Citation: | AI Shanshan, HE Aibin. Advances in Basic Research of Congenital Heart Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 291-297. DOI: 10.12290/xhyxzz.2021-0055 |
[1] |
Wu WL, He JX, Shao XB. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017[J]. Medicine (Baltimore), 2020, 99: e20593. DOI: 10.1097/MD.0000000000020593
|
[2] |
Warrington NM, Beaumont RN, Horikoshi M, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors[J]. Nat Genet, 2019, 51: 804-814. DOI: 10.1038/s41588-019-0403-1
|
[3] |
Joshi RO, Chellappan S, Kukshal P. Exploring the Role of Maternal Nutritional Epigenetics in Congenital Heart Disease[J]. Curr Dev Nutr, 2020, 4: nzaa166. DOI: 10.1093/cdn/nzaa166
|
[4] |
Liu YJ, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies[J]. Int J Epidemiol, 2019, 48: 455-463. DOI: 10.1093/ije/dyz009
|
[5] |
Campbell M. Genetic and environmental factors in cong-enital heart disease[J]. Q J Med, 1949, 18: 379-391.
|
[6] |
Zaidi S, Brueckner M. Genetics and Genomics of Congenital Heart Disease[J]. Circ Res, 2017, 120: 923-940. DOI: 10.1161/CIRCRESAHA.116.309140
|
[7] |
McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway[J]. Am J Hum Genet, 2006, 79: 169-173. DOI: 10.1086/505332
|
[8] |
Vecoli C, Pulignani S, Foffa I, et al. Congenital heart disease: the crossroads of genetics, epigenetics and environ-ment[J]. Curr Genomics, 2014, 15: 390-399. DOI: 10.2174/1389202915666140716175634
|
[9] |
Bondy CA. Turner syndrome 2008[J]. Horm Res, 2009, 71 Suppl 1: 52-56. http://europepmc.org/abstract/MED/19153507
|
[10] |
Meyer RE, Liu G, Gilboa SM, et al. Survival of children with trisomy 13 and trisomy 18: A multi-state population-based study[J]. Am J Med Genet A, 2016, 170A: 825-837. http://europepmc.org/abstract/MED/26663415
|
[11] |
Tomita-Mitchell A, Mahnke DK, Struble CA, et al. Human gene copy number spectra analysis in congenital heart malformations[J]. Physiol Genomics, 2012, 44: 518-541. DOI: 10.1152/physiolgenomics.00013.2012
|
[12] |
Silversides CK, Lionel AC, Costain G, et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways[J]. PLoS Genet, 2012, 8: e1002843. DOI: 10.1371/journal.pgen.1002843
|
[13] |
Hitz MP, Lemieux-Perreault LP, Marshall C, et al. Rare copy number variants contribute to congenital left-sided heart disease[J]. PLoS Genet, 2012, 8: e1002903. DOI: 10.1371/journal.pgen.1002903
|
[14] |
Payne AR, Chang SW, Koenig SN, et al. Submicroscopic chromosomal copy number variations identified in children with hypoplastic left heart syndrome[J]. Pediatr Cardiol, 2012, 33: 757-763. DOI: 10.1007/s00246-012-0208-9
|
[15] |
Goldmuntz E, Paluru P, Glessner J, et al. Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies[J]. Congenit Heart Dis, 2011, 6: 592-602. DOI: 10.1111/j.1747-0803.2011.00582.x
|
[16] |
Jarrell DK, Lennon ML, Jacot JG. Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease[J]. Diseases, 2019, 7: 52. DOI: 10.3390/diseases7030052
|
[17] |
Feng LF, Lou JL. DNA Methylation Analysis[J]. Methods Mol Biol, 2019, 1894: 181-227.
|
[18] |
Sheng W, Qian YY, Wang HJ, et al. DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with tetralogy of fallot[J]. BMC Med Genomics, 2013, 6: 46. DOI: 10.1186/1755-8794-6-46
|
[19] |
Radhakrishna U, Albayrak S, Alpay-Savasan Z, et al. Genome-Wide DNA Methylation Analysis and Epigenetic Variations Associated with Congenital Aortic Valve Stenosis (AVS)[J]. PLoS One, 2016, 11: e0154010. DOI: 10.1371/journal.pone.0154010
|
[20] |
Zhang YJ, Sun ZX, Jia JQ, et al. Overview of Histone Modification[J]. Adv Exp Med Biol, 2021, 1283: 1-16.
