Turn off MathJax
Article Contents
CHEN Danni, WANG Shiling, LU Hong, ZHENG Ya, WANG Yuping, REN Qian. Relationship Between Vitamin D and Metabolic Associated Fatty Liver Disease and Its Mechanism[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0075
Citation: CHEN Danni, WANG Shiling, LU Hong, ZHENG Ya, WANG Yuping, REN Qian. Relationship Between Vitamin D and Metabolic Associated Fatty Liver Disease and Its Mechanism[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0075

Relationship Between Vitamin D and Metabolic Associated Fatty Liver Disease and Its Mechanism

doi: 10.12290/xhyxzz.2023-0075

Natural Science Foundation of Gansu Province (21JR7RA381); Health Industry Research Project of Gansu Province (GSWSKY2020-07); Fundamental Research Funds for the Central Universities (lzujbky-2021-ct17) ; Hospital Foundation of Lanzhou University First Hospital (ldyyyn2019-74)

  • Received Date: 2023-02-13
  • Accepted Date: 2023-06-19
  • Available Online: 2023-08-07
  • Metabolic associated fatty liver disease (MAFLD) was renamed from the nonalcoholic fatty liver disease (NAFLD). At present, about the pathogenesis of MAFLD, people generally accept the "multiple strike" theory, which involves the interaction of genetic and environmental factors. These attacks include insulin resistance, lipid disorder, oxidative stress, intestinal microbiota, etc. However, there is no approved drug for MAFLD. Recent studies have found that vitamin D is involved in many metabolic processes, which may be involved in the development of MAFLD by influencing liver lipid metabolism, promoting insulin resistance and inflammatory response, participating in immune regulation, gene regulation and maintaining intestinal homeostasis. Therefore, this article summarizes the relationship between vitamin D and MAFLD, reveals the potential mechanism of vitamin D in the pathogenesis of MAFLD, and provides clinical ideas for the treatment of MAFLD.

  • loading
  • [1] Eslam M, Newsome PN, Sarin SK, et al.A new definition for metabolic dysfunction-associated fatty liver disease:An international expert consensus statement[J].J Hepatol, 2020, 73:202-209.
    [2] Paik JM, Golabi P, Younossi Y, et al.Changes in the Global Burden of Chronic Liver Diseases From 2012 to 2017:The Growing Impact of NAFLD[J].Hepatology, 2020, 72:1605-1616.
    [3] Wong RJ, Cheung R.Trends in the Prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease in the United States, 2011-2018[J].Clin Gastroenterol Hepatol, 2022, 20:e610-e613.
    [4] Charoenngam N, Holick MF.Immunologic Effects of Vitamin D on Human Health and Disease[J].Nutrients, 2020, 12:2097.
    [5] Szymczak-Pajor I, Drzewoski J, Śliwińska A.The Molecular Mechanisms by Which Vitamin D Prevents Insulin Resistance and Associated Disorders[J].Int J Mol Sci, 2020, 21:6644.
    [6] Jiang Z, Pu R, Li N, et al.High prevalence of vitamin D deficiency in Asia:A systematic review and meta-analysis[J].Crit Rev Food Sci Nutr, 2021:1-10.
    [7] Rimondi E, Marcuzzi A, Casciano F, et al.Role of vitamin D in the pathogenesis of atheromatosis[J].Nutr Metab Cardiovasc Dis, 2021, 31:344-353.
    [8] Dawson-Hughes B, Staten MA, Knowler WC, et al.Intratrial Exposure to Vitamin D and New-Onset Diabetes Among Adults With Prediabetes:A Secondary Analysis From the Vitamin D and Type 2 Diabetes (D2d) Study[J].Diabetes Care, 2020, 43:2916-2922.
    [9] Yu S, Song L, Wei Q, et al.Dose-response relationship between serum 25-hydroxyvitamin D and the risk of metabolic syndrome[J].Clin Nutr, 2021, 40:1530-1536.
    [10] Cimini FA, Barchetta I, Carotti S, et al.Overview of studies of the vitamin D/vitamin D receptor system in the development of non-alcoholic fatty liver disease[J].World J Gastrointest Pathophysiol, 2019, 10:11-16.
    [11] Yuan S, Larsson SC.Inverse Association Between Serum 25-Hydroxyvitamin D and Nonalcoholic Fatty Liver Disease[J].Clin Gastroenterol Hepatol, 2023, 21:398-405.e4.
