PHURBU Droma, CHEN Huan, CHEN Wenjin, DU Wei, LIN Guoying, PAN Wenjun, CHENG Li, GUI Xiying, CAI Xin, CHODRON Tenzin, FU Jianlei, LI Qianwei, TSE Yang, JI Lyu, TSERING Samdrup, DA Wa, GUO Juan, QIU Cheng, WANG Xiaoting, CHAO Yangong, LIU Dawei, CHAI Wenzhao, ZHU Shihong. Expert Consensus on Monitoring and Management of Patients with Critical Neurological Illness at High Altitudes[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 24-38. DOI: 10.12290/xhyxzz.2021-0584
Citation: PHURBU Droma, CHEN Huan, CHEN Wenjin, DU Wei, LIN Guoying, PAN Wenjun, CHENG Li, GUI Xiying, CAI Xin, CHODRON Tenzin, FU Jianlei, LI Qianwei, TSE Yang, JI Lyu, TSERING Samdrup, DA Wa, GUO Juan, QIU Cheng, WANG Xiaoting, CHAO Yangong, LIU Dawei, CHAI Wenzhao, ZHU Shihong. Expert Consensus on Monitoring and Management of Patients with Critical Neurological Illness at High Altitudes[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 24-38. DOI: 10.12290/xhyxzz.2021-0584

Expert Consensus on Monitoring and Management of Patients with Critical Neurological Illness at High Altitudes

Funds: 

The Management and Treatment of Critical Illness Related Brain Dysfunction Oriented by Cerebral Monitoring in Tibetan Area XZ202101YD0019C

More Information
  • Corresponding author:

    WANG Xiaoting, E-mail: icuting@163.com

    CHAI Wenzhao, E-mail: 13911070864@163.com

  • Received Date: August 08, 2021
  • Accepted Date: November 23, 2021
  • Available Online: January 06, 2022
  • Issue Publish Date: January 29, 2022
  • Neurocritical care is an important branch of critical care medicine. The mechanism of critical neurological damage is complex and diverse, and the pathophysiology changes rapidly. Different pathophysiological changes determine different degrees of brain injury. In a special plateau environment, the incidence of critical neurological disease is higher, the age of onset is younger, the disease progress is faster, and the degree of damage is more severe. In order to standardize the diagnosis and treatment, enhance monitoring and management, provide timely and precise treatment, prevent irreversible brain injury, and improve the prognosis of patients with critical neurological illness at high altitudes, the Research Group of Calm Treatment of China, Research Group of Critical Care Ultrasound of China, and the Quality Control Center of Critical Care Medicine in Tibet formulated the Expert Consensus on Monitoring and Management of Patients with Critical Neurological Illness at High Altitudes on the basis of full discussion and communication of relevant critical medical experts and neurosurgery experts according to domestic and foreign literature and years of experience in clinical application and promotion. The main contents of the consensus are as follows.(1) According to the pathophysiological mechanism of neurological involvement in critical illness, scenarios of neurocritical care at high altitudes can be divided into cerebral hemorrhage at high altitudes, severe traumatic brain injuries, ischemic stroke, cerebral edema at high altitudes, and septic encephalopathy (8.4 points).(2) It is recommended to use cerebral blood flow, brain function monitoring and cerebral oxygen saturation as a "triad" monitoring core in management of neurocritical care at high altitude, to as well as cerebrospinal fluid dynamics monitoring and brain structure surveillance (9.0 points).(3) It is recommended to grade patients quickly, and the "5-avoids" approach based on "brain protection" theory were adhered to avoid fever, seizures, anxiety, agitation or pain, shivering, stimulation and nociception, according to different levels. Especially in the "super critical" stage, with the protection of "446"targets, choose the window for analgesia and sedation (8.4 points).(4) It is recommended to monitor systemic and cerebral hemodynamic continuously and dynamically in order to improve systemic perfusion and optimize cerebral perfusion simultaneously (8.4 points).(5) It is recommended to choose the method of direct measurement of intracranial pressure by intraventricular catheter or optic nerve sheath diameter under ultrasound to estimate intracranial pressure, and choose the appropriate target mean arterial pressure to ensure optimal brain perfusion (8.8 points).(6) It is recommended to use transcranial Doppler ultrasound to evaluate the blood flow velocity and blood flow waveform of the bilateral cerebral arteries. It is recommended to target the blood flow velocity of M1 at 40 cm/s in the "super critical" period (8.2 points).(7) In the "super critical" period, we recommend to routinely monitor BIS and maintain the BIS value around 40 as the goal to guide the depth of sedation; those with conditions can be monitored by quantitative electroencephalography to assist determining whether there are non-convulsive seizures, and perform diagnostic evaluation of the prognosis (8.6 points).(8) It is recommended to monitor brain oxygen levels routinely, starting early in the ICU admission of patients with critical neurological conditions at high altitudes, which can assist in the assessment of brain damage (8.6 points).(9) It is recommended to evaluate the cerebral blood flow self-regulation ability routinely to achieve the optimal cerebral perfusion pressure in time and timely adjust the intensity and scheme of treatment (8.2 points).(10) It is recommended to emphasize the importance of target arterial partial pressure of carbon dioxide in the artery in critical illness and neurocritical care at high altitudes (8.0 points).(11) It is recommended to devote attention to the importance of targeted temperature management in in critical illness and neurocritical care at high altitudes (8.6 points).(12) It is recommended that multidisciplinary consultation and multi-professional cooperation could improve the management in critical neurological illness at high altitudes (8.8 points).(13) It is recommended that the constitution of improvement in brain structure imaging, pressure normalization of cerebrospinal fluid and restoration of cerebral blood autoregulation could be as the de-escalation triad (8.0 points).(14) It is recommended to be cautious of paroxysmal sympathetic hyperreactivity patients in neurocritical and critical illness at high altitude (8.0 points).(15) It is recommended to be cautious about the management of agitation (delirium) and cognitive function of patients in TBI at high altitudes(8.0 points).(16) It is recommended to assess the itinerary of the rehabilitation in a timely manner for critically sick patients at high altitudes (8.2 points).(17) It is recommended to be cautious of post-traumatic hydrocephalus and related neuroendocrine abnormalities in patients with critical neurological illness at high altitudes (7.6 points).
  • [1]
    刘洋, 陈焕, 刘大为, 等. 神经重症的血流动力学治疗要点[J]. 中国实用内科杂志, 2019, 39: 1026-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201912004.htm

