Volume 13 Issue 3
May  2022
Turn off MathJax
Article Contents
Expert Consensus on Rapid SARS-CoV-2 Antigen Testing(2022)[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 402-411. doi: 10.12290/xhyxzz.2022-0195
Citation: Expert Consensus on Rapid SARS-CoV-2 Antigen Testing(2022)[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 402-411. doi: 10.12290/xhyxzz.2022-0195

Expert Consensus on Rapid SARS-CoV-2 Antigen Testing(2022)

doi: 10.12290/xhyxzz.2022-0195
Funds:

CAMS Innovation Fund for Medical Sciences 2021-I2M-1-038

More Information

    Corresponding authors: XU Yingchun1,2, HU Jihong3
    1. Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
    2. State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China, E-mail: xycpumch@139.com
    3. National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China, E-mail: hujh68@126.com

  • Received Date: 2022-04-10
  • Accepted Date: 2022-04-20
  • Available Online: 2022-05-12
  • Publish Date: 2022-05-30
  • The epidemic of the highly contagious, long lasting and widely popular coronavirus disease 2019 (COVID-19) has imposed a huge burden to the global public health. As one of the key methods for early diagnosis of COVID-19 infection, rapid acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen testing has been gradually applied in China. To address concerns raised by both health care workers and the public, based on the latest research and clinical practices, the Sub-committee of Clinical Microbiology Laboratory, Chinese Hospital Association proposed Expert Consensus on Rapid SARS-CoV-2 Antigen Testing (2022). The consensus panel is composed of experts from multiple disciplines, including laboratory medicine, clinical medicine, infection control, public health, research and development of in vitro diagnostic products. The consensus describes its principle, technological characteristics, results interpretation and disposal recommendations, and analyzes the strategies and matters needing attention in different application scenarios. We expect the consensus to help correct understanding and application of rapid SARS-CoV-2 antigen testing in the diagnosis, treatment, prevention, and control of COVID-19.
  • loading
  • [1] 国家卫生健康委员会办公厅, 国家中医药管理局办公室. 关于印发新型冠状病毒肺炎诊疗方案(试行第九版)的通知(国卫办医函〔2022〕71号)[EB/OL]. (2022-03-14)[2022-04-10]. http://www.gov.cn/zhengce/zhengceku/2022-03/15/content_5679257.htm.
    [2] 国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 关于印发新冠病毒抗原检测应用方案(试行)的通知(联防联控机制综发〔2022〕21号)[EB/OL]. (2022-03-11)[2022-04-10]. http://www.nhc.gov.cn/yzygj/s7659/202203/d4d7fb72088447f7a4f9cd10966a67eb.shtml.
    [3] 医政医管局. 新冠病毒抗原检测应用方案(试行)政策解读[EB/OL]. (2022-03-11)[2022-04-10]. http://www.nhc.gov.cn/yzygj/s7659/202203/4573dfb9cca244509c29b964ba287889.shtml.
    [4] 国家药品监督管理局. 医疗器械数据查询[EB/OL]. (2022-04-07) [2022-04-10]. https://www.nmpa.gov.cn/datasearch/search-result.html.
    [5] World Health Organization. WHO Emergency Use Listing for in vitro diagnostics (IVDs) detecting SARS-CoV-2[EB/OL]. (2022-02-23)[2022-04-10]. https://extranet.who.int/pqweb/sites/default/files/documents/220223_EUL_SARS-CoV-2_product_list.pdf.
    [6] U.S. Food & Drug Administration. In Vitro Diagnostics EUAs-Antigen Diagnostic Tests for SARS-CoV-2[EB/OL]. (2022-04-07)[2022-04-10]. https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-anti-gen-diagnostic-tests-sars-cov-2.
    [7] European Commission Directorate-General for Health and Food Safety. EU health preparedness: A common list of COVID-19 rapid antigen tests; A common standardised set of data to be included in COVID-19 test result certificates; and A common list of COVID-19 laboratory based antigenic assays[EB/OL]. (2022-03-30)[2022-04-10]. https://ec.europa.eu/health/system/files/2022-03/covid-19_rat_common-list_en_1.pdf.
    [8] 范曼如, 申泉, 王丹琦, 等. 临床实践指南制订方法: 形成推荐意见的共识方法学[J]. 中国循证心血管医学杂志, 2019, 11: 647-653. doi:  10.3969/j.issn.1674-4055.2019.06.02
    [9] 北京协和医院罕见病多学科协作组, 中国罕见病联盟. 多准则决策分析应用于罕见病药品临床综合评价的专家共识(2022)[J]. 协和医学杂志, 2022, 13: 126-145. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202202010.htm
