Hai-jing WU, Si-qi FU, Qian-wen LI, Hui-ming ZHANG, Qian-jin LU, Zhong GUO. Biomarkers of Melanoma: from Genetics to Epigenetics[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 60-68. doi: 10.3969/j.issn.1674-9081.2018.01.012
Citation: Hai-jing WU, Si-qi FU, Qian-wen LI, Hui-ming ZHANG, Qian-jin LU, Zhong GUO. Biomarkers of Melanoma: from Genetics to Epigenetics[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 60-68. doi: 10.3969/j.issn.1674-9081.2018.01.012

Biomarkers of Melanoma: from Genetics to Epigenetics

doi: 10.3969/j.issn.1674-9081.2018.01.012
More Information
  • Melanoma is one of the most aggressive cutaneous malignancies with an increasing incidence in recent decades, especially in western countries. It is considered to be an incurable disease, and patients with metastatic melanoma survive no more than 5 years. Despite rapid improvement in chemotherapy and immunotherapy, such as anti-PD-1/PD-L1 treatment, the high frequency of drug resistance remains a difficult problem. Thus, recent research has shifted slightly to the field of biomarkers to achieve the more urgent goal of aiding in the diagnosis and predicting response and resistance to therapy. With the development of fascinating technologies in laboratory testing, numerous novel biomarkers have been identified, and some of them exhibit potential as therapeutic targets. In this review, we summarize the latest genetic and epigenetic biomarkers, discuss their role in the prediction of disease progression and response to therapies, and provide insights into potential targets for future therapies.
  • loading
  • [1] Alcala AM, Flaherty KT. BRAF inhibitors for the treatment of metastatic melanoma:clinical trials and mechanisms of resistance[J]. Clin Cancer Res, 2012, 18:33-39. doi:  10.1158/1078-0432.CCR-11-0997
    [2] McArthur GA, Chapman PB, Robert C, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3):extended follow-up of a phase 3, randomised, open-label study[J]. Lancet Oncol, 2014, 15:323-332. doi:  10.1016/S1470-2045(14)70012-9
    [3] Queirolo P, Spagnolo F. BRAF plus MEK-targeted drugs:a new standard of treatment for BRAF-mutant advanced melanoma[J]. Cancer Metastasis Rev, 2017, 36:35-42. doi:  10.1007/s10555-017-9660-6
    [4] Desvignes C, Abirached H, Templier C, et al. BRAF inhibitor discontinuation and rechallenge in advanced mela-noma patients with a complete initial treatment response[J]. Melanoma Res, 2017, 27:281-287. doi:  10.1097/CMR.0000000000000350
    [5] Beaver JA, Theoret MR, Mushti S, et al. FDA approval of nivolumab for the first-lne treatment of patients with BRAFV600 wild-type unresectable or metastatic melanoma[J]. Clin Cancer Res, 2017, 23:3479-3483. doi:  10.1158/1078-0432.CCR-16-0714
    [6] Meerveld-Eggink A, Rozeman EA, Lalezari F, et al. Short-term CTLA-4 blockade directly followed by PD-1 blockade in advanced melanoma patients - a single center experience[J]. Ann Oncol, 2017, 28:862-867. doi:  10.1093/annonc/mdw692
    [7] Chuk MK, Chang JT, Theoret MR, et al. FDA approval summary:accelerated approval of pembrolizumab for second-line treatment of metastatic melanoma[J]. Clin Cancer Res, 2017, 23:5666-5670. doi:  10.1158/1078-0432.CCR-16-0663
    [8] Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma[J]. Cell, 2015, 161:1681-1696. doi:  10.1016/j.cell.2015.05.044
    [9] Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma[J]. Nat Genet, 2012, 44:1006-1014. doi:  10.1038/ng.2359
    [10] Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes[J]. Nature, 2013, 499:214-218. doi:  10.1038/nature12213