|
[21] |
Moore-Morris T, van Vliet PP, Andelfinger G, et al. Role of Epigenetics in Cardiac Development and Congenital Diseases[J]. Physiol Rev, 2018, 98: 2453-2475. DOI: 10.1152/physrev.00048.2017
|
[22] |
Blakeslee WW, Demos-Davies KM, Lemon DD, et al. Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy[J]. Pediatr Res, 2017, 82: 642-649. DOI: 10.1038/pr.2017.126
|
[23] |
Chen L, Ma YL, Kim EY, et al. Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival[J]. PLoS One, 2012, 7: e31005. DOI: 10.1371/journal.pone.0031005
|
[24] |
Kobayashi J, Yoshida M, Tarui S, et al. Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome[J]. PLoS One, 2014, 9: e102796. DOI: 10.1371/journal.pone.0102796
|
[25] |
Lee S, Lee JW, Lee SK. UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program[J]. Dev Cell, 2012, 22: 25-37. DOI: 10.1016/j.devcel.2011.11.009
|
[26] |
Lickert H, Takeuchi JK, Von Both I, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development[J]. Nature, 2004, 432: 107-112. DOI: 10.1038/nature03071
|
[27] |
Takeuchi JK, Lou X, Alexander JM, et al. Chromatin remodelling complex dosage modulates transcription factor function in heart development[J]. Nat Commun, 2011, 2: 187. DOI: 10.1038/ncomms1187
|
[28] |
Chen L, Fulcoli FG, Ferrentino R, et al. Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a[J]. PLoS Genet, 2012, 8: e1002571. DOI: 10.1371/journal.pgen.1002571
|
[29] |
Lange M, Kaynak B, Forster UB, et al. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex[J]. Genes Dev, 2008, 22: 2370-2384. DOI: 10.1101/gad.471408
|
[30] |
Gu M, Zheng AB, Tu WJ, et al. Circulating LncRNAs as Novel, Non-Invasive Biomarkers for Prenatal Detection of Fetal Congenital Heart Defects[J]. Cell Physiol Biochem, 2016, 38: 1459-1471. DOI: 10.1159/000443088
|
[31] |
Cheng ZJ, Zhang QJ, Yin AW, et al. The long non-coding RNA uc. 4 influences cell differentiation through the TGF-beta signaling pathway[J]. Exp Mol Med, 2018, 50: e447. DOI: 10.1038/emm.2017.278
|
[32] |
Anderson KM, Anderson DM, McAnally JR, et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development[J]. Nature, 2016, 539: 433-436. DOI: 10.1038/nature20128
|
[33] |
O'Brien J, Hayder H, Zayed Y, et al. Overview of Micro-RNA Biogenesis, Mechanisms of Actions, and Circulation[J]. Front Endocrinol (Lausanne), 2018, 9: 402. DOI: 10.3389/fendo.2018.00402
|
[34] |
Tian J, An XJ, Niu L. Role of microRNAs in cardiac development and disease[J]. Exp Ther Med, 2017, 13: 3-8. DOI: 10.3892/etm.2016.3932
|
[35] |
Li D, Ji L, Liu LB, et al. Characterization of circulating microRNA expression in patients with a ventricular septal defect[J]. PLoS One, 2014, 9: e106318. DOI: 10.1371/journal.pone.0106318
|
[36] |
Sucharov CC, Sucharov J, Karimpour-Fard A, et al. Micro-RNA expression in hypoplastic left heart syndrome[J]. J Card Fail, 2015, 21: 83-88. DOI: 10.1016/j.cardfail.2014.09.013
|
[37] |
Huang JC, Li XB, Li HY, et al. Down-regulation of microRNA-184 contributes to the development of cyanotic congenital heart diseases[J]. Int J Clin Exp Pathol, 2015, 8: 14221-14227. http://europepmc.org/abstract/MED/26823736
|
[38] |
Liu LP, Yuan YH, He XH, et al. MicroRNA-1 upregula-tion promotes myocardiocyte proliferation and suppresses apoptosis during heart development[J]. Mol Med Rep, 2017, 15: 2837-2842. DOI: 10.3892/mmr.2017.6282
|
[39] |
Liang DD, Xu XR, Deng FF, et al. miRNA-940 reduction contributes to human Tetralogy of Fallot development[J]. J Cell Mol Med, 2014, 18: 1830-1839. DOI: 10.1111/jcmm.12309
|
[40] |
Garside VC, Chang AC, Karsan A, et al. Co-ordinating Notch, BMP, and TGF-beta signaling during heart valve development[J]. Cell Mol Life Sci, 2013, 70: 2899-2917. DOI: 10.1007/s00018-012-1197-9
|
[41] |
MacGrogan D, Münch J, de la Pompa JL. Notch and interacting signalling pathways in cardiac development, disease, and regeneration[J]. Nat Rev Cardiol, 2018, 15: 685-704. DOI: 10.1038/s41569-018-0100-2
|
[42] |
Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease[J]. Semin Cell Dev Biol, 2012, 23: 450-457. DOI: 10.1016/j.semcdb.2012.01.010
|
[43] |
Iascone M, Ciccone R, Galletti L, et al. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome[J]. Clin Genet, 2012, 81: 542-554. DOI: 10.1111/j.1399-0004.2011.01674.x
|
[44] |
Lim JA, Baek HJ, Jang MS, et al. Loss of beta2-spectrin prevents cardiomyocyte differentiation and heart development[J]. Cardiovasc Res, 2014, 101: 39-47. DOI: 10.1093/cvr/cvt222
|
[45] |
Feng Y, Zhao LZ, Hong L, et al. Alteration in methylation pattern of GATA-4 promoter region in vitamin A-deficient offspring's heart[J]. J Nutr Biochem, 2013, 24: 1373-1380. DOI: 10.1016/j.jnutbio.2012.11.005
|
[46] |
Persson M, Razaz N, Edstedt Bonamy AK, et al. Maternal Overweight and Obesity and Risk of Congenital Heart Defects[J]. J Am Coll Cardiol, 2019, 73: 44-53. http://www.sciencedirect.com/science/article/pii/S0735109718390867
|
[47] |
Pezhouman A, Engel JL, Nguyen NB, et al. Isolation and characterization of hESC-derived heart field-specific cardiomyocytes unravels new insights into their transcriptional and electrophysiological profiles[J]. Cardiovasc Res, 2021: cvab102. doi: 10.1093/cvr/cvab102.Epubaheadofprint.
