JI Yunhua, WANG Linmeng, YAO Zhen, TAN Xiao, GUO Xuyan, HOU Haozhong, ZHANG Bo. Single-cell Transcriptome Analysis of Sertoli Cells under High-altitude Environment Reveals Reproductive Toxicity Mechanisms[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 587-597. DOI: 10.12290/xhyxzz.2023-0435
Citation: JI Yunhua, WANG Linmeng, YAO Zhen, TAN Xiao, GUO Xuyan, HOU Haozhong, ZHANG Bo. Single-cell Transcriptome Analysis of Sertoli Cells under High-altitude Environment Reveals Reproductive Toxicity Mechanisms[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 587-597. DOI: 10.12290/xhyxzz.2023-0435

Single-cell Transcriptome Analysis of Sertoli Cells under High-altitude Environment Reveals Reproductive Toxicity Mechanisms

Funds: 

National Natural Science Foundation of China 81872077

National Natural Science Foundation of China 31272391

Major Clinical Research Project of Air Force Medical University 2021LCYJ010

Key Clinical Research Project of Air Force Medical University 2021LC2110

More Information
  • Corresponding author:

    ZHANG Bo, E-mail: zhangbo@fmmu.edu.cn

  • Received Date: September 14, 2023
  • Accepted Date: November 19, 2023
  • Issue Publish Date: May 29, 2024
  • Objective 

    To construct a single-cell transcriptomic map of testicular tissue under hypobaric hypoxia exposure and perform diversity analysis of supportive cells, aiming to provide new insights into the mechanisms of reproductive toxicity for future research.

    Methods 

    Twenty healthy male mice were randomly divided into a control group (n=10) and a hypobaric hypoxia group (n=10). The control group was raised under normal conditions, while the hypobaric hypoxia group was exposed to a low-pressure hypoxic environment(pressure=14 kPa, oxygen content=14.5%). After 6 weeks, testicular tissue from both groups of mice was collected, and the transcriptomic map was obtained using the Singleron MatrixTM single-cell platform and Illumina NovaSeq second-generation sequencing technology. Clustering, pseudo-temporal trajectory analysis, functional analysis, transcription factor and cellular communication research were conducted.

    Results 

    A single-cell transcriptomic map of testicular tissue was successfully constructed, including 6 samples with a total of approximately 49 027 cells covering 11 cell types. Supportive cells were clustered into 4 subgroups using non-negative matrix factorization algorithm. Subgroup 3 may be more sensitive to hypoxic stimulation and could reduce reproductive cell function damage caused by hypobaric hypoxia by affecting PTN expression levels and regulating the cell cycle of spermatogonia. The PTN-PTPR pathway may be an important regulatory node for supportive cells to regulate spermatogonia. Subgroup 4 could regulate the cell cycle of spermatogonia after exposure to hypobaric hypoxia through the KITLG-KIT signaling pathway, thus affecting sperm development.

    Conclusions 

    Based on single-cell sequencing technology, the molecular basis and regulatory signals of supportive cells under hypobaric hypoxia exposure is revealed for the first time. It provides an in-depth exploration of the mechanisms of reproductive toxicity induced by hypobaric hypoxia at the single-cell level, offering a new perspective for future clinical research in this field.

  • [1]
    Bosco G, Paoli A, Rizzato A, et al. Body composition and endocrine adaptations to high-altitude trekking in the Himalayas[J]. Adv Exp Med Biol, 2019, 1211: 61-68.
    [2]
    Alsup C, Lipman G S, Pomeranz D, et al. Interstitial pulmonary edema assessed by lung ultrasound on ascent to high altitude and slight association with acute mountain sickness: a prospective observational study[J]. High Alt Med Biol, 2019, 20(2): 150-156. DOI: 10.1089/ham.2018.0123
    [3]
    Hofmann M C, Mcbeath E. Sertoli cell-germ cell interactions within the niche: paracrine and juxtacrine molecular communications[J]. Front Endocrinol (Lausanne), 2022, 13: 897062. DOI: 10.3389/fendo.2022.897062
    [4]
    Chang D H, Kong F Y, Jiang W, et al. Effects of L-carni-tine administration on sperm and sex hormone levels in a male Wistar rat reproductive system injury model in a high-altitude hypobaric hypoxic environment[J]. Reprod Sci, 2023, 30(7): 2231-2247. DOI: 10.1007/s43032-022-00948-5
    [5]
    Meroni S B, Galardo M N, Rindone G, et al. Molecular mechanisms and signaling pathways involved in Sertoli cell proliferation[J]. Front Endocrinol (Lausanne), 2019, 10: 224. DOI: 10.3389/fendo.2019.00224
    [6]
    Peng Y J, Tang X T, Shu H S, et al. Sertoli cells are the source of stem cell factor for spermatogenesis[J]. Development, 2023, 150(6): dev200706. DOI: 10.1242/dev.200706
    [7]
    Zhao Q Q, Sun X C, Zheng C, et al. The evolutionarily conserved hif-1/bnip3 pathway promotes mitophagy and mitochondrial fission in crustacean testes during hypoxia[J]. Am J Physiol Regul Integr Comp Physiol, 2023, 324(1): R128-R142. DOI: 10.1152/ajpregu.00212.2022
    [8]
    Li X Y, Zhang M H, Chen Z W, et al. Male reproductive system and simulated high-altitude environment: preliminary results in rats[J]. Asian J Androl, 2023, 25(3): 426-432. DOI: 10.4103/aja202290
    [9]
    He J, Cui J H, Wang R, et al. Exposure to hypoxia at high altitude (5380 m) for 1 year induces reversible effects on semen quality and serum reproductive hormone levels in young male adults[J]. High Alt Med Biol, 2015, 16(3): 216-222. DOI: 10.1089/ham.2014.1046
    [10]
    Oyedokun P A, Akhigbe R E, Ajayi L O, et al. Impact of hypoxia on male reproductive functions[J]. Mol Cell Biochem, 2023, 478(4): 875-885. DOI: 10.1007/s11010-022-04559-1
    [11]
    Zhang D C, Chen R, Cai Y H, et al. Hyperactive reactive oxygen species impair function of porcine Sertoli cells via suppression of surface protein ITGB1 and connexin-43[J]. Zool Res, 2020, 41(2): 203-207. DOI: 10.24272/j.issn.2095-8137.2020.024
    [12]
    Van de Sande B, Flerin C, Davie K, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis[J]. Nat Protoc, 2020, 15(7): 2247-2276. DOI: 10.1038/s41596-020-0336-2
    [13]
    Medina D L, Di Paola S, Peluso I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB[J]. Nat Cell Biol, 2015, 17(3): 288-299. DOI: 10.1038/ncb3114
    [14]
    Shkreta L, Delannoy A, Salvetti A, et al. SRSF10: an atypical splicing regulator with critical roles in stress response, organ development, and viral replication[J]. RNA, 2021, 27(11): 1302-1317. DOI: 10.1261/rna.078879.121
    [15]
    Liu W B, Lu X K, Zhao Z H, et al. SRSF10 is essential for progenitor spermatogonia expansion by regulating alternative splicing[J]. Elife, 2022, 11: e78211. DOI: 10.7554/eLife.78211
    [16]
    Gerber J, Heinrich J, Brehm R. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice[J]. Reproduction, 2016, 151(2): R15-R27. DOI: 10.1530/REP-15-0366
    [17]
    Meng X, Lindahl M, Hyvönen M E, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF[J]. Science, 2000, 287(5457): 1489-1493. DOI: 10.1126/science.287.5457.1489
    [18]
    O'Donnell L, Smith L B, Rebourcet D. Sertoli cells as key drivers of testis function[J]. Semin Cell Dev Biol, 2022, 121: 2-9. DOI: 10.1016/j.semcdb.2021.06.016
    [19]
    Yan R G, Yang Q L, Yang Q E. E4 transcription factor 1 (E4F1) regulates Sertoli cell proliferation and fertility in mice[J]. Animals (Basel), 2020, 10(9): 1691.
    [20]
    Wang Y, Qiu B, Liu J, et al. Cocaine- and amphetamine-regulated transcript facilitates the neurite outgrowth in cortical neurons after oxygen and glucose deprivation through PTN-dependent pathway[J]. Neuroscience, 2014, 277: 103-110. DOI: 10.1016/j.neuroscience.2014.06.064
    [21]
    Dong Z, Li C Y, Coates D. PTN-PTPRZ signalling is involved in deer antler stem cell regulation during tissue regeneration[J]. J Cell Physiol, 2021, 236(5): 3752-3769. DOI: 10.1002/jcp.30115
    [22]
    Huang J C, Chen S C, Chang W A, et al. KITLG promotes glomerular endothelial cell injury in diabetic nephropathy by an autocrine effect[J]. Int J Mol Sci, 2022, 23(19): 11723. DOI: 10.3390/ijms231911723
    [23]
    Cheng P, Chen H, Liu S R, et al. SNPs in KIT and KITLG genes may be associated with oligospermia in Chinese population[J]. Biomarkers, 2013, 18(8): 650-654. DOI: 10.3109/1354750X.2013.838307
  • Cited by

    Periodical cited type(28)