    Liu Y, Chen H, Liu DW, et al. Key-points of cerebral hemodynamic therapy in neuro critical cases[J]. Zhongguo Shiyong Neike Zazhi, 2019, 39: 1026-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201912004.htm
    [2]
    Diamond IR, Grant RC, Feldman BM, et al. Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies[J]. J Clin Epidemiol, 2014, 67: 401-409. DOI: 10.1016/j.jclinepi.2013.12.002
    [3]
    Vogel C, Zwolinsky S, Griffiths C, et al. A Delphi study to build consensus on the definition and use of big data in obesity research[J]. Int J Obes (Lond), 2019, 43: 2573-2586. DOI: 10.1038/s41366-018-0313-9
    [4]
    中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑出血诊治指南(2014)[J]. 中华神经科杂志, 2015, 48: 435-444. DOI: 10.3760/cma.j.issn.1006-7876.2015.06.002
    [5]
    Niaz A, Nayyar S. Cerebrovascular stroke at high altitude[J]. J Coll Physicians Surg Pak, 2003, 13: 446-448.
    [6]
    Jha SK, Anand AC, Sharma V, et al. Stroke at high altitude: Indian experience[J]. High Alt Med Biol, 2002, 3: 21-27. DOI: 10.1089/152702902753639513
    [7]
    Zhang S, Liu D, Gesang DZ, et al. Characteristics of Cerebral Stroke in the Tibet Autonomous Region of China[J]. Med Sci Monit, 2020, 26: e919221.
    [8]
    Posti JP, Raj R, Luoto TM. How do we identify the crashing traumatic brain injury patient-the neurosurgeon's view[J]. Curr Opin Crit Care, 2021, 27: 87-94. DOI: 10.1097/MCC.0000000000000799
    [9]
    谭翱. 重型颅脑损伤的治疗进展[J]. 中国危重病急救医学, 2006, 18: 317-319. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZB200605026.htm
    [10]
    潘冬生, 李泽文, 邱克军, 等. 高原地区重型颅脑损伤患者死亡因素分析[J]. 国际神经病学神经外科学杂志, 2013, 40: 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GWSK201301001.htm