    [11] Zhang T, Dutton-Regester K, Brown KM, et al. The genomic landscape of cutaneous melanoma[J]. Pigment Cell Melanoma Res, 2016, 29:266-283. doi:  10.1111/pcmr.12459
    [12] Poulikakos PI, Persaud Y, Janakiraman M, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E)[J]. Nature, 2011, 480:387-390. doi:  10.1038/nature10662
    [13] Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma[J]. N Engl J Med, 2012, 367:107-114. doi:  10.1056/NEJMoa1203421
    [14] Long GV, Weber JS, Infante JR, et al. Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib combined with trametinib[J]. J Clin Oncol, 2016, 34:871-878. doi:  10.1200/JCO.2015.62.9345
    [15] Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib[J]. N Engl J Med, 2015, 372:30-39. doi:  10.1056/NEJMoa1412690
    [16] Bahadoran P, Allegra M, Le Duff F, et al. Major clinical response to a BRAF inhibitor in a patient with a BRAF L597R-mutated melanoma[J]. J Clin Oncol, 2013, 31:e324-e326. doi:  10.1200/JCO.2012.46.1061
    [17] Marconcini R, Galli L, Antonuzzo A, et al. Metastatic BRAF K601E-mutated melanoma reaches complete response to MEK inhibitor trametinib administered for over 36 months[J]. Exp Hematol Oncol, 2017, 6:6. doi:  10.1186/s40164-017-0067-4
    [18] Ascierto PA, Schadendorf D, Berking C, et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations:a non-randomised, open-label phase 2 study[J]. Lancet Oncol, 2013, 14:249-256. doi:  10.1016/S1470-2045(13)70024-X
    [19] Krauthammer M, Kong Y, Bacchiocchi A, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas[J]. Nat Genet, 2015, 47:996-1002. doi:  10.1038/ng.3361
    [20] Young RJ, Waldeck K, Martin C, et al. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines[J]. Pigment Cell Melanoma Res, 2014, 27:590-600. doi:  10.1111/pcmr.12228
    [21] Diller ML, Kudchadkar RR, Delman KA, et al. Complete response to high-dose IL-2 and enhanced IFNgamma+Th17:TREG ratio in a melanoma patient[J]. Melanoma Res, 2016, 26:535-539. doi:  10.1097/CMR.0000000000000283
    [22] Timar J, Vizkeleti L, Doma V, et al. Genetic progression of malignant melanoma[J]. Cancer Metastasis Rev, 2016, 35:93-107. doi:  10.1007/s10555-016-9613-5
    [23] Li H, Wang Y, Liu H, et al. Genetic variants in the integrin signaling pathway genes predict cutaneous melanoma survival[J]. Int J Cancer, 2017, 140:1270-1279. doi:  10.1002/ijc.30545
    [24] Liang WS, Hendricks W, Kiefer J, et al. Integrated genomic analyses reveal frequent TERT aberrations in acral melanoma[J]. Genome Res, 2017, 27:524-532. doi:  10.1101/gr.213348.116
    [25] Royer-Bertrand B, Torsello M, Rimoldi D, et al. Comprehensive genetic landscape of uveal melanoma by whole-genome sequen-cing[J]. Am J Hum Genet, 2016, 99:1190-1198. doi:  10.1016/j.ajhg.2016.09.008
    [26] Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation[J]. Nature, 2013, 502:472-479. doi:  10.1038/nature12750
    [27] Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET[J]. Science, 2009, 324:930-935. doi:  10.1126/science.1170116
    [28] Cortellino S, Xu J, Sannai M, et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamina-tion-base excision repair[J]. Cell, 2011, 146:67-79. doi:  10.1016/j.cell.2011.06.020
    [29] Haffner MC, Chaux A, Meeker AK, et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers[J]. Oncotarget, 2011, 2:627-637. doi:  10.18632/oncotarget.316
    [30] Kim YI, Giuliano A, Hatch KD, et al. Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma[J]. Cancer, 1994, 74:893-899. doi:  10.1002/1097-0142(19940801)74:3<893::AID-CNCR2820740316>3.0.CO;2-B