    [10] Kandimalla R, John A, Abburi C, et al. Current Status of Multiple Drug Molecules, and Vaccines: An Update in SARS-CoV-2 Therapeutics[J]. Mol Neurobiol, 2020, 57: 4106-4116. doi:  10.1007/s12035-020-02022-0
    [11] Zandi M, Soltani S. Hemagglutinin-esterase cannot be considered as a candidate for designing drug against COVID-19[J]. Mol Divers, 2021, 25: 1999-2000. doi:  10.1007/s11030-021-10272-w
    [12] Scheiblauer H, Filomena A, Nitsche A, et al. Comparative sensitivity evaluation for 122 CE-marked rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021[J]. Euro Surveill, 2021, 26: 2100441.
    [13] Peng Y, Du N, Lei Y, et al. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design[J]. EMBO J, 2020, 39: e105938.
    [14] 世界卫生组织. 抗原检测用于诊断SARS-CoV-2感染: 临时指导文件[EB/OL]. (2021-10-06)[2022-04-10]. https://apps.who.int/iris/bitstream/handle/10665/345948/WHO-2019-nCoV-Antigen-Detection-2021.1-chi.pdf.
    [15] 刘巨钊, 杨玉萍, 徐建波, 等. 新冠病毒S蛋白RBD突变侵染性增强潜在分子作用机制[J/OL]. 生物学杂志, 2022: 1-8. [2022-04-09]. http://kns.cnki.net/kcms/detail/34.1081.q.20220321.1514.002.html.
    [16] 徐本锦, 范蕾, 杜淼, 等. 新冠病毒核衣壳蛋白结构与功能的生物信息学分析及原核表达[J/OL]. 中国免疫学杂志, 2021: 1-25. http://kns.cnki.net/kcms/detail/22.1126.R.20210924.0101.002.html.
    [17] Bates TA, Weinstein JB, Farley S, et al. Cross-reactivity of SARS-CoV structural protein antibodies against SARS-CoV-2[J]. Cell Rep, 2021, 34: 108737. doi:  10.1016/j.celrep.2021.108737
    [18] Corman VM, Haage VC, Bleicker T, et al. Comparison of seven commercial SARS-CoV-2 rapid point-of-care antigen tests: a single-centre laboratory evaluation study[J]. Lancet Microbe, 2021, 2: e311-e319. doi:  10.1016/S2666-5247(21)00056-2
    [19] Seo G, Lee G, Kim MJ, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyn-geal Swab Specimens Using Field-Effect Transistor-Based Biosensor[J]. ACS Nano, 2020, 14: 5135-5142. doi:  10.1021/acsnano.0c02823
    [20] Mahari S, Roberts A, Shahdeo D, et al. eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2[J]. bioRxiv, 2020. doi: 10.1101/2020.04.24.059204.
    [21] Dinnes J, Deeks JJ, Berhane S, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection[J]. Cochrane Database Syst Rev, 2021, 3: CD013705.
    [22] Bruzzone B, De Pace V, Caligiuri P, et al. Comparative diagnostic performance of rapid antigen detection tests for COVID-19 in a hospital setting[J]. Int J Infect Dis, 2021, 107: 215-218. doi:  10.1016/j.ijid.2021.04.072
    [23] Chaimayo C, Kaewnaphan B, Tanlieng N, et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand[J]. Virol J, 2020, 17: 177. doi:  10.1186/s12985-020-01452-5
    [24] Brümmer LE, Katzenschlager S, Gaeddert M, et al. Accur-acy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis[J]. PLoS Med, 2021, 18: e1003735. doi:  10.1371/journal.pmed.1003735
    [25] Smith RL, Gibson LL, Martinez PP, et al. Longitudinal Assessment of Diagnostic Test Performance Over the Course of Acute SARS-CoV-2 Infection[J]. J Infect Dis, 2021, 224: 976-982. doi:  10.1093/infdis/jiab337
    [26] Khalid MF, Selvam K, Jeffry A, et al. Performance of Rapid Antigen Tests for COVID-19 Diagnosis: A Systematic Review and Meta-Analysis[J]. Diagnostics (Basel), 2022, 12: 110. doi:  10.3390/diagnostics12010110
    [27] Deng Q, Ye G, Pan Y, et al. High Performance of SARS-Cov-2N Protein Antigen Chemiluminescence Immunoassay as Frontline Testing for Acute Phase COVID-19 Diagnosis: A Retrospective Cohort Study[J]. Front Med (Lausanne), 2021, 8: 676560.
    [28] Yokoyama R, Kurano M, Nakano Y, et al. Association of the Serum Levels of the Nucleocapsid Antigen of SARS-CoV-2 With the Diagnosis, Disease Severity, and Antibody Titers in Patients With COVID-19: A Retrospective Cross-Sectional Study[J]. Front Microbiol, 2021, 12: 791489. doi:  10.3389/fmicb.2021.791489
    [29] European Centre for Disease Prevention and Control. Options for the use of rapid antigen tests for COVID-19 in the EU/EEA-first update[EB/OL]. (2021-10-26)[2022-04-09]. https://www.ecdc.europa.eu/en/publications-data/options-use-rapid-antigen-tests-covid-19-eueea-first-update.
