GUO Yujie, ZHANG Xueqin, SUN Wenyu, DENG Hongyong. Application of Automated Literature Screening Tools in Systematic Reviews[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 921-926. DOI: 10.12290/xhyxzz.2023-0257
Citation: GUO Yujie, ZHANG Xueqin, SUN Wenyu, DENG Hongyong. Application of Automated Literature Screening Tools in Systematic Reviews[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 921-926. DOI: 10.12290/xhyxzz.2023-0257

Application of Automated Literature Screening Tools in Systematic Reviews

Funds: 

National Natural Science Foundation of China 81873183

More Information
  • Corresponding author:

    DENG Hongyong, E-mail: denghy@shutcm.edu.cn

  • Received Date: May 29, 2023
  • Accepted Date: December 05, 2023
  • Available Online: December 15, 2023
  • Publish Date: December 14, 2023
  • Issue Publish Date: July 29, 2024
  • Systematic reviews are the basis of evidence-based medical research, and high-quality systematic reviews represent the highest level of evidence for evaluating treatment effects. Traditional systematic reviews are mainly done manually, but the reading and screening of massive literature requires a lot of energy and time for clinicians, resulting in low efficiency, which cannot meet the needs of rapid decision-making. To address this problem, a number of automated tools have been developed. Thus, this article aims to systematically sort out existing automated tools for systematic review literature screening, and analyze their respective performance, characteristics, and usage to understand the current development status of this field and provide reference for related research and applications.

  • [1]
    杨丰春, 徐晓巍, 李姣. 循证医学研究中的证据自动更新方法研究[J]. 中国数字医学, 2022, 17(1): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YISZ202201009.htm

    Yang F C, Xu X W, Li J. Research on the automatic update method of evidences in the evidence-based medicine research[J]. China Digit Med, 2022, 17(1): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YISZ202201009.htm
    [2]
    毛渤淳, 陈圣恺, 谢雨, 等. 经典深度学习算法对中文随机对照试验智能判别应用[J]. 中国循证医学杂志, 2019, 19(11): 1262-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ201911003.htm

    Mao B C, Chen S K, Xie Y, et al. Exploration of classical deep learning algorithm in intelligent classification of Chinese randomized controlled trials[J]. Chin J Evid-based Med, 2019, 19(11): 1262-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ201911003.htm
    [3]
    Borah R, Brown A W, Capers P L, et al. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry[J]. BMJ Open, 2017, 7(2): e012545. DOI: 10.1136/bmjopen-2016-012545
    [4]
    张雪芹, 张薇, 郑培永, 等. 计算机辅助系统评价方法学研究和应用[J]. 中国循证医学杂志, 2021, 21(1): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ202101017.htm

    Zhang X Q, Zhang W, Zheng P Y, et al. Computer aided systematic review: research and application[J]. Chin J Evid-based Med, 2021, 21(1): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ202101017.htm
    [5]
    McKibbon K A, Wilczynski N L, Haynes R B, et al. Retrieving randomized controlled trials from medline: a comparison of 38 published search filters[J]. Health Info Libr J, 2009, 26(3): 187-202. DOI: 10.1111/j.1471-1842.2008.00827.x
    [6]
    Wallace B C, Noel-Storr A, Marshall I J, et al. Identifying reports of randomized controlled trials(RCTs) via a hybrid machine learning and crowdsourcing approach[J]. J Am Med Inform Assoc, 2017, 24(6): 1165-1168. DOI: 10.1093/jamia/ocx053
    [7]
    Marshall I J, Noel-Storr A, Kuiper J, et al. Machine learning for identifying randomized controlled trials: an evaluation and practitioner's guide[J]. Res Synth Methods, 2018, 9(4): 602-614. DOI: 10.1002/jrsm.1287
    [8]
    Wallace B C, Small K, Brodley C E, et al. Deploying an interactive machine learning system in an evidence-based practice center: Abstrackr[C]//Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium. New York, NY: Association for Computing Machinery, 2012: 819-824.
    [9]
    Park S E, Thomas J. Evidence synthesis software[J]. BMJ Evid Based Med, 2018, 23(4): 140-141. DOI: 10.1136/bmjebm-2018-110962
    [10]
    Gates A, Gates M, Sebastianski M, et al. The semi-automation of title and abstract screening: a retrospective exploration of ways to leverage Abstrackr's relevance predictions in systematic and rapid reviews[J]. BMC Med Res Methodol, 2020, 20(1): 139. DOI: 10.1186/s12874-020-01031-w
    [11]
    Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews[J]. Syst Rev, 2016, 5(1): 210. DOI: 10.1186/s13643-016-0384-4
    [12]
    Przybyła P, Brockmeier A J, Kontonatsios G, et al. Prioritising references for systematic reviews with RobotAnalyst: a user study[J]. Res Synth Methods, 2018, 9(3): 470-488. DOI: 10.1002/jrsm.1311
    [13]
    Cheng S H, Augustin C, Bethel A, et al. Using machine learning to advance synthesis and use of conservation and environmental evidence[J]. Conserv Biol, 2018, 32(4): 762-764. DOI: 10.1111/cobi.13117
    [14]
    Van De Schoot R, de Bruin J, Schram R, et al. An open source machine learning framework for efficient and transparent systematic reviews[J]. Nat Mach Intell, 2021, 3(2): 125-133. DOI: 10.1038/s42256-020-00287-7
    [15]
    Cohen A M, Hersh W R, Peterson K, et al. Reducing workload in systematic review preparation using automated citation classification[J]. J Am Med Inform Assoc, 2006, 13(2): 206-219. DOI: 10.1197/jamia.M1929
    [16]
    Gates A, Johnson C, Hartling L. Technology-assisted title and abstract screening for systematic reviews: a retrospective evaluation of the Abstrackr machine learning tool[J]. Syst Rev, 2018, 7(1): 45. DOI: 10.1186/s13643-018-0707-8
    [17]
    Tsou A Y, Treadwell J R, Erinoff E, et al. Machine learning for screening prioritization in systematic reviews: comparative performance of Abstrackr and EPPI-reviewer[J]. Syst Rev, 2020, 9(1): 73. DOI: 10.1186/s13643-020-01324-7
    [18]
    Howard B E, Phillips J, Miller K, et al. SWIFT-Review: a text-mining workbench for systematic review[J]. Syst Rev, 2016, 5: 87. DOI: 10.1186/s13643-016-0263-z
    [19]
    李世磊. 基于文献相似度的系统评价引文筛选系统的设计与实现[D]. 成都: 电子科技大学, 2020.

    Li S L. Design and implementation of systematic review citation screening system based on literature similarity[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
    [20]
    Marshall I J, Wallace B C. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis[J]. Syst Rev, 2019, 8(1): 163. DOI: 10.1186/s13643-019-1074-9
    [21]
    Van Altena A J, Spijker R, Olabarriaga S D. Usage of automation tools in systematic reviews[J]. Res Synth Methods, 2019, 10(1): 72-82. DOI: 10.1002/jrsm.1335
    [22]
    陈耀龙, 罗旭飞, 史乾灵, 等. 人工智能如何改变指南的未来[J]. 协和医学杂志, 2021, 12(1): 114-121. DOI: 10.12290/xhyxzz.2021-0012

    Chen Y L, Luo X F, Shi Q L, et al. How will artificial intelligence Lead the future of clinical practice guidelines[J]. Med J PUMCH, 2021, 12(1): 114-121. DOI: 10.12290/xhyxzz.2021-0012
  • Related Articles

    [1]TIAN Chen, WANG Yong, YAN Yilong, LIU Yafei, LU Yao, SUN Mingyao, LIU Jianing, MA Yan, NING Jinling, YE Ziying, CHENG Qianji, LI Ying, HUANG Jiajie, YANG Shuihua, WANG Yiyun, TONG Bo, LU Jiale, GE Long. Construction and Testing of Health LifeStyle Evidence (HLSE)[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1413-1421. DOI: 10.12290/xhyxzz.2024-0059
    [2]LU Yao, LIU Jianing, WANG Mian, HUANG Jiajie, HAN Baojin, SUN Mingyao, CHENG Qianji, NING Jinling, GE Long. Artificial Intelligence in Shared Decision Making[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 661-667. DOI: 10.12290/xhyxzz.2023-0209
    [3]SU Renfeng, LIU Hui, SHI Qianling, LUO Xufei, YANG Nan, ZHAO Junxian, TIAN Qiannan, ZHANG Juanjuan, WU Liqun, CHEN Yaolong. Reflections on Developing Health Standards Based on Evidence-based Concept[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 435-441. DOI: 10.12290/xhyxzz.2023-0433
    [4]LAI Honghao, WANG Zhe, LI Ying, TANG Wenjing, WANG Beibei, SUN Peidong, SUN Mingyao, HUANG Jiajie, XIAO Zhipan, LI Ying, ZHAO Chen, SHANG Hongcai, YANG Kehu, LIU Jie, GE Long. Multi-evidence Integration Methodology for Traditional Chinese Medicine: the MERGE Framework[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 172-182. DOI: 10.12290/xhyxzz.2023-0083
    [5]YU Ziqing, TANG Xiaoyan, WU Bin, YANG Hong. Evidence-based Treatment with Chronic Colonic Diverticulitis: A Case Report[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 209-214. DOI: 10.12290/xhyxzz.2022-0585
    [6]FAN Meiyu. Research on High Quality Evidence Acquisition and Application of Evidence-based Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 39-43. DOI: 10.12290/xhyxzz.2022-0202
    [7]CHEN Yaolong, SUN Yajia, LUO Xufei, YU Xuan. The Core Methods and Key Models in Evidence-based Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 1-8. DOI: 10.12290/xhyxzz.2022-0686
    [8]ZHANG Yuelun, WU Dong, LI Naishi, LIU Xiaoqing. Philosophical Basis of Evidence-based Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 401-406. DOI: 10.12290/xhyxzz.2021-0266
    [9]Dong WU, Xiao-qing LIU. David Sackett: A Pioneer of Evidence-based Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(4): 449-452. DOI: 10.3969/j.issn.1674-9081.2020.04.016
    [10]Xiao-qing LIU, Dong WU. Discipline Construction of Clinical Epidemiology and Evidence-based Medicine:What, Who, Where, and Whither?[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(4): 398-402. DOI: 10.3969/j.issn.1674-9081.2019.04.017

Catalog

    Article Metrics

    Article views (346) PDF downloads (68) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close