|
[48] |
Bakkers J. Zebrafish as a model to study cardiac develop-ment and human cardiac disease[J]. Cardiovasc Res, 2011, 91: 279-288. DOI: 10.1093/cvr/cvr098
|
[49] |
Nakanishi T, Markwald RR, Baldwin HS, et al. Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology[M]. Tokyo: Springer, 2016: 321-327.
|
[50] |
Jenkins KJ, Correa A, Feinstein JA, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics[J]. Circulation, 2007, 115: 2995-3014. DOI: 10.1161/CIRCULATIONAHA.106.183216
|
[51] |
Botto LD, Mulinare J, Erickson JD. Occurrence of con-genital heart defects in relation to maternal mulitivitamin use[J]. Am J Epidemiol, 2000, 151: 878-884. DOI: 10.1093/oxfordjournals.aje.a010291
|
[1] | CHEN Yingyu, WANG Ou, XING Xiaoping. Genetic and Clinical Characteristics of Pediatric Primary Hyperparathyroidism[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0731 |
[2] | TIAN Kunling, CHEN Chuanning. Notch Signaling Pathway and Congenital Heart Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 649-654. DOI: 10.12290/xhyxzz.2023-0594 |
[3] | WANG Pu, XIA Yin. Genetics of Head and Neck Paragangliomas[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 977-982. DOI: 10.12290/xhyxzz.2021-0588 |
[4] | Xu HAN, Wen-hui LOU. Advances in Research on Genotyping and the Molecular Mechanism of Pancreatic Neuroendocrine Neoplasias[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(4): 377-382. DOI: 10.3969/j.issn.1674-9081.2020.04.004 |
[5] | Hai-jing WU, Si-qi FU, Qian-wen LI, Hui-ming ZHANG, Qian-jin LU, Zhong GUO. Biomarkers of Melanoma: from Genetics to Epigenetics[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 60-68. DOI: 10.3969/j.issn.1674-9081.2018.01.012 |
[6] | Qi-pu WANG, Lan ZHU. Genetic Study of Pelvic Organ Prolapse[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 178-182. DOI: 10.3969/j.issn.1674-9081.2017.03.017 |
[7] | Cardiovascular Intervention: A Companion to Braunwald's Heart Disease(2016)[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(1): 65-65. |
[8] | MAIMAITI Nu-rong-gu-li, Hua-bing ZHANG, Xiao-ping XING. Clinical and Genetic Analysis of a Uyghur Patient with Gitelman's Syndrome[J]. Medical Journal of Peking Union Medical College Hospital, 2015, 6(6): 427-431. DOI: 10.3969/j.issn.1674-9081.2015.06.006 |
1. |
田坤灵,陈川宁. Notch信号通路与先天性心脏病. 协和医学杂志. 2024(03): 649-654 .
![]() | |
2. |
樊婧,杨丽艳,解若彬,付金,祖月娥. 2011—2020年长沙市围产儿出生缺陷医院监测结果分析. 公共卫生与预防医学. 2024(06): 113-116 .
![]() | |
3. |
王胜泉,华颖,吴佳,张维红,马加威,刘吉. 子代先天性心脏病的影响因素分析. 延安大学学报(医学科学版). 2024(04): 42-46+68 .
![]() | |
4. |
孟影,陈梅. 儿童室间隔缺损介入术后溶血发生风险列线图预测模型的建立. 安徽医学. 2023(09): 1106-1109 .
![]() | |
5. |
王翔,吕秀丽,王凤圈,张媛媛. 先天性心脏病术后早期肠内营养对C反应蛋白水平及年龄别体重Z评分的调节. 医药论坛杂志. 2022(01): 37-40 .
![]() | |
6. |
朱爱艳,栾玉爽,王学椒,李媛媛. 胎儿超声心动对先天性心脏病的检出率分析. 影像研究与医学应用. 2022(16): 110-112 .
![]() | |
7. |
朱颖杰,万立新,张雯艳,宋萍. 吉林地区儿童先天性心脏病影响因素的病例对照研究. 中国儿童保健杂志. 2022(11): 1250-1253 .
![]() |