    [12] Zhang JJ, Yu HC, Li Y, et al.Association between serum 25-hydroxy vitamin D concentrations and mortality among individuals with metabolic dysfunction-associated fatty liver disease:a prospective cohort study[J].Am J Clin Nutr, 2022, 116:1409-1417.
    [13] Fan X, Wang J, Song M, et al.Vitamin D Status and Risk of All-Cause and Cause-Specific Mortality in a Large Cohort:Results From the UK Biobank[J].J Clin Endocrinol Metab, 2020, 105:dgaa432.
    [14] Luo L, Ye J, Shao C, et al.Vitamin D Status Presents Different Relationships with Severity in Metabolic-Associated Fatty Liver Disease Patients with or without Hepatitis B Infection[J].Nutrients, 2022, 14:2114.
    [15] 周荃,李金强,黎晓武.维生素D缺乏对非酒精性脂肪性肝炎患者FIB-4指数及病情严重程度的影响[J].临床肝胆病杂志, 2022, 38:1293-1298.
    [16] Ha Y, Hwang SG, Rim KS.The Association between Vitamin D Insufficiency and Nonalcoholic Fatty Liver Disease:A Population-Based Study[J].Nutrients, 2017, 9:806.
    [17] Patel YA, Henao R, Moylan CA, et al.Vitamin D is Not Associated With Severity in NAFLD:Results of a Paired Clinical and Gene Expression Profile Analysis[J].Am J Gastroenterol, 2016, 111:1591-1598.
    [18] Manson JE, Cook NR, Lee IM, et al.Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease[J].N Engl J Med, 2019, 380:33-44.
    [19] Neale RE, Baxter C, Romero BD, et al.The D-Health Trial:a randomised controlled trial of the effect of vitamin D on mortality[J]. Lancet Diabetes Endocrinol, 2022, 10:120-128.
    [20] Wang N, Chen C, Zhao L, et al.Vitamin D and Nonalcoholic Fatty Liver Disease:Bi-directional Mendelian Randomization Analysis[J].EbioMedicine, 2018, 28:187-193.
    [21] El Khoudary SR, Samargandy S, Zeb I, et al.Serum 25-hydroxyvitamin-D and nonalcoholic fatty liver disease:Does race/ethnicity matter? Findings from the MESA cohort[J].Nutr Metab Cardiovasc Dis, 2020, 30:114-122.
    [22] Lukenda Zanko V, Domislovic V, Trkulja V, et al.Vitamin D for treatment of non-alcoholic fatty liver disease detected by transient elastography:A randomized, double-blind, placebo-controlled trial[J].Diabetes Obes Metab, 2020, 22:2097-2106.
    [23] El Amrousy D, Abdelhai D, Shawky D.Vitamin D and nonalcoholic fatty liver disease in children:a randomized controlled clinical trial[J].Eur J Pediatr, 2022, 181:579-586.
    [24] Gad AI, Elmedames MR, Abdelhai AR, et al.Efficacy of vitamin D supplementation on adult patients with non-alcoholic fatty liver disease:a single-center experience[J].Gastroenterol Hepatol Bed Bench, 2021, 14:44-52.
    [25] Rezaei S, Tabrizi R, Nowrouzi-Sohrabi P, et al.The Effects of Vitamin D Supplementation on Anthropometric and Biochemical Indices in Patients With Non-alcoholic Fatty Liver Disease:A Systematic Review and Meta-analysis[J].Front Pharmacol, 2021, 12:732496.
    [26] Rasouli N, Brodsky IG, Chatterjee R, et al.Effects of Vitamin D Supplementation on Insulin Sensitivity and Secretion in Prediabetes[J].J Clin Endocrinol Metab, 2022, 107:230-240.
    [27] Wei Y, Wang S, Meng Y, et al.Effects of Vitamin D Supplementation in Patients with Nonalcoholic Fatty Liver Disease:A Systematic Review and Meta-Analysis[J].Int J Endocrinol Metab, 2020, 18:e97205.
    [28] Carlberg C, Haq A.The concept of the personal vitamin D response index[J]. J Steroid Biochem Mol Biol, 2018, 175:12-17.
    [29] Triantos C, Aggeletopoulou I, Thomopoulos K, et al.Vitamin D-Liver Disease Association:Biological Basis and Mechanisms of Action[J].Hepatology, 2021, 74:1065-1073.
    [30] Udomsinprasert W, Jittikoon J.Vitamin D and liver fibrosis:Molecular mechanisms and clinical studies[J].Biomed Pharmacother, 2019, 109:1351-1360.