    [31] Lee JJ, Murphy GF, Lian CG. Melanoma epigenetics:novel mechanisms, markers, and medicines[J]. Lab Invest, 2014, 94:822-838. doi:  10.1038/labinvest.2014.87
    [32] Karpf AR, Matsui S. Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells[J]. Cancer Res, 2005, 65:8635-8639. doi:  10.1158/0008-5472.CAN-05-1961
    [33] Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer[J]. Proc Natl Acad Sci USA, 1999, 96:8681-8686. doi:  10.1073/pnas.96.15.8681
    [34] Sarkar D, Leung EY, Baguley BC, et al. Epigenetic regulation in human melanoma:past and future[J]. Epigenetics, 2015, 10:103-121. doi:  10.1080/15592294.2014.1003746
    [35] De Araujo ES, Kashiwabara AY, Achatz MI, et al. LINE-1 hypermethylation in peripheral blood of cutaneous melanoma patients is associated with metastasis[J]. Melanoma Res, 2015, 25:173-177. doi:  10.1097/CMR.0000000000000141
    [36] Di JZ, Han XD, Gu WY, et al. Association of hypomethylation of LINE-1 repetitive element in blood leukocyte DNA with an increased risk of hepatocellular carcinoma[J]. J Zhejiang Univ Sci B, 2011, 12:805-811. doi:  10.1631/jzus.B1000422
    [37] Walesch SK, Richter AM, Helmbold P, et al. Claudin11 promoter hypermethylation is frequent in malignant melanoma of the skin, but uncommon in nevus Cell[J]. Nevi Cancers, 2015, 7:1233-1243. doi:  10.3390/cancers7030834
    [38] Cankovic M, Nikiforova MN, Snuderl M, et al. The role of MGMT testing in clinical practice:a report of the association for molecular pathology[J]. J Mol Diagn, 2013, 15:539-555. doi:  10.1016/j.jmoldx.2013.05.011
    [39] Inno A, Fanetti G, Di Bartolomeo M, et al. Role of MGMT as biomarker in colorectal cancer[J]. World J Clin Cases, 2014, 2:835-839. doi:  10.12998/wjcc.v2.i12.835
    [40] de Araujo ES, Pramio DT, Kashiwabara AY, et al. DNA methylation levels of melanoma risk genes are associated with clinical characteristics of melanoma patients[J]. Biomed Res Int, 2015, 2015:376423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003942654
    [41] Cheli Y, Ohanna M, Ballotti R, et al. Fifteen-year quest for microphthalmia-associated transcription factor target genes[J]. Pigment Cell Melanoma Res, 2010, 23:27-40. doi:  10.1111/j.1755-148X.2009.00653.x
    [42] Ennen M, Keime C, Kobi D, et al. Single-cell gene expression signatures reveal melanoma cell heterogeneity[J]. Oncogene, 2015, 34:3251-3263. doi:  10.1038/onc.2014.262
    [43] Hartman ML, Czyz M. MITF in melanoma:mechanisms behind its expression and activity[J]. Cell Mol Life Sci, 2015, 72:1249-1260. doi:  10.1007/s00018-014-1791-0
    [44] Mezzanotte JJ, Hill V, Schmidt ML, et al. RASSF6 exhibits promoter hypermethylation in metastatic melanoma and inhibits invasion in melanoma cells[J]. Epigenetics, 2014, 9:1496-1503. doi:  10.4161/15592294.2014.983361
    [45] Helmbold P, Richter AM, Walesch S, et al. RASSF10 promoter hypermethylation is frequent in malignant melanoma of the skin but uncommon in nevus cell nevi[J]. J Invest Dermatol, 2012, 132:687-694. doi:  10.1038/jid.2011.380
    [46] Chen H, Zheng Z, Kim KY, et al. Hypermethylation and downregulation of glutathione peroxidase 3 are related to pathogenesis of melanoma[J]. Oncol Rep, 2016, 36:2737-2744. doi:  10.3892/or.2016.5071
    [47] Falzone L, Salemi R, Travali S, et al. MMP-9 overexpression is associated with intragenic hypermethylation of MMP9 gene in melanoma[J]. Aging (Albany NY), 2016, 8:933-944. doi:  10.18632/aging.100951
    [48] Gao L, van den Hurk K, Nsengimana J, et al. Prognostic significance of promoter hypermethylation and diminished gene expression of SYNPO2 in melanoma[J]. J Invest Dermatol, 2015, 135:2328-2331. doi:  10.1038/jid.2015.163