    1. 李妍,韩彤昕,毛华伟. 线上与线下医学人文教学结合应用的研究与探索. 中国继续医学教育. 2025(01): 185-188 .
    2. 李研,赵琳琳. 英美医学教育中戏剧元素的人文透视. 中国医学伦理学. 2025(03): 385-391 .
    3. 张慧颖,王锦帆,马宇昊,何源. 新时代中国医学人文研究热点及趋势探析. 中国医学伦理学. 2025(03): 336-345 .
    4. 王红宇,刘金强,丁俊杰,王红,孟志剑,唐聚花,张思森. 医患沟通技能培训在急重症医学住院医生规培中的应用. 中国现代医生. 2024(02): 74-76 .
    5. 向琳,王浩辰,黄天宇,何鲲. 基于“医教研德”复合型人才培养模式口腔种植学教学改革思考与探索. 中国医药导报. 2024(04): 70-73 .
    6. 俞婧,王瑞,武云. 基于VOSviewer的我国叙事医学相关文献的可视化分析及启示. 中国毕业后医学教育. 2024(03): 207-213 .
    7. 余航,安琪,金李,吴远,陈涛,肖懿慧. BOPPPS教学模式融合课程思政在本科生内科学见习中的应用. 医学教育研究与实践. 2024(03): 349-354 .
    8. 周殷华,程瑜,崔昌杰,田晓辉,符隆文,方婵,廖晓星,陈起坤. 医文融合视域下临床医学人文教学体系研究. 中国医学伦理学. 2024(07): 860-866 .
    9. 王京,贺欢欣,董智瑞,董健,赵明东. 住培医师人文素养的培育. 中国继续医学教育. 2024(20): 186-189 .
    10. 敖玲敏,沈菊. 中华优秀传统文化融入大学生心理健康教育的价值之维与实践之路. 黑龙江高教研究. 2024(12): 120-126 .
    11. 王倩,巩红,刘昌,李雁,李研,辛娟,张月浪. 以临床人文岗位胜任力为导向的医学人文多元教育渠道的探索. 医学教育研究与实践. 2023(01): 68-72 .
    12. 徐燕玲,顾漪. 临床医师医学人文认知现状调查. 中国现代医生. 2023(05): 135-138 .
    13. 冯悦,庞维,郑丽,李胜军,孙逊,冯辉. 新医科和新文科交叉融合对免疫学创新人才培养的探索性改革. 中国免疫学杂志. 2023(06): 1203-1206 .
    14. 柳舟,张亮,王璐,朱睿瑶,王慧娟,张静,雷佳羲,詹丽英. 重症医学科医学人文素质教育的改革与实践. 中国继续医学教育. 2023(12): 10-14 .
    15. 阳磊,彭蓓,张婉丽. 口腔科住院医师规范化培训医学人文教育改革实践. 经济研究导刊. 2023(12): 123-125 .
    16. 赵娟,徐斌. 进修医师自身免疫性肝炎临床带教体会. 继续医学教育. 2023(06): 129-132 .
    17. 刘琴,何自强,骆佳佳,冯凯娜. 以提升人文关怀能力为导向的护理学导论教学模式应用研究. 沈阳医学院学报. 2023(05): 540-543 .
    18. 谢佳君,何勇涛,黄国琼,秦宇彤,王方芳,栗昕,黄春基. 立德树人背景下医学生德育素质培养研究. 中国社会医学杂志. 2023(05): 540-543 .
    19. 吕晓龙,严旭,章涵. 以强化人文素养为导向的全科医学生叙事医学课程模式构建. 济源职业技术学院学报. 2023(04): 33-37 .
    20. 吕少春,宋汉君,栾海艳,何穆涵. 基于医学模拟教学的医学生临床能力培养研究. 医学教育研究与实践. 2022(03): 294-297 .
    21. 李超. 培养高素质临床医生路径分析. 继续医学教育. 2022(04): 61-64 .
    22. 冯矗,陈飞,张树霞,刘古月,李晓宇. 医学人文关怀教育融入外科实习的实践探索. 中医药管理杂志. 2022(11): 88-90 .
    23. 高铭,韩涛,池靖涵,杜振兰,杨常栓,侯豫,花少栋. 创新互动式医学人文教育在儿科住院医师规范化培训中的作用研究. 中国医学伦理学. 2022(07): 806-810 .
    24. 胡艳超,王洪涛,王怡雯,周戬平. 医学人文教育在心血管内科混合式教学中的应用. 医学教育研究与实践. 2022(05): 648-652 .
    25. 叶榆莹. 英语电影字幕翻译对医学生人文教育的作用探究. 才智. 2022(33): 62-65 .
    26. 陶庆才. 抗疫精神融入医学院校课程思政的研究与实践. 浙江医学教育. 2022(05): 268-270+299 .
    27. 张宏伟,熊梓彤,林芷伊. 英国医学人文关怀及其医学教育启示. 农垦医学. 2022(06): 561-564 .
    28. 祝贺,敖俊红,杨蓉娅,李海涛. 全媒体时代医学摄影的边界教育在皮肤病与性病科临床教学中的意义. 实用皮肤病学杂志. 2022(06): 367-369 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close