD88/Nf-κB Signaling Pathway[J]. Front Pharmacol, 2020, 11: 607813.
    [12]
    Amin J, Boche D, Rakic S. What do we know about the inflammasome in humans?[J]. Brain Pathol, 2017, 27: 192-204. DOI: 10.1111/bpa.12479
    [13]
    Lei Q, Yi T, Chen C. NF-kappaB-Gasdermin D axis couples oxidative stress and NACHT, LRR and PYD domainscontaining protein 3 inflammasome-mediatedcardio-myocyte pyroptosis following myocardial infarction[J]. Med Sci Monit, 2018, 24: 6044-6052. DOI: 10.12659/MSM.908529
    [14]
    Minutoli L, Puzzolo D, Rinaldi M, et al. ROS-Mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury[J]. Oxid Med Cell Longev, 2016, 2016: 2183026.
    [15]
    Cinteza M. OK-Flow. Sorry-No-Reflow[J]. Maedica (Bucur), 2019, 14: 323-325.
    [16]
    Dai YX, Wang S, Chang SF, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway[J]. J Mol Cell Cardiol, 2020, 142: 65-79. DOI: 10.1016/j.yjmcc.2020.02.007
    [17]
    Hesse J, Leberling S, Boden E, et al. CD73-derived adenosine and tenASCin-C control cytokine production by epicardium-derived cells formed after myocardial infarction[J]. FASEB J, 2017, 31: 3040-3053. DOI: 10.1096/fj.201601307R
    [18]
    Deng Y, Han X, Yao Z, et al. PPARalpha Agonist Stimulated Angiogenesis by Improving Endothelial Precursor Cell Function Via a NLRP3 Inflammasome Pathway[J]. Cell Physiol Biochem, 2017, 42: 2255-2266. DOI: 10.1159/000479999
    [19]
    Westerterp M, Fotakis P, Ouimet M, et al. Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogene-sis[J]. Circulation, 2018, 138: 898-912. DOI: 10.1161/CIRCULATIONAHA.117.032636
    [20]
    Sun WJ, Dong SJ, Lu HQ, et al. Beclin-1 overexpression regulates NLRP3 activation by promoting TNFAIP3 in microvASCular injury following myocardial reperfusion[J]. Cell Signal, 2021, 84: 110008. DOI: 10.1016/j.cellsig.2021.110008
    [21]
    Zhou T, Xiang DK, Li SN, et al. MicroRNA-495 Amelio-rates Cardiac Microvascular Endothelial Cell Injury and Inflammatory Reaction by Suppressing the NLRP3 Inflamma-some Signaling Pathway[J]. Cell Physiol Biochem, 2018, 49: 798-815. DOI: 10.1159/000493042
    [22]
    van Hout GP, Bosch L, Ellenbroek GH, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction[J]. Eur Heart J, 2017, 38: 828-836.
    [23]
    Penna C, Aragno M, Cento AS, et al. Ticagrelor Conditioning Effects Are Not Additive to Cardioprotection Induced by Direct NLRP3 Inflammasome Inhibition: Role of RISK, NLRP3, and Redox Cascades[J]. Oxid Med Cell Longev, 2020, 2020: 9219825.
    [24]
    Wang L, Peng YF, Song LJ, et al. Colchicine-Containing Nanoparticles Attenuates Acute Myocardial Infarction Injury by Inhibiting Inflammation[J]. Cardiovasc Drugs Ther, 2021. doi: 10.1007/s10557-021-07239-2.
    [25]
    Opstal TSJ, Fiolet ATL, van Broekhoven A, et al. Colchicine in Patients With Chronic Coronary Disease in Relation to Prior Acute Coronary Syndrome[J]. J Am Coll Cardiol, 2021, 78: 859-866. DOI: 10.1016/j.jacc.2021.06.037
    [26]
    Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in patients with chronic coronary disease[J]. N Engl J Med, 2020, 383: 1838-1847. DOI: 10.1056/NEJMoa2021372
    [27]
    Schattner A. Colchicine-new horizons for an ancient drug. Review based on the highest hierarchy of evidence[J]. Eur J Intern Med, 2022, 96: 34-41. DOI: 10.1016/j.ejim.2021.10.002
    [28]
    Leung YY, Yao Hui LL, Kraus VB. Colchicine--Update on mechanisms of action and therapeutic uses[J]. Semin Arthritis Rheum, 2015, 45: 341-350. DOI: 10.1016/j.semarthrit.2015.06.013
    [29]
    Su XL, Wang SH, Komal S, et al. The caspase-1 inhibitor VX765 upregulates connexin 43 expression and improves cell-cell communication after myocardial infarction via suppressing the IL-1β/p38 MAPK pathway[J]. Acta Pharmacol Sin, 2022. doi: 10.1038/s41401-021-00845-8.
    [30]
    Yang XM, Downey JM, Cohen MV, et al. The Highly Selective Caspase-1 Inhibitor VX-765 Provides Additive Protec-tion Against Myocardial Infarction in Rat Hearts When Combined With a Platelet Inhibitor[J]. J Cardiovasc Pharmacol Ther, 2017, 22: 574-578. DOI: 10.1177/1074248417702890
    [31]
    Do Carmo H, Arjun S, Petrucci O, et al. The Caspase 1 Inhibitor VX-765 Protects the Isolated Rat Heart via the RISK Pathway[J]. Cardiovasc Drugs Ther, 2018, 32: 165-168. DOI: 10.1007/s10557-018-6781-2
    [32]
    Luo YF, Xiong BJ, Liu HP, et al. Koumine Suppresses IL-1β Secretion and Attenuates Inflammation Associated With Blocking ROS/NF-κB/NLRP3 Axis in Macrophages[J]. Front Pharmacol, 2020, 11: 622074.
    [33]
    Nazir S, Gadi I, Al-Dabet MM, et al. Cytoprotective activated protein C averts NLRP3 inflammasome-induced ischemia-reperfusion injury via mTORC1 inhibition[J]. Blood, 2017, 130: 2664-2677. DOI: 10.1182/blood-2017-05-782102
    [34]
    Jun JH, Shim JK, Oh JE, et al. Protective Effect of Ethyl Pyruvate against Myocardial Ischemia Reperfusion Injury through Regulations of ROS-Related NLRP3 Inflammasome Activation[J]. Oxid Med Cell Longev, 2019, 2019: 4264580.
    [35]
    Lu QY, Ma JQ, Duan YY, et al. Carthamin Yellow Protects the Heart Against Ischemia/Reperfusion Injury With Reduced Reactive Oxygen Species Release and Inflammatory Response[J]. J Cardiovasc Pharmacol, 2019, 74: 228-234. DOI: 10.1097/FJC.0000000000000710
    [36]
    Chen A, Chen ZW, Xia Y, et al. Liraglutide attenuates NLRP3 inflammasome-dependent pyroptosis via regulating SIRT1/NOX4/ROS pathway in H9c2 cells[J]. Biochem Biophys Res Commun, 2018, 499: 267-272. DOI: 10.1016/j.bbrc.2018.03.142
    [37]
    Sun Q, Fan J, Billiar TR, et al. Inflammasome and autophagy regulation a two-way street[J]. Mol Med, 2017, 23: 188-195.
    [38]
    Iyer SS, He Q, Janczy JR, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation[J]. Immunity, 2013, 39: 311-323. DOI: 10.1016/j.immuni.2013.08.001
    [39]
    Li J, Zhao CT, Zhu Q, et al. Sweroside Protects Against Myocardial ischemia-Reperfusion Injury by Inhibiting Oxidative Stress and Pyroptosis Partially via Modulation of the Keap1/Nrf2 Axis[J]. Frontcardiovasc Med, 2021, 8: 650368.
    [40]
    Guo X, Hu S, Liu JJ, et al. Piperine protects against pyroptosis in myocardial ischaemia/reperfusion injury by regulating the mir-383/RP105/AKT signalling pathway[J]. J Cell Mol Med, 2021, 25: 244-258. DOI: 10.1111/jcmm.15953
    [41]
    Zuo W, Tian R, Chen Q, et al. miR-330-5p inhibits NLRP3 inflammasome mediated myocardial ischaemia-reperfusion injury by targeting TIM3[J]. Cardiovasc Drugs Ther, 2021, 35: 691-705. DOI: 10.1007/s10557-020-07104-8
    [42]
    Jiang S, Cui H, Wu P, et al. Botany, traditional uses, phytochemistry, pharmacology and toxicology of Ilex pubescens Hook et Arn[J]. J Ethnopharmacol, 2019, 245: 112147. DOI: 10.1016/j.jep.2019.112147
    [43]
    Cheng YY, Cheng LK, Gao X, et al. Covalent modification of Keap1 at Cys77 and Cys434 by pubescenoside a sup-presses oxidative stress-induced NLRP3 inflammasome activation in Myocardial ischemia-reperfusion injury[J]. Theranostics, 2021, 11: 861-877. DOI: 10.7150/thno.48436
    [44]
    Xiao Y, Oumarou DB, Wang S, et al. Malva Sylvestris Circular RNA Involved in the Protective Effect of Malva Sylvestris L. on Myocardial ischemic/Re-Perfused Injury[J]. Front Pharmacol, 2020, 11: 520486. DOI: 10.3389/fphar.2020.520486
  • Related Articles

    [1]HUANG Bochuan. Is Dying of Cancer the Best Way to Die?[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1480-1484. DOI: 10.12290/xhyxzz.2024-0129
    [2]YU Jiawen, LIU Hongju, XU Yingying, BAO Yanping, SHI Jie, LIU Zhimin, ZHANG Yuelun, NING Xiaohong, HUANG Yuguang. Cognition of Palliative Care and Experience of Palliative Sedation in Chinese Anesthesiologists: A National Cross-sectional Survey[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 77-83. DOI: 10.12290/xhyxzz.2023-0158
    [3]WANG Bo, JIANG Wei, LUO Yuping. Talking About Palliative Care Recipients From the Perspective of Promoting Living Wills[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 42-44. DOI: 10.12290/xhyxzz.2023-0617
    [4]YU Shiying. Controversies About Palliative Care[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 37-41. DOI: 10.12290/xhyxzz.2023-0537
    [5]GAO Shan. The Reversal of Policy Environment and Operation Mechanism of Palliative Care Service[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 32-36. DOI: 10.12290/xhyxzz.2023-0633
    [6]ZHANG Di, BI Kejia, XU Shiting. Ethical Issues in Palliative Care[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 24-31. DOI: 10.12290/xhyxzz.2023-0578
    [7]NING Xiaohong, YAN Ge. China's Healthcare System Urgently Needs the Integration of Palliative Care[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 12-17. DOI: 10.12290/xhyxzz.2023-0599
    [8]Krakauer Eric L.. How to Respond Responsibly to Suffering of Others? Rethinking Palliative Care for China[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 7-11. DOI: 10.12290/xhyxzz.2023-0613
    [9]SUN Yan. Palliative Care: From the Perspective of Clinical Oncology[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 3-6. DOI: 10.12290/xhyxzz.2023-0521
    [10]GAO Chuan, ZHOU Yuyu, GUO Xufang, HE Zhong. Medical Humanities: the Past, Present and Future[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 152-157. DOI: 10.12290/xhyxzz.2021-0319

Catalog

    Article Metrics

    Article views (837) PDF downloads (73) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close