    [31] Lockau L, Atkinson S A.Vitamin D's role in health and disease:How does the present inform our understanding of the past?[J]. Int J Paleopathol, 2018, 23:6-14.
    [32] Dong B, Zhou Y, Wang W, et al.Vitamin D Receptor Activation in Liver Macrophages Ameliorates Hepatic Inflammation, Steatosis, and Insulin Resistance in Mice[J].Hepatology, 2020, 71:1559-1574.
    [33] Zhang H, Shen Z, Lin Y, et al.Vitamin D receptor targets hepatocyte nuclear factor 4α and mediates protective effects of vitamin D in nonalcoholic fatty liver disease[J].J Biol Chem, 2020, 295:3891-3905.
    [34] Buzzetti E, Pinzani M, Tsochatzis EA.The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J].Metabolism, 2016, 65:1038-1048.
    [35] Marziou A, Philouze C, Couturier C, et al.Vitamin D Supplementation Improves Adipose Tissue Inflammation and Reduces Hepatic Steatosis in Obese C57BL/6J Mice[J].Nutrients, 2020, 12:342.
    [36] Szymczak-Pajor I, Śliwińska A.Analysis of Association between Vitamin D Deficiency and Insulin Resistance[J].Nutrients, 2019, 11:794.
    [37] Zeng Y, Luo M, Pan L, et al.Vitamin D signaling maintains intestinal innate immunity and gut microbiota:potential intervention for metabolic syndrome and NAFLD[J].Am J Physiol Gastrointest Liver Physiol, 2020, 318:G542-G553.
    [38] Surdu AM, Pînzariu O, Ciobanu DM, et al.Vitamin D and Its Role in the Lipid Metabolism and the Development of Atherosclerosis[J].Biomedicines, 2021, 9:172.
    [39] Li R, Guo E, Yang J, et al.1,25(OH)2D3 attenuates hepatic steatosis by inducing autophagy in mice[J].Obesity (Silver Spring), 2017, 25:561-571.
    [40] Lim H, Lee H, Lim Y.Effect of vitamin D3 supplementation on hepatic lipid dysregulation associated with autophagy regulatory AMPK/Akt-mTOR signaling in type 2 diabetic mice[J].Exp Biol Med (Maywood), 2021, 246:1139-1147.
    [41] Borges CC, Salles AF, Bringhenti I, et al.Vitamin D Deficiency Increases Lipogenesis and Reduces Beta-Oxidation in the Liver of Diet-Induced Obese Mice[J].J Nutr Sci Vitaminol (Tokyo), 2018, 64:106-115.
    [42] Marino M, Venturi S, Del Bo C, et al.Vitamin D Counteracts Lipid Accumulation, Augments Free Fatty Acid-Induced ABCA1 and CPT-1A Expression While Reducing CD36 and C/EBPβ Protein Levels in Monocyte-Derived Macrophages[J].Biomedicines, 2022, 10:775.
    [43] Hosny SS, Ali HM, Mohammed WA, et al.Study of relationship between total vitamin D level and NAFLD in a sample of Egyptian patients with and without T2DM[J].Diabetes Metab Syndr, 2019, 13:1769-1771.
    [44] Manna P, Jain SK.Vitamin D up-regulates glucose transporter 4(GLUT4) translocation and glucose utilization mediated by cystathionine-γ-lyase (CSE) activation and H2S formation in 3T3L1 adipocytes[J].J Biol Chem, 2012, 287:42324-42332.
    [45] Elseweidy MM, Amin RS, Atteia HH, et al.Vitamin D3 intake as regulator of insulin degrading enzyme and insulin receptor phosphorylation in diabetic rats[J].Biomed Pharmacother, 2017, 85:155-159.
    [46] Borges CC, Salles AF, Bringhenti I, et al.Adverse effects of vitamin D deficiency on the Pi3k/Akt pathway and pancreatic islet morphology in diet-induced obese mice[J]. Mol Nutr Food Res, 2016, 60:346-357.
    [47] Li YC, Kong J, Wei M, et al.1, 25-Dihydroxyvitamin D3 is a negative endocrine regulator of the reninangiotensin system[J].J Clin Invest, 2002, 110:229-238.
    [48] Gutierrez-Rodelo C, Arellano-Plancarte A, Hernandez-Aranda J, et al.Angiotensin II Inhibits Insulin Receptor Signaling in Adipose Cells[J].Int J Mol Sci, 2022, 23:6048.