    [49] Muthusamy V, Duraisamy S, Bradbury CM, et al. Epigenetic silencing of novel tumor suppressors in malignant melanoma[J]. Cancer Res, 2006, 66:11187-11193. doi:  10.1158/0008-5472.CAN-06-1274
    [50] Curry JL, Richards HW, Huttenbach YT, et al. Different expression patterns of p27 and p57 proteins in benign and malignant melanocytic neoplasms and in cultured human melanocytes[J]. J Cutan Pathol, 2009, 36:197-205. doi:  10.1111/j.1600-0560.2008.00998.x
    [51] Liu W, Luo Y, Dunn JH, et al. Dual role of apoptosis-associated speck-like protein containing a CARD (ASC) in tumorigenesis of human melanoma[J]. J Invest Dermatol, 2013, 133:518-527. doi:  10.1038/jid.2012.317
    [52] Koga Y, Pelizzola M, Cheng E, et al. Genome-wide screen of promoter methylation identifies novel markers in melanoma[J]. Genome Res, 2009, 19:1462-1470. doi:  10.1101/gr.091447.109
    [53] Venza M, Visalli M, Biondo C, et al. Epigenetic marks responsible for cadmium-induced melanoma cell overgrowth[J]. Toxicol In Vitro, 2015, 29:242-250. doi:  10.1016/j.tiv.2014.10.020
    [54] Furuta J, Umebayashi Y, Miyamoto K, et al. Promoter methy-lation profiling of 30 genes in human malignant melanoma[J]. Cancer Sci, 2004, 95:962-968. doi:  10.1111/j.1349-7006.2004.tb03184.x
    [55] Liu S, Ren S, Howell P, et al. Identification of novel epigene-tically modified genes in human melanoma via promoter methy-lation gene profiling[J]. Pigment Cell Melanoma Res, 2008, 21:545-558. doi:  10.1111/j.1755-148X.2008.00484.x
    [56] Das AM, Seynhaeve AL, Rens JA, et al. Differential TIMP3 expression affects tumor progression and angiogenesis in melanomas through regulation of directionally persistent endothelial cell migration[J]. Angiogenesis, 2014, 17:163-177. doi:  10.1007/s10456-013-9385-2
    [57] Schinke C, Mo Y, Yu Y, et al. Aberrant DNA methylation in malignant melanoma[J]. Melanoma Res, 2010, 20:253-265. doi:  10.1097/CMR.0b013e328338a35a
    [58] McGuinness C, Wesley UV. Dipeptidyl peptidase IV (DPPIV), a candidate tumor suppressor gene in melanomas is silenced by promoter methylation[J]. Front Biosci, 2008, 13:2435-2443. doi:  10.2741/2856
    [59] Matic IZ, Ethordic M, Grozdanic N, et al. Serum activity of DPPIV and its expression on lymphocytes in patients with melanoma and in people with vitiligo[J]. BMC Immunol, 2012, 13:48. doi:  10.1186/1471-2172-13-48
    [60] Conway K, Edmiston SN, Khondker ZS, et al. DNA-methylation profiling distinguishes malignant melanomas from benign nevi[J]. Pigment Cell Melanoma Res, 2011, 24:352-360. doi:  10.1111/j.1755-148X.2011.00828.x
    [61] Ekstrom EJ, Sherwood V, Andersson T. Methylation and loss of Secreted Frizzled-Related Protein 3 enhances melanoma cell migration and invasion[J]. PLoS One, 2011, 6:e18674. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003879962
    [62] Tokita T, Maesawa C, Kimura T, et al. Methylation status of the SOCS3 gene in human malignant melanomas[J]. Int J Oncol, 2007, 30:689-694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57cfc72a864d79c6021e27cfb40b34f9
    [63] Fang S, Liu B, Sun Q, et al. Platelet factor 4 inhibits IL-17/Stat3 pathway via upregulation of SOCS3 expression in melanoma[J]. Inflammation, 2014, 37:1744-1750. doi:  10.1007/s10753-014-9903-4
    [64] Bonazzi VF, Nancarrow DJ, Stark MS, et al. Cross-platform array screening identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as genes frequently silenced by methylation in melanoma[J]. PLoS One, 2011, 6:e26121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003874308