    Pan DS, Li ZW, Qiu KJ, et al. Risk factors related to mortality in high-altitude patients with severe traumatic brain injury[J]. Guoji Shenjingbingxue Shenjing Waikexue Zazhi, 2013, 40: 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GWSK201301001.htm
    [11]
    Kilner T, Mukerji S. Acute mountain sickness prophylaxis: knowledge, attitudes, & behaviours in the Everest region of Nepal[J]. Travel Med Infect Dis, 2010, 8: 395-400. DOI: 10.1016/j.tmaid.2010.09.004
    [12]
    薛蕾, 唐义平. 高原藏区脑卒中危险因素的相关性分析[J]. 实用医院临床杂志, 2011, 8: 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLC201105025.htm

    Xu L, Tang YP. Correlation analysis of risk factors of stroke in Tibetan plateau area[J]. Shiyong Yiyuan Linchuang Zazhi, 2011, 8: 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLC201105025.htm
    [13]
    Luks AM, Mcintosh SE, Grissom CK, et al. Wilderness Medical Society consensus guidelines for the prevention and treatment of acute altitude illness[J]. Wilderness Environ Med, 2010, 21: 146-155. DOI: 10.1016/j.wem.2010.03.002
    [14]
    Luks AM, Mcintosh SE, Grissom CK, et al. Wilderness Medical Society practice guidelines for the prevention and treatment of acute altitude illness: 2014 update[J]. Wilderness Environ Med, 2014, 25: S4-S14. DOI: 10.1016/j.wem.2014.06.017
    [15]
    Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J]. JAMA, 2016, 315: 801-810. DOI: 10.1001/jama.2016.0287
    [16]
    Tauber SC, Djukic M, Gossner J, et al. Sepsis-associated encephalopathy and septic encephalitis: an update[J]. Expert Rev Anti Infect Ther, 2021, 19: 215-231. DOI: 10.1080/14787210.2020.1812384
    [17]
    Tasneem N, Samaniego EA, Pieper C, et al. Brain Multimodality Monitoring: A New Tool in Neurocritical Care of Comatose Patients[J]. Crit Care Res Pract, 2017, 2017: 6097265.
    [18]
    陈焕, 王小亭. 无创脑氧监测: 临床意义与挑战[J]. 中华重症医学电子杂志(网络版), 2018, 4: 231-237. DOI: 10.3877/j.issn.2096-1537.2018.03.005

    Chen H, Wang XT. Noninvasive cerebral oxygen monitor-ing: clinical relevance and challenges[J]. Zhonghua Zhongzheng Yixue Dianzi Zazhi, 2018, 4: 231-237. DOI: 10.3877/j.issn.2096-1537.2018.03.005
    [19]
    黄立, 张丽娜, 艾宇航. 重症脑功能监测在重症神经患者中的应用[J]. 中国实用内科杂志, 2019, 39: 1015-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201912001.htm