    [30] Jungnick S, Hobmaier B, Mautner L, et al. Detection of the new SARS-CoV-2 variants of concern B. 1.1.7 and B. 1.351 in five SARS-CoV-2 rapid antigen tests (RATs), Germany, March 2021[J]. Euro Surveill, 2021, 26: 2100413.
    [31] Pulliam J, van Schalkwyk C, Govender N, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa[J]. Science, 2022, 376: eabn4947. doi:  10.1126/science.abn4947
    [32] Saxena SK, Kumar S, Ansari S, et al. Characterization of the novel SARS-CoV-2 Omicron (B. 1.1.529) variant of concern and its global perspective[J]. J Med Virol, 2022, 94: 1738-1744. doi:  10.1002/jmv.27524
    [33] Soni A, Herbert C, Filippaios A, et al. Comparison of Rapid Antigen Tests' Performance between Delta (B. 1.61.7; AY. X) and Omicron (B. 1.1.529; BA1) Variants of SARS-CoV-2: Secondary Analysis from a Serial Home Self-Testing Study[J]. medRxiv, 2022. doi: 10.1101/2022.02.27.22271090.
    [34] Bekliz M, Perez-Rodriguez F, Puhach O, et al. Sensitivity of SARS-CoV-2 antigen-detecting rapid tests for Omicron variant[J]. medRxiv, 2021. doi: https://www.medrxiv.org/content/10.1101/2021.12.18.21268018.
    [35] Deerain J, Druce J, Tran T, et al. Assessment of the Analytical Sensitivity of 10 Lateral Flow Devices against the SARS-CoV-2 Omicron Variant[J]. J Clin Microbiol, 2022, 60: e247921.
    [36] Bullard J, Dust K, Funk D, et al. Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples[J]. Clin Infect Dis, 2020, 71: 2663-2666. doi:  10.1093/cid/ciaa638
    [37] U.S. FOOD & DRUG ADMINISTRATION. Potential for False Positive Results with Antigen Tests for Rapid Detection of SARS-CoV-2-Letter to Clinical Laboratory Staff and Health Care Providers[EB/OL]. (2020-11-03)[2022-04-10]. https://www.fda.gov/medical-devices/letters-health-care-providers/potential-false-positive-results-antigen-tests-rapid-detection-sars-cov-2-letter-clinical-laboratory.
    [38] Mouliou DS, Gourgoulianis KI. False-positive and false-negative COVID-19 cases: respiratory prevention and management strategies, vaccination, and further perspectives[J]. Expert Rev Respir Med, 2021, 15(8): 993-1002. doi:  10.1080/17476348.2021.1917389
    [39] Larremore DB, Wilder B, Lester E, et al. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening[J]. Sci Adv, 2021, 7: eabd5393. doi:  10.1126/sciadv.abd5393
    [40] Mina MJ, Parker R, Larremore DB. Rethinking Covid-19 Test Sensitivity-A Strategy for Containment[J]. N Engl J Med, 2020, 38: e120.
    [41] 国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 基层医疗卫生机构新冠病毒抗原检测基本要求及流程[EB/OL]. (2022-03-10)[2022-04-10]. http://www.nhc.gov.cn/yzygj/s7659/202203/d4d7fb72088447f7a4f9cd10966a67eb/files/b62d9eeeca8242b3a22e78a25ef9fd92.pdf.
    [42] 中国合格评定国家认可委员会. 2019临床免疫学定性检验程序性能验证指南: CNAS-GL038[S]. 2019.
    [43] 国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 新冠病毒抗原自测基本要求及流程[EB/OL]. (2022-03-10)[2022-04-10]. http://www.nhc.gov.cn/yzygj/s7659/202203/d4d7fb72088447f7a4f9cd10966a67eb/files/8db5dd22ccb84b6296bc4257ba7db9c0.pdf.
    [44] Stohr J, Zwart VF, Goderski G, et al. Self-testing for the detection of SARS-CoV-2 infection with rapid antigen tests for people with suspected COVID-19 in the community[J]. Clin Microbiol Infect, 2021, S1198-743X(21)00434-1. doi:  10.1016/j.cmi.2021.07.039.
    [45] Maya S, Kahn JG. Cost-effectiveness of antigen testing for ending COVID-19 isolation[J]. medRxiv, 2022, 2022.03.21.22272687. doi: 10.1101/2022.03.21.22272687.
    [46] 交通运输部, 外交部, 海关总署. 关于做好国际航行船舶船员新冠肺炎疫情远端防控的公告(交通运输部公告2022年第14号)[EB/OL]. (2022-01-28)[2022-04-10]. http://www.gov.cn/zhengce/zhengceku/2022-02/13/content_5673345.htm.
    [47] 天津市卫生健康委员会. 市卫生健康委转发市防控指挥部关于印发天津市新冠病毒抗原检测应用阶段性实施方案(试行)的通知(津卫医政〔2022〕151号)[EB/OL]. (2022-03-29)[2022-04-10]. http://wsjk.tj.gov.cn/ZWGK3158/ZCFG6243_1/GZWJ625/202203/t20220329_5842885.html.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (1823) PDF downloads(1102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return