    [65] Furuta J, Kaneda A, Umebayashi Y, et al. Silencing of the thrombomodulin gene in human malignant melanoma[J]. Melanoma Res, 2005, 15:15-20. doi:  10.1097/00008390-200502000-00004
    [66] Mori T, O'Day SJ, Umetani N, et al. Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy[J]. J Clin Oncol, 2005, 23:9351-9358. doi:  10.1200/JCO.2005.02.9876
    [67] Lian CG, Xu Y, Ceol C, et al. Loss of 5-hydroxymethylcy-tosine is an epigenetic hallmark of melanoma[J]. Cell, 2012, 150:1135-1146. doi:  10.1016/j.cell.2012.07.033
    [68] Gambichler T, Sand M, Skrygan M. Loss of 5-hydroxymethylcytosine and ten-eleven translocation 2 protein expression in malignant melanoma[J]. Melanoma Res, 2013, 23:218-220. doi:  10.1097/CMR.0b013e32835f9bd4
    [69] Lee JJ, Cook M, Mihm MC, et al. Loss of the epigenetic mark, 5-Hydroxymethylcytosine, correlates with small cell/nevoid subpopulations and assists in microstaging of human melanoma[J]. Oncotarget, 2015, 6:37995-38004. doi:  10.18632/oncotarget.6062
    [70] Lee JJ, Granter SR, Laga AC, et al. 5-Hydroxymethyl-cytosine expression in metastatic melanoma versus nodal nevus in sentinel lymph node biopsies[J]. Mod Pathol, 2015, 28:218-229. doi:  10.1038/modpathol.2014.99
    [71] Pavlova O, Fraitag S, Hohl D. 5-hydroxymethylcytosine expression in proliferative nodules arising within congenital nevi allows differentiation from malignant melanoma[J]. J Invest Dermatol, 2016, 136:2453-2461. doi:  10.1016/j.jid.2016.07.015
    [72] Saldanha G, Joshi K, Lawes K, et al. 5-Hydroxymethylcyto-sine is an independent predictor of survival in malignant melanoma[J]. Mod Pathol, 2017, 30:60-68. doi:  10.1038/modpathol.2016.159
    [73] Thienpont B, Galle E, Lambrechts D. TET enzymes as oxygen-dependent tumor suppressors:exciting new avenues for cancer management[J]. Epigenomics, 2016, 8:1445-1448. doi:  10.2217/epi-2016-0126
    [74] Gong F, Guo Y, Niu Y, et al. Epigenetic silencing of TET2 and TET3 induces an EMT-like process in melanoma[J]. Oncotarget, 2017, 8:315-328. doi:  10.18632/oncotarget.13324
    [75] Sigalotti L, Covre A, Fratta E, et al. Epigenetics of human cutaneous melanoma:setting the stage for new therapeutic strategies[J]. J Transl Med, 2010, 8:56. doi:  10.1186/1479-5876-8-56
    [76] Ye Y, Jin L, Wilmott JS, et al. PI (4, 5)P25-phosph-atase A regulates PI3K/Akt signalling and has a tumour suppressive role in human melanoma[J]. Nat Commun, 2013, 4:1508. doi:  10.1038/ncomms2489
    [77] Jazirehi AR, Arle D. Epigenetic regulation of the TRAIL/Apo2L apoptotic pathway by histone deacetylase inhibitors:an attractive approach to bypass melanoma immunotherapy resistance[J]. Am J Clin Exp Immunol, 2013, 2:55-74. https://www.ncbi.nlm.nih.gov/pubmed/23885325
    [78] Zhang XD, Gillespie SK, Borrow JM, et al. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells[J]. Mol Cancer Ther, 2004, 3:425-435. doi:  10.4161/cbt.3.5.985
    [79] Bachmann IM, Halvorsen OJ, Collett K, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast[J]. J Clin Oncol, 2006, 24:268-273. doi:  10.1200/JCO.2005.01.5180
    [80] Fan T, Jiang S, Chung N, et al. EZH2-dependent suppres-sion of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression[J]. Mol Cancer Res, 2011, 9:418-429. doi:  10.1158/1541-7786.MCR-10-0511
    [81] Mahmoud F, Shields B, Makhoul I, et al. Role of EZH2 histone methyltrasferase in melanoma progression and metastasis[J]. Cancer Biol Ther, 2016, 17:579-591. doi:  10.1080/15384047.2016.1167291
    [82] Sengupta D, Byrum SD, Avaritt NL, et al. Quantitative histone mass spectrometry identifies elevated histone H3 lysine 27(Lys27) trimethylation in melanoma[J]. Mol Cell Proteomics, 2016, 15:765-775. doi:  10.1074/mcp.M115.053363
    [83] Ceol CJ, Houvras Y, Jane-Valbuena J, et al. The histone methyltransferase SETDB1 is recurrently amplified in melano-ma and accelerates its onset[J]. Nature, 2011, 471:513-517. doi:  10.1038/nature09806
    [84] Miura S, Maesawa C, Shibazaki M, et al. Immunohistochemistry for histone h3 lysine 9 methyltransferase and demethylase proteins in human melanomas[J]. Am J Dermatopathol, 2014, 36:211-216. doi:  10.1097/DAD.0b013e3182964e02
    [85] Kostaki M, Manona AD, Stavraka I, et al. High-frequency p16(INK) (4A) promoter methylation is associated with histone methyltransferase SETDB1 expression in sporadic cutaneous melanoma[J]. Exp Dermatol, 2014, 23:332-338. doi:  10.1111/exd.12398
    [86] Jiang L, Lv X, Li J, et al. The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma[J]. Acta Histochem, 2012, 114:582-588. doi:  10.1016/j.acthis.2011.11.001
    [87] Zhang J, Lu L, Xiong Y, et al. MLK3 promotes melanoma proliferation and invasion and is a target of microRNA-125b[J]. Clin Exp Dermatol, 2014, 39:376-384. doi:  10.1111/ced.12286
    [88] Vergani E, Di Guardo L, Dugo M, et al. Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b[J]. Oncotarget, 2016, 7:4428-4441. doi:  10.18632/oncotarget.6599
    [89] Levati L, Pagani E, Romani S, et al. MicroRNA-155 targets the SKI gene in human melanoma cell lines[J]. Pigment Cell Melanoma Res, 2011, 24:538-550. doi:  10.1111/j.1755-148X.2011.00857.x
    [90] Liu S, Tetzlaff MT, Liu A, et al. Loss of microRNA-205 expression is associated with melanoma progression[J]. Lab Invest, 2012, 92:1084-1096. doi:  10.1038/labinvest.2012.62
    [91] Levy C, Khaled M, Iliopoulos D, et al. Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma[J]. Mol Cell, 2010, 40:841-849. doi:  10.1016/j.molcel.2010.11.020
    [92] Rinn JL, Chang HY. Genome regulation by long noncoding RNAs[J]. Annu Rev Biochem, 2012, 81:145-166. doi:  10.1146/annurev-biochem-051410-092902
    [93] Wapinski O, Chang HY. Long noncoding RNAs and human disease[J]. Trends Cell Biol, 2011, 21:354-361. doi:  10.1016/j.tcb.2011.04.001
    [94] Li Z, Chao TC, Chang KY, et al. The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL[J]. Proc Natl Acad Sci USA, 2014, 111:1002-1007. doi:  10.1073/pnas.1313768111
    [95] Guo L, Yao L, and Jiang Y. A novel integrative approach to identify lncRNAs associated with the survival of melanoma patients[J]. Gene, 2016, 585:216-220. doi:  10.1016/j.gene.2016.03.036
    [96] Flockhart RJ, Webster DE, Qu K, et al. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration[J]. Genome Res, 2012, 22:1006-1014. doi:  10.1101/gr.140061.112
    [97] Li R, Zhang L, Jia L, et al. Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation[J]. PLoS One, 2014, 9:e100893. doi:  10.1371/journal.pone.0100893
    [98] Khaitan D, Dinger ME, Mazar J, et al. The melanoma-upre-gulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion[J]. Cancer Res, 2011, 71:3852-3862. doi:  10.1158/0008-5472.CAN-10-4460
    [99] Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464:1071-1076. doi:  10.1038/nature08975
    [100] Lessard L, Liu M, Marzese DM, et al. The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching[J]. J Invest Dermatol, 2015, 135:2464-2474. doi:  10.1038/jid.2015.200
    [101] Tian Y, Zhang X, Hao Y, et al. Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma[J]. Melanoma Res, 2014, 24:335-341. doi:  10.1097/CMR.0000000000000080
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (315) PDF downloads(567) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint