Citation: | PAN Xiaojun, CHEN Dechang. Gut Microbiota in Hemodynamics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 936-941. DOI: 10.12290/xhyxzz.2022-0468 |
[1] |
Socała K, Doboszewska U, Szopa A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders[J]. Pharmacol Res, 2021, 172: 105840. DOI: 10.1016/j.phrs.2021.105840
|
[2] |
Xiao L, Liu Q, Luo M, et al. Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome[J]. Front Cell Infect Microbiol, 2021, 11: 729346. DOI: 10.3389/fcimb.2021.729346
|
[3] |
Doroszkiewicz J, Groblewska M, Mroczko B. The Role of Gut Microbiota and Gut-Brain Interplay in Selected Diseases of the Central Nervous System[J]. Int J Mol Sci, 2021, 22: 10028. DOI: 10.3390/ijms221810028
|
[4] |
Hou H, Chen D, Zhang K, et al. Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation?[J]. Cancer Lett, 2022, 526: 225-235. DOI: 10.1016/j.canlet.2021.11.027
|
[5] |
Zaky A, Glastras SJ, Wong MYW, et al. The Role of the Gut Microbiome in Diabetes and Obesity-Related Kidney Disease[J]. Int J Mol Sci, 2021, 22: 9641. DOI: 10.3390/ijms22179641
|
[6] |
Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumori-genesis[J]. Cell Host Microbe, 2022, 30: 289-300. DOI: 10.1016/j.chom.2022.02.004
|
[7] |
Adhikari AA, Ramachandran D, Chaudhari SN, et al. A Gut-Restricted Lithocholic Acid Analog as an Inhibitor of Gut Bacterial Bile Salt Hydrolases[J]. ACS Chem Biol, 2021, 16: 1401-1412. DOI: 10.1021/acschembio.1c00192
|
[8] |
Campbell C, McKenney PT, Konstantinovsky D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells[J]. Nature, 2020, 581: 475-479. DOI: 10.1038/s41586-020-2193-0
|
[9] |
Jin WB, Li TT, Huo D, et al. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome[J]. Cell, 2022, 185: 547-562. e522. DOI: 10.1016/j.cell.2021.12.035
|
[10] |
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease[J]. Nat Microbiol, 2019, 4: 293-305. DOI: 10.1038/s41564-018-0306-4
|
[11] |
Gadaleta RM, Garcia-Irigoyen O, Cariello M, et al. Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor[J]. EBioMedicine, 2020, 54: 102719. DOI: 10.1016/j.ebiom.2020.102719
|
[12] |
Doden HL, Wolf PG, Gaskins HR, et al. Completion of the gut microbial epi-bile acid pathway[J]. Gut Microbes, 2021, 13: 1-20.
|
[13] |
Turner JR. Intestinal mucosal barrier function in health and disease[J]. Nat Rev Immunol, 2009, 9: 799-809. DOI: 10.1038/nri2653
|
[14] |
Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure[J]. Nat Rev Cardiol, 2019, 16: 137-154. DOI: 10.1038/s41569-018-0108-7
|
[15] |
Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota[J]. FEMS Microbiol Rev, 2014, 38: 996-1047. DOI: 10.1111/1574-6976.12075
|
[16] |
Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nat Rev Immunol, 2013, 13: 321-335. DOI: 10.1038/nri3430
|
[17] |
Stanley EG, Bailey NJ, Bollard ME, et al. Sexual dimorphism in urinary metabolite profiles of Han Wistar rats revealed by nuclear-magnetic-resonance-based metabonomics[J]. Anal Biochem, 2005, 343: 195-202. DOI: 10.1016/j.ab.2005.01.024
|
[18] |
Tang WHW, Bäckhed F, Landmesser U, et al. Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2019, 73: 2089-2105.
|
[19] |
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472: 57-63. DOI: 10.1038/nature09922
|
[20] |
Zhu W, Buffa JA, Wang Z, et al. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethyla-mine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk[J]. J Thromb Haemost, 2018, 16: 1857-1872. DOI: 10.1111/jth.14234
|
[21] |
Bergeron N, Williams PT, Lamendella R, et al. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk[J]. Br J Nutr, 2016, 116: 2020-2029. DOI: 10.1017/S0007114516004165
|
[22] |
Hauet T, Baumert H, Gibelin H, et al. Noninvasive monitoring of citrate, acetate, lactate, and renal medullary osmolyte excretion in urine as biomarkers of exposure to ischemic reperfusion injury[J]. Cryobiology, 2000, 41: 280-291. DOI: 10.1006/cryo.2000.2291
|
[23] |
Griffin JL, Wang X, Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics[J]. Circ Cardiovasc Genet, 2015, 8: 187-191. DOI: 10.1161/CIRCGENETICS.114.000219
|
[24] |
Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB[J]. J Am Heart Assoc, 2016, 5.
|
[25] |
Makrecka-Kuka M, Volska K, Antone U, et al. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria[J]. Toxicol Lett, 2017, 267: 32-38. DOI: 10.1016/j.toxlet.2016.12.017
|
[26] |
Savi M, Bocchi L, Bresciani L, et al. Trimethylamine-N-Oxide (TMAO)-Induced Impairment of Cardiomyocyte Function and the Protective Role of Urolithin B-Glucuronide[J]. Molecules, 2018, 23.
|
[27] |
Jacobs J, Braun J. Host genes and their effect on the intestinal microbiome garden[J]. Genome Med, 2014, 6: 119. DOI: 10.1186/s13073-014-0119-x
|
[28] |
Moron R, Galvez J, Colmenero M, et al. The Importance of the Microbiome in Critically Ⅲ Patients: Role of Nutrition[J]. Nutrients, 2019, 11.
|
[29] |
Valdés-Duque BE, Giraldo-Giraldo NA, Jaillier-Ramírez AM, et al. Stool Short-Chain Fatty Acids in Critically Ⅲ Patients with Sepsis[J]. J Am Coll Nutr, 2020, 39: 706-712. DOI: 10.1080/07315724.2020.1727379
|
[30] |
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504: 451-455. DOI: 10.1038/nature12726
|
[31] |
Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation[J]. Gut Microbes, 2014, 5: 202-207. DOI: 10.4161/gmic.27492
|
[32] |
Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation[J]. Proc Natl Acad Sci U S A, 2013, 110: 4410-4415. DOI: 10.1073/pnas.1215927110
|
[33] |
Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41[J]. Proc Natl Acad Sci U S A, 2008, 105: 16767-16772. DOI: 10.1073/pnas.0808567105
|
[34] |
Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461: 1282-1286. DOI: 10.1038/nature08530
|
[35] |
Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J]. J Biol Chem, 2003, 278: 25481-25489. DOI: 10.1074/jbc.M301403200
|
[36] |
Tazoe H, Otomo Y, Karaki S, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon[J]. Biomed Res, 2009, 30: 149-156. DOI: 10.2220/biomedres.30.149
|
[37] |
Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism[J]. Proc Natl Acad Sci U S A, 2006, 103: 10011-10016. DOI: 10.1073/pnas.0602187103
|
[38] |
Durazzi F, Sala C, Castellani G, et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota[J]. Sci Rep, 2021, 11: 3030. DOI: 10.1038/s41598-021-82726-y
|
[39] |
Osuka A, Shimizu K, Ogura H, et al. Prognostic impact of fecal pH in critically ill patients[J]. Crit Care, 2012, 16: R119. DOI: 10.1186/cc11413
|
[40] |
Yamada T, Shimizu K, Ogura H, et al. Rapid and Sustained Long-Term Decrease of Fecal Short-Chain Fatty Acids in Critically Ill Patients With Systemic Inflammatory Response Syndrome[J]. JPEN J Parenter Enteral Nutr, 2015, 39: 569-577. DOI: 10.1177/0148607114529596
|
[41] |
Ladopoulos T, Giannaki M, Alexopoulou C, et al. Gastrointestinal dysmotility in critically ill patients[J]. Ann Gastroenterol, 2018, 31: 273-281.
|
[42] |
Imhann F, Bonder MJ, Vich Vila A, et al. Proton pump inhibitors affect the gut microbiome[J]. Gut, 2016, 65: 740-748. DOI: 10.1136/gutjnl-2015-310376
|
[43] |
Rogers MAM, Aronoff DM. The influence of non-steroidal anti-inflammatory drugs on the gut microbiome[J]. Clin Microbiol Infect, 2016, 22: 178. e171-e178. e179.
|
[44] |
Habes QLM, van Ede L, Gerretsen J, et al. Norepinephrine Contributes to Enterocyte Damage in Septic Shock Patients: A Prospective Cohort Study[J]. Shock, 2018, 49: 137-143. DOI: 10.1097/SHK.0000000000000955
|
[45] |
Fink MP. Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness[J]. Curr Opin Crit Care, 2003, 9: 143-151. DOI: 10.1097/00075198-200304000-00011
|
[46] |
De-Souza DA, Greene LJ. Intestinal permeability and systemic infections in critically ill patients: effect of gluta-mine[J]. Crit Care Med, 2005, 33: 1125-1135. DOI: 10.1097/01.CCM.0000162680.52397.97
|
[47] |
Wang C, Li Q, Ren J. Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection[J]. Front Immunol, 2019, 10: 1873. DOI: 10.3389/fimmu.2019.01873
|
[48] |
Andriamihaja M, Lan A, Beaumont M, et al. The deleteri-ous metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells[J]. Free Radic Biol Med, 2015, 85: 219-227. DOI: 10.1016/j.freeradbiomed.2015.04.004
|
[49] |
Simonen M, Dali-Youcef N, Kaminska D, et al. Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass[J]. Obes Surg, 2012, 22: 1473-1480. DOI: 10.1007/s11695-012-0673-5
|
[50] |
le Roux CW, Bloom SR. Why do patients lose weight after Roux-en-Y gastric bypass?[J]. J Clin Endocrinol Metab, 2005, 90: 591-592. DOI: 10.1210/jc.2004-2211
|
[51] |
Ince C, Mayeux PR, Nguyen T, et al. The Endothelium in Sepsis[J]. Shock, 2016, 45: 259-270. DOI: 10.1097/SHK.0000000000000473
|
[52] |
Kakihana Y, Ito T, Nakahara M, et al. Sepsis-induced myocardial dysfunction: pathophysiology and management[J]. J Intensive Care, 2016, 4: 22. DOI: 10.1186/s40560-016-0148-1
|
[53] |
Hollenberg SM. Understanding stress cardiomyopathy[J]. Intensive Care Med, 2016, 42: 432-435. DOI: 10.1007/s00134-015-4018-4
|
[54] |
Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865: 759-773. DOI: 10.1016/j.bbadis.2018.10.011
|
[55] |
Yin J, Liao SX, He Y, et al. Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack[J]. J Am Heart Assoc, 2015, 4: e002699. DOI: 10.1161/JAHA.115.002699
|
[56] |
Wang F, Li Q, Wang C, et al. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury[J]. PLoS One, 2012, 7: e42027. DOI: 10.1371/journal.pone.0042027
|
[57] |
Nagatomo Y, Tang WH. Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis[J]. J Card Fail, 2015, 21: 973-980. DOI: 10.1016/j.cardfail.2015.09.017
|
[58] |
Harikrishnan S. Diet, the Gut Microbiome and Heart Failure[J]. Card Fail Rev, 2019, 5: 119-122. DOI: 10.15420/cfr.2018.39.2
|
[59] |
Wozniak H, Beckmann TS, Fröhlich L, et al. The central and biodynamic role of gut microbiota in critically ill patients[J]. Crit Care, 2022, 26: 250. DOI: 10.1186/s13054-022-04127-5
|
[1] | SONG Tianjiao, WANG Xiaoting, CHAO Yangong. Particle Multimodality Monitoring and Hemodynamics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 942-947. DOI: 10.12290/xhyxzz.2022-0626 |
[2] | WANG Guangjian, WANG Xiaoting. Host Response and Hemodynamics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 929-935. DOI: 10.12290/xhyxzz.2022-0483 |
[3] | PHURBU Droma, CHEN Huan, CHEN Wenjin, DU Wei, LIN Guoying, PAN Wenjun, CHENG Li, GUI Xiying, CAI Xin, CHODRON Tenzin, FU Jianlei, LI Qianwei, TSE Yang, JI Lyu, TSERING Samdrup, DA Wa, GUO Juan, QIU Cheng, WANG Xiaoting, CHAO Yangong, LIU Dawei, CHAI Wenzhao, ZHU Shihong. Expert Consensus on Monitoring and Management of Patients with Critical Neurological Illness at High Altitudes[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 24-38. DOI: 10.12290/xhyxzz.2021-0584 |
[4] | Wan-hong YIN, Yan KANG. Hemodynamic Therapy for COVID-19 Patients with Acute Respiratory Distress Syndrome[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 518-521. DOI: 10.3969/j.issn.1674-9081.2020.05.004 |
[5] | Zhi-qun XING, Xiao-ting WANG, Da-wei LIU. Critical Ultrasonography: Hemodynamic Helper[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(5): 461-464. DOI: 10.3969/j.issn.1674-9081.2019.05.007 |
[6] | Li LI, Jing YAN. Dramatic Changes in Hemodynamics from the Changes of Surviving Sepsis Campaign Guidelines[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(5): 446-449. DOI: 10.3969/j.issn.1674-9081.2019.05.004 |
[7] | Ran ZHU, Xiao-ting WANG, Xiao-chun MA. From Cognition to Management: Interpretation of Experts Consensus on the Management of the Right Heart Function in Critically Ill Patients[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 407-410. DOI: 10.3969/j.issn.1674-9081.2018.05.006 |
[8] | Jia-yu MAO, Xiao-ting WANG, Da-wei LIU. Importance of Critical Ultrasonography to Comprehensive Etiologic Management in Critical Care Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 404-406. DOI: 10.3969/j.issn.1674-9081.2018.05.005 |
[9] | Rong-li YANG, Xiu-kai CHEN, Xiao-ting WANG, Da-wei LIU. Critical Care Blood Purification and Integration[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(6): 375-380. DOI: 10.3969/j.issn.1674-9081.2017.06.011 |
[10] | Da-wei LIU. Shock: the Revelation from Critical Hemodynamic Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(6): 322-325. DOI: 10.3969/j.issn.1674-9081.2017.06.001 |
1. |
胡春华,赵晓艳,吴黎黎,陈红芽,许鑫,王古岩. 术中多模式镇痛对终末期头颈部癌症患者开腹胃造瘘术后早期恢复质量的影响:前瞻性随机对照研究. 协和医学杂志. 2024(02): 359-365 .
![]() | |
2. |
安欣璨,赵磊,曹峰,尹春琳,薛张纲,陆智杰,孟庆涛,王锷,徐桂萍,王月兰,雷迁,王天龙. 合并多系统疾病老年患者腹腔镜胰十二指肠切除术的麻醉与围术期管理. 中华麻醉学杂志. 2023(07): 880-883 .
![]() | |
3. |
黄重峰,刘毅,程小玲,焦丰,吴文鴶,李铨华. 基于加速康复外科理念的多模式麻醉管理在胸腔镜肺叶切除术围手术期的临床效果. 中国当代医药. 2023(32): 106-109+113 .
![]() | |
4. |
张树彬,周新博,胡子轩,邢中强,刘建华. 加速康复外科理念指导腹腔镜肝巨大血管瘤剥除术疗效. 中华肝脏外科手术学电子杂志. 2022(06): 601-606 .
![]() | |
5. |
张蕊霞,洪蕾,苏敏君,张楠. 快速康复外科理论下多模式镇痛对腹腔镜全子宫切除术患者应激反应及疼痛的影响. 中国社区医师. 2021(08): 51-52+55 .
![]() | |
6. |
郭强,钟锴,蒋铁民,冉博,张瑞青,杨鹏,宋涛,吐尔干艾力·阿吉,邵英梅. 加速康复外科理念在胰十二指肠切除术围手术期中的疗效分析. 中华普外科手术学杂志(电子版). 2020(03): 252-255 .
![]() | |
7. |
严晓艳. 快速康复理念下腹腔镜胰十二指肠切除术患者多模式镇痛的护理研究. 心理月刊. 2019(11): 118 .
![]() | |
8. |
钟锴,邵英梅. 加速康复外科在胰十二指肠切除术围手术期中的运用. 新疆医学. 2019(09): 857-859+863+849 .
![]() |