    Huang L, Zhang LN, Ai YH. Application of focused neuromonitoring in patients with severe brain injuries[J]. Zhonggguo Shiyong Neike Zazhi, 2019, 39: 1015-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201912001.htm
    [20]
    Limotai C, Ingsathit A, Thadanipon K, et al. How and Whom to Monitor for Seizures in an ICU: A Systematic Review and Meta-Analysis[J]. Crit Care Med, 2019, 47: e366-e373. DOI: 10.1097/CCM.0000000000003641
    [21]
    Claassen J, Taccone FS, Horn P, et al. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM[J]. Intensive Care Med, 2013, 39: 1337-1351. DOI: 10.1007/s00134-013-2938-4
    [22]
    中华医学会神经病学分会神经重症协作组. 神经重症监护病房脑电图监测规范推荐意见[J]. 中华神经科杂志, 2015, 48: 547-550. DOI: 10.3760/cma.j.issn.1006-7876.2015.07.002
    [23]
    Neurocritical Care Committee of the Chinese Society of Neurology (NCC/CSN). Recommendations for Electroencephalography Monitoring in Neurocritical Care Units[J]. Chin Med J (Engl), 2017, 130: 1851-1855. DOI: 10.4103/0366-6999.211559
    [24]
    中华医学会创伤学分会颅脑创伤专业委员会. 颅脑创伤患者脑脊液管理中国专家共识[J]. 中华神经外科杂志, 2019, 35: 760-764. DOI: 10.3760/cma.j.issn.1001-2346.2019.08.002
    [25]
    Hawryluk GWJ, Aguilera S, Buki A, et al. A manage-ment algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC)[J]. Intensive Care Med, 2019, 45: 1783-1794. DOI: 10.1007/s00134-019-05805-9
    [26]
    Krakauskaite S, Thibeault C, Lavangie J, et al. Normative Ranges of Transcranial Doppler Metrics[J]. Acta Neurochir Suppl, 2018, 126: 269-273.
    [27]
    Dahaba AA, Lin H, Ye XF, et al. Propofol-Bispectral Index (BIS) Electroencephalography (EEG) Pharmaco-kinetic-Pharmacodynamic Model in Patients With Post-Cerebral Hemorrhage Hydrocephalus[J]. Clin EEG Neurosci, 2021, 52: 351-359. DOI: 10.1177/1550059420932042
    [28]
    Jouffroy R, Lamhaut L, Guyard A, et al. Early detection of brain death using the Bispectral Index (BIS) in patients treated by extracorporeal cardiopulmonary resuscitation (E-CPR) for refractory cardiac arrest[J]. Resuscitation, 2017, 120: 8-13. DOI: 10.1016/j.resuscitation.2017.08.217
    [29]
    Le Guen M, Roussel C, Chazot T, et al. Reversal of neuromuscular blockade with sugammadex during continuous administration of anaesthetic agents: a double-blind randomised crossover study using the bispectral index[J]. Anaesthesia, 2020, 75: 583-590. DOI: 10.1111/anae.14897
    [30]
    Burjek NE, Wagner CE, Hollenbeck RD, et al. Early bispectral index and sedation requirements during therapeutic hypothermia predict neurologic recovery following cardiac arrest[J]. Crit Care Med, 2014, 42: 1204-1212. DOI: 10.1097/CCM.0000000000000126
    [31]
    Liu X, Nakano M, Yamaguchi A, et al. The association of bispectral index values and metrics of cerebral perfusion during cardiopulmonary bypass[J]. J Clin Anesth, 2021, 74: 110395. DOI: 10.1016/j.jclinane.2021.110395
    [32]
    Pappal RD, Roberts BW, Winkler W, et al. Awareness and bispectral index (BIS) monitoring in mechanically ventilated patients in the emergency department and intensive care unit: a systematic review protocol[J]. BMJ Open, 2020, 10: e034673. DOI: 10.1136/bmjopen-2019-034673
    [33]
    Bass S, Vance ML, Reddy A, et al. Bispectral Index for Titrating Sedation in ARDS Patients During Neuromuscular Blockade[J]. Am J Crit Care, 2019, 28: 377-384. DOI: 10.4037/ajcc2019917
    [34]
    Brandi G, Stocchetti N, Pagnamenta A, et al. Cerebral metabolism is not affected by moderate hyperventilation in patients with traumatic brain injury[J]. Crit Care, 2019, 23: 45. DOI: 10.1186/s13054-018-2304-6
    [35]
    Gomez A, Froese L, Sainbhi AS, et al. Transcranial Doppler Based Cerebrovascular Reactivity Indices in Adult Traumatic Brain Injury: A Scoping Review of Associations With Patient Oriented Outcomes[J]. Front Pharmacol, 2021, 12: 690921. DOI: 10.3389/fphar.2021.690921
    [36]
    Cardim D, Czosnyka M, Chandrapatham K, et al. Arterial and Venous Cerebral Blood Flow Velocities and Their Correlation in Healthy Volunteers and Traumatic Brain Injury Patients[J]. J Neurosurg Anesthesiol, 2022, 34: e24-e33. DOI: 10.1097/ANA.0000000000000704
    [37]
    Varsos GV, Kolias AG, Smielewski P, et al. A noninva-sive estimation of cerebral perfusion pressure using critical closing pressure[J]. J Neurosurg, 2015, 123: 638-648. DOI: 10.3171/2014.10.JNS14613
    [38]
    Low SW, Teo K, Lwin S, et al. Improvement in cerebral hemodynamic parameters and outcomes after superficial temporal artery-middle cerebral artery bypass in patients with severe stenoocclusive disease of the intracranial internal carotid or middle cerebral arteries[J]. J Neurosurg, 2015, 123: 662-669. DOI: 10.3171/2014.11.JNS141553
    [39]
    Wagenaar N, Van Den Berk DJM, Lemmers PMA, et al. Brain Activity and Cerebral Oxygenation After Perinatal Arterial Ischemic Stroke Are Associated With Neurodevelop-ment[J]. Stroke, 2019, 50: 2668-2676. DOI: 10.1161/STROKEAHA.119.025346
    [40]
    Claessens NHP, Jansen NJG, Breur JMPJ, et al. Postoperative cerebral oxygenation was not associated with new brain injury in infants with congenital heart disease[J]. J Thorac Cardiovasc Surg, 2019, 158: 867-877. DOI: 10.1016/j.jtcvs.2019.02.106
    [41]
    Bale G, Taylor N, Mitra S, et al. Near-Infrared Spectroscopy Measured Cerebral Blood Flow from Spontaneous Oxygenation Changes in Neonatal Brain Injury[J]. Adv Exp Med Biol, 2020, 1232: 3-9.
    [42]
    Robba C, Ball L, Battaglini D, et al. Early effects of ventilatory rescue therapies on systemic and cerebral oxygenation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome: a prospective observational study[J]. Crit Care, 2021, 25: 111. DOI: 10.1186/s13054-021-03537-1
    [43]
    Armstead WM. Cerebral Blood Flow Autoregulation and Dysautoregulation[J]. Anesthesiol Clin, 2016, 34: 465-477. DOI: 10.1016/j.anclin.2016.04.002
    [44]
    刘大为, 王小亭, 张宏民, 等. 重症血流动力学治疗——北京共识[J]. 中华内科杂志, 2015, 54: 248-271. DOI: 10.3760/cma.j.issn.0578-1426.2015.03.021
    [45]
    Chen KH, Lee CP, Yang YH, et al. Incidence of hydrocephalus in traumatic brain injury: A nationwide population-based cohort study[J]. Medicine (Baltimore), 2019, 98: e17568. DOI: 10.1097/MD.0000000000017568
    [46]
    Chesnut RM. Intracranial pressure monitoring and unfavourable outcomes[J]. Lancet Neurol, 2021, 20: 978. DOI: 10.1016/S1474-4422(21)00371-9
    [47]
    Chen H, Ding GS, Zhao YC, et al. Ultrasound measure-ment of optic nerve diameter and optic nerve sheath diameter in healthy Chinese adults[J]. BMC Neurol, 2015, 15: 106. DOI: 10.1186/s12883-015-0361-x
    [48]
    Wang LJ, Chen LM, Chen Y, et al. Ultrasonography Assessments of Optic Nerve Sheath Diameter as a Noninvasive and Dynamic Method of Detecting Changes in Intracranial Pressure[J]. JAMA Ophthalmol, 2018, 136: 250-256. DOI: 10.1001/jamaophthalmol.2017.6560
    [49]
    Robba C, Santori G, Czosnyka M, et al. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis[J]. Intensive Care Med, 2018, 44: 1284-1294. DOI: 10.1007/s00134-018-5305-7
    [50]
    陈焕, 王小亭, 丁欣, 等. 心脏术后患者视神经鞘宽度与容量状态的相关性研究[J]. 中华内科杂志, 2016, 55: 779-783. DOI: 10.3760/cma.j.issn.0578-1426.2016.10.011

    Chen H, Wang XT, Ding X, et al. The correlation between optic nerve sheath diameter and volume status in patients after cardiac surgery[J]. Zhonghua Neike Zazhi, 2016, 55: 779-83. DOI: 10.3760/cma.j.issn.0578-1426.2016.10.011
    [51]
    Gomez A, Batson C, Froese L, et al. Utility of Transcr-anial Doppler in Moderate and Severe Traumatic Brain Injury: A Narrative Review of Cerebral Physiologic Metrics[J]. J Neurotrauma, 2021, 38: 2206-2220. DOI: 10.1089/neu.2020.7523
    [52]
    Sokoloff C, Williamson D, Serri K, et al. Clinical Usefulness of Transcranial Doppler as a Screening Tool for Early Cerebral Hypoxic Episodes in Patients with Moderate and Severe Traumatic Brain Injury[J]. Neurocrit Care, 2020, 32: 486-491. DOI: 10.1007/s12028-019-00763-y
    [53]
    Bouzat P, Almeras L, Manhes P, et al. Transcranial Doppler to Predict Neurologic Outcome after Mild to Moderate Traumatic Brain Injury[J]. Anesthesiology, 2016, 125: 346-354. DOI: 10.1097/ALN.0000000000001165
    [54]
    Haesen J, Eertmans W, Genbrugge C, et al. The valida-tion of simplified EEG derived from the bispectral index monitor in post-cardiac arrest patients[J]. Resuscitation, 2018, 126: 179-184. DOI: 10.1016/j.resuscitation.2018.01.042
    [55]
    Schuller PJ, Pretorius JPG, Newbery KB. Frequency response of EEG recordings from BIS and Entropy devices[J]. J Clin Monit Comput, 2021. doi: 10.1007/s10877-021-00694-0.Epubaheadofprint.
    [56]
    Tsaousi G, Tramontana A, Yamani F, et al. Cerebral Perfusion and Brain Oxygen Saturation Monitoring with: Jugular Venous Oxygen Saturation, Cerebral Oximetry, and Transcranial Doppler Ultrasonography[J]. Anesthesiol Clin, 2021, 39: 507-523. DOI: 10.1016/j.anclin.2021.03.009
    [57]
    Jo YY, Shim JK, Soh S, et al. Association between Cerebral Oxygen Saturation with Outcome in Cardiac Surgery: Brain as an Index Organ[J]. J Clin Med, 2020, 9: 840. DOI: 10.3390/jcm9030840
    [58]
    Armstead WM, Vavilala MS. Cerebral Perfusion Pressure Directed-Therapy Modulates Cardiac Dysfunction After Traumatic Brain Injury to Influence Cerebral Autoregulation in Pigs[J]. Neurocrit Care, 2019, 31: 476-485. DOI: 10.1007/s12028-019-00735-2
    [59]
    Smielewski P, Czosnyka M, Kirkpatrick P, et al. Evalua-tion of the transient hyperemic response test in head-injured patients[J]. J Neurosurg, 1997, 86: 773-778. DOI: 10.3171/jns.1997.86.5.0773
    [60]
    Citerio G, Robba C, Rebora P, et al. Management of arterial partial pressure of carbon dioxide in the first week after traumatic brain injury: results from the CENTER-TBI study[J]. Intensive Care Med, 2021, 47: 961-973.
    [61]
    Godoy DA, Rovegno M, Lazaridis C, et al. The effects of arterial CO2 on the injured brain: Two faces of the same coin[J]. J Crit Care, 2021, 61: 207-215. DOI: 10.1016/j.jcrc.2020.10.028
    [62]
    Fernando SM, Di Santo P, Sadeghirad B, et al. Targeted temperature management following out-of-hospital cardiac arrest: a systematic review and network meta-analysis of temperature targets[J]. Intensive Care Med, 2021, 47: 1078-1088. DOI: 10.1007/s00134-021-06505-z
    [63]
    Le May M, Osborne C, Russo J, et al. Effect of Moderate vs Mild Therapeutic Hypothermia on Mortality and Neurologic Outcomes in Comatose Survivors of Out-of-Hospital Cardiac Arrest: The Capital Chill Randomized Clinical Trial[J]. JAMA, 2021, 326: 1494-1503. DOI: 10.1001/jama.2021.15703
    [64]
    Le Roux P, Menon DK, Citerio G, et al. Consensus summary statement of the International Multidisciplinary Con-sensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine[J]. Neurocrit Care, 2014, 21: S1-S26.
    [65]
    Livesay S, Fried H, Gagnon D, et al. Clinical Perfor-mance Measures for Neurocritical Care: A Statement for Healthcare Professionals from the Neurocritical Care Society[J]. Neurocrit Care, 2020, 32: 5-79. DOI: 10.1007/s12028-019-00846-w
    [66]
    Khaki D, Hietanen V, Corell A, et al. Selection of CT variables and prognostic models for outcome prediction in patients with traumatic brain injury[J]. Scand J Trauma Resusc Emerg Med, 2021, 29: 94. DOI: 10.1186/s13049-021-00901-6
    [67]
    Lalou AD, Levrini V, Czosnyka M, et al. Cerebrospinal fluid dynamics in non-acute post-traumatic ventriculomegaly[J]. Fluids Barriers CNS, 2020, 17: 24. DOI: 10.1186/s12987-020-00184-6
    [68]
    Lucca LF, Pignolo L, Leto E, et al. Paroxysmal Sympathetic Hyperactivity Rate in Vegetative or Minimally Conscious State after Acquired Brain Injury Evaluated by Paroxysmal Sympathetic Hyperactivity Assessment Measure[J]. J Neurotrauma, 2019, 36: 2430-2434. DOI: 10.1089/neu.2018.5963
    [69]
    Zheng RZ, Lei ZQ, Yang RZ, et al. Identification and Management of Paroxysmal Sympathetic Hyperactivity After Traumatic Brain Injury[J]. Front Neurol, 2020, 11: 81. DOI: 10.3389/fneur.2020.00081
    [70]
    Fernandez-Ortega JF, Prieto-Palomino MA, Garcia-Caballero M, et al. Paroxysmal sympathetic hyperactivity after trau-matic brain injury: clinical and prognostic implications[J]. J Neurotrauma, 2012, 29: 1364-1370. DOI: 10.1089/neu.2011.2033
    [71]
    Fernandez-Ortega JF, Baguley IJ, Gates TA, et al. Catecholamines and Paroxysmal Sympathetic Hyperactivity after Traumatic Brain Injury[J]. J Neurotrauma, 2017, 34: 109-114. DOI: 10.1089/neu.2015.4364
    [72]
    汤铂, 王小亭, 陈文劲, 等. 重症患者谵妄管理专家共识[J]. 中华内科杂志, 2019, 58: 108-118. DOI: 10.3760/cma.j.issn.0578-1426.2019.02.007

    Tang B, Wang XT, Chen WJ, et al. Experts consensus on the management of delirium in critically ill patients[J]. Zhonghua Neike Zazhi, 2019, 58: 108-118. DOI: 10.3760/cma.j.issn.0578-1426.2019.02.007
    [73]
    Wang XT, LYU L, Tang B, et al. Delirium in Intensive Care Unit Patients: Ten Important Points of Understanding[J]. Chin Med J, 2017, 130: 2498-2502. DOI: 10.4103/0366-6999.216405
    [74]
    Ganau M, Lavinio A, Prisco L. Delirium and agitation in traumatic brain injury patients: an update on pathological hypotheses and treatment options[J]. Minerva Anestesiol, 2018, 84: 632-640.
    [75]
    Roberson SW, Patel MB, Dabrowski W, et al. Challenges of Delirium Management in Patients with Traumatic Brain Injury: From Pathophysiology to Clinical Practice[J]. Curr Neuropharmacol, 2021, 19: 1519-1544. DOI: 10.2174/1570159X19666210119153839
    [76]
    Pun BT, Balas MC, Barnes-Daly MA, et al. Caring for Critically Ill Patients with the ABCDEF Bundle: Results of the ICU Liberation Collaborative in Over 15, 000 Adults[J]. Crit Care Med, 2019, 47: 3-14.
    [77]
    Hernandez S, Kittelty K, Hodgson CL. Rehabilitating the neurological patient in the ICU: what is important?[J]. Curr Opin Crit Care, 2021, 27: 120-130. DOI: 10.1097/MCC.0000000000000804
    [78]
    Asehnoune K, Seguin P, Allary J, et al. Hydrocortisone and fludrocortisone for prevention of hospital-acquired pneumonia in patients with severe traumatic brain injury (Corti-TC): a double-blind, multicentre phase 3, randomised placebo-controlled trial[J]. Lancet Respir Med, 2014, 2: 706-716. DOI: 10.1016/S2213-2600(14)70144-4
    [79]
    Klose M, Feldt-Rasmussen U. Chronic endocrine consequences of traumatic brain injury-what is the evidence?[J]. Nat Rev Endocrinol, 2018, 14: 57-62. DOI: 10.1038/nrendo.2017.103
    [80]
    Ashley MJ. Testosterone, sex steroids, and aging in neurodegenerative disease after acquired brain injury: a commen-tary[J]. Brain Inj, 2020, 34: 983-987. DOI: 10.1080/02699052.2020.1763461

Catalog

    Article Metrics

    Article views (1884) PDF downloads (326) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close