    [49] Roth CL, Elfers CT, Figlewicz DP, et al.Vitamin D deficiency in obese rats exacerbates nonalcoholic fatty liver disease and increases hepatic resistin and Toll-like receptor activation[J].Hepatology, 2012, 55:1103-1111.
    [50] Liu Y, Wang M, Xu W, et al.Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway[J].Life Sci, 2020, 241:117086.
    [51] Zhang X, Shang X, Jin S, et al.Vitamin D ameliorates high-fat-diet-induced hepatic injury via inhibiting pyroptosis and alters gut microbiota in rats[J].Arch Biochem Biophys, 2021, 705:108894.
    [52] Wang H, Mehal W, Nagy LE, et al.Immunological mechanisms and therapeutic targets of fatty liver diseases[J].Cell Mol Immunol, 2021, 18:73-91.
    [53] Ortiz-López N, Fuenzalida C, Dufeu MS, et al.The immune response as a therapeutic target in nonalcoholic fatty liver disease[J].Front Immunol, 2022, 13:954869.
    [54] Sîrbe C, Rednic S, Grama A, et al.An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases[J].Int J Mol Sci, 2022, 23:9784.
    [55] Czaja AJ, Montano-Loza AJ.Evolving Role of Vitamin D in Immune-Mediated Disease and Its Implications in Autoimmune Hepatitis[J].Dig Dis Sci, 2019, 64:324-344.
    [56] Barrea L, Muscogiuri G, Frias-Toral E, et al.Nutrition and immune system:from the Mediterranean diet to dietary supplementary through the microbiota[J].Crit Rev Food Sci Nutr, 2021, 61:3066-3090.
    [57] Su YB, Li TH, Huang CC, et al.Chronic calcitriol supplementation improves the inflammatory profiles of circulating monocytes and the associated intestinal/adipose tissue alteration in a diet-induced steatohepatitis rat model[J].PLoS One, 2018, 13:e0194867.
    [58] Tourkochristou E, Mouzaki A, Triantos C.Gene Polymorphisms and Biological Effects of Vitamin D Receptor on Nonalcoholic Fatty Liver Disease Development and Progression[J].Int J Mol Sci, 2023, 24:8288.
    [59] García-Monzón C, Petrov PD, Rey E, et al.Angiopoietin-Like Protein 8 Is a Novel Vitamin D Receptor Target Gene Involved in Nonalcoholic Fatty Liver Pathogenesis[J].Am J Pathol, 2018, 188:2800-2810.
    [60] Jaroenlapnopparat A, Suppakitjanusant P, Ponvilawan B, et al.Vitamin D-Related Genetic Variations and Nonalcoholic Fatty Liver Disease:A Systematic Review[J].Int J Mol Sci, 2022, 23:9122.
    [61] Arai T, Atsukawa M, Tsubota A, et al.Association of vitamin D levels and vitamin D-related gene polymorphisms with liver fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease[J].Dig Liver Dis, 2019, 51:1036-1042.
    [62] Wang M, Wang M, Zhang R, et al.Influences of Vitamin D Levels and Vitamin D-Binding Protein Polymorphisms on Nonalcoholic Fatty Liver Disease Risk in a Chinese Population[J].Ann Nutr Metab, 2022, 78:61-72.
    [63] Leung C, Rivera L, Furness JB, et al.The role of the gut microbiota in NAFLD[J].Nat Rev Gastroenterol Hepatol, 2016, 13:412-425.
    [64] Barbáchano A, Fernández-Barral A, Ferrer-Mayorga G, et al.The endocrine vitamin D system in the gut[J]. Mol Cell Endocrinol, 2017, 453:79-87.
    [65] He L, Liu T, Shi Y, et al.Gut Epithelial Vitamin D Receptor Regulates Microbiota-Dependent Mucosal Inflammation by Suppressing Intestinal Epithelial Cell Apoptosis[J].Endocrinology, 2018, 159:967-979.
    [66] Singh P, Rawat A, Alwakeel M, et al.The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals[J].Sci Rep, 2020, 10:21641.
    [67] Kong M, Zhu L, Bai L, et al.Vitamin D deficiency promotes nonalcoholic steatohepatitis through impaired enterohepatic circulation in animal model[J].Am J Physiol Gastrointest Liver Physiol, 2014, 307:G883-G893.
    [68] Lee PC, Hsieh YC, Huo TI, et al.Active Vitamin D3 Treatment Attenuated Bacterial Translocation via Improving Intestinal Barriers in Cirrhotic Rats[J]. Mol Nutr Food Res, 2021, 65:e2000937.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (39) PDF downloads(31) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint