Citation: | LIN Meijia, ZENG Yeting, WANG Xinrui, HUANG Xiongfei. Research Progress of Isocitrate Dehydrogenase Gene Mutation Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 346-352. DOI: 10.12290/xhyxzz.2022-0176 |
[1] |
Waitkus MS, Diplas BH, Yan H. Isocitrate dehydrogenase mutations in glioma[J]. Neuro Oncol, 2016, 18: 16-26. DOI: 10.1093/neuonc/nov136
|
[2] |
Biaglow JE, Miller RA. The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy[J]. Cancer Biol Ther, 2005, 4: 6-13.
|
[3] |
Aykin-Burns N, Ahmad IM, Zhu Y, et al. Increased levels of superoxide and H2O2 mediate the differential suscep-tibility of cancer cells versus normal cells to glucose deprivation[J]. Biochem J, 2009, 418: 29-37. DOI: 10.1042/BJ20081258
|
[4] |
Yang B, Zhong C, Peng Y, et al. Molecular mechanisms of "off-on switch" of activities of human IDH1 by tumor-associated mutation R132H[J]. Cell Res, 2010, 20: 1188-1200. DOI: 10.1038/cr.2010.145
|
[5] |
Parsons DW, Jones S, Zhang X, et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme[J]. Science, 2008, 321: 1807-1812. DOI: 10.1126/science.1164382
|
[6] |
Mardis ER, Ding L, Dooling DJ, et al. Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome[J]. N Engl J Med, 2009, 361: 1058-1066. DOI: 10.1056/NEJMoa0903840
|
[7] |
Moeini A, Sia D, Bardeesy N, et al. Molecular Pathogenesis and Targeted Therapies of Intrahepatic Cholangiocarcinoma[J]. Clin Cancer Res, 2016, 22: 291-300. DOI: 10.1158/1078-0432.CCR-14-3296
|
[8] |
Tommasini-Ghelfi S, Murnan K, Kouri FM, et al. Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease[J]. Sci Adv, 2019, 5: eaaw4543. DOI: 10.1126/sciadv.aaw4543
|
[9] |
Harding JJ, Lowery MA, Shih AH, et al. Isoform Switching as a Mechanism of Acquired Resistance to Mutant Isocitrate Dehydrogenase Inhibition[J]. Cancer Discov, 2018, 8: 1540-1547. DOI: 10.1158/2159-8290.CD-18-0877
|
[10] |
Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18: 553-567. DOI: 10.1016/j.ccr.2010.11.015
|
[11] |
Sulkowski PL, Corso CD, Robinson ND, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity[J]. Sci Transl Med, 2017, 9: eaaI2463. DOI: 10.1126/scitranslmed.aal2463
|
[12] |
Schvartzman JM, Reuter VP, Koche RP, et al. 2-hydroxyglutarate inhibits MyoD-mediated differentiation by prevent-ing H3K9 demethylation[J]. Proc Natl Acad Sci USA, 2019, 116: 12851-12856. DOI: 10.1073/pnas.1817662116
|
[13] |
Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults[J]. Lancet, 2018, 392: 432-446. DOI: 10.1016/S0140-6736(18)30990-5
|
[14] |
Su YT, Phan FP, Wu J. Perspectives on IDH Mutation in Diffuse Gliomas[J]. Trends Cancer, 2018, 4: 605-607. DOI: 10.1016/j.trecan.2018.06.006
|
[15] |
Huang RY, Young RJ, Ellingson BM, et al. Volumetric analysis of IDH-mutant lower-grade glioma: a natural history study of tumor growth rates before and after treatment[J]. Neuro Oncol, 2020, 22: 1822-1830. DOI: 10.1093/neuonc/noaa105
|
[16] |
Molenaar RJ, Radivoyevitch T, Nagata Y, et al. IDH1/2 Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors[J]. Clin Cancer Res, 2018, 24: 1705-1715. DOI: 10.1158/1078-0432.CCR-17-2796
|
[17] |
Xu Q, Li Y, Lv N, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of patients with acute myeloid leukemia: a systematic review and meta-analysis[J]. Clin Cancer Res, 2017, 23: 4511-4522. DOI: 10.1158/1078-0432.CCR-16-2628
|
[18] |
Haga H, Patel T. Molecular diagnosis of intrahepatic cholangiocarcinoma[J]. J Hepatobiliary Pancreat Sci, 2015, 22: 114-123. DOI: 10.1002/jhbp.156
|
[19] |
Saha SK, Zhu AX, Fuchs CS, et al. Forty-Year Trends in Cholangiocarcinoma Incidence in the US: Intrahepatic Disease on the Rise[J]. Oncologist, 2016, 21: 594-599. DOI: 10.1634/theoncologist.2015-0446
|
[20] |
Bai X, Zhang H, Zhou Y, et al. Ten-Eleven Translocation 1 Promotes Malignant Progression of Cholangiocarcinoma With Wild-Type Isocitrate Dehydrogenase 1[J]. Hepatology, 2021, 73: 1747-1763. DOI: 10.1002/hep.31486
|
[21] |
Wang P, Dong Q, Zhang C, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas[J]. Oncogene, 2013, 32: 3091-3100. DOI: 10.1038/onc.2012.315
|
[22] |
Tateishi K, Wakimoto H, Iafrate AJ, et al. Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion[J]. Cancer Cell, 2015, 28: 773-784. DOI: 10.1016/j.ccell.2015.11.006
|
[23] |
Nagashima H, Lee CK, Tateishi K, et al. Poly(ADP-ribose) Glycohydrolase Inhibition Sequesters NAD(+) to Potentiate the Metabolic Lethality of Alkylating Chemo-therapy in IDH-Mutant Tumor Cells[J]. Cancer Discov, 2020, 10: 1672-1689. DOI: 10.1158/2159-8290.CD-20-0226
|
[24] |
McDuff SGR, Dietrich J, Atkins KM, et al. Radiation and chemotherapy for high-risk lower grade gliomas: Choosing between temozolomide and PCV[J]. Cancer Med, 2020, 9: 3-11. DOI: 10.1002/cam4.2686
|
[25] |
Yamashita AS, da Costa Rosa M, Borodovsky A, et al. Demethylation and epigenetic modification with 5-azacytidine reduces IDH1 mutant glioma growth in combination with temozolomide[J]. Neuro Oncol, 2019, 21: 189-200. DOI: 10.1093/neuonc/noy146
|
[26] |
Raulet DH. Roles of the NKG2D immunoreceptor and its ligands[J]. Nat Rev Immunol, 2003, 3: 781-790. DOI: 10.1038/nri1199
|
[27] |
Zhang X, Kim WJ, Rao AV, et al. In vivo efficacy of decitabine as a natural killer cell-mediated immunotherapy against isocitrate dehydrogenase mutant gliomas[J]. Neurosurg Focus, 2022, 52: E3.
|
[28] |
DiNardo CD, Stein AS, Stein EM, et al. Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination With Azacitidine for Newly Diagnosed Acute Myeloid Leukemia[J]. J Clin Oncol, 2021, 39: 57-65.
|
[29] |
Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer[J]. N Engl J Med, 2010, 362: 1273-1281. DOI: 10.1056/NEJMoa0908721
|
[30] |
Yang X, Wang J. Precision therapy for acute myeloid leukemia[J]. J Hematol Oncol, 2018, 11: 3. DOI: 10.1186/s13045-017-0543-7
|
[31] |
Wang SS, Bandopadhayay P, Jenkins MR. Towards Immunotherapy for Pediatric Brain Tumors[J]. Trends Immunol, 2019, 40: 748-761. DOI: 10.1016/j.it.2019.05.009
|
[32] |
Roerden M, Nelde A, Walz JS. Neoantigens in Hematolo-gical Malignancies-Ultimate Targets for Immunotherapy?[J]. Front Immunol, 2019, 10: 3004. DOI: 10.3389/fimmu.2019.03004
|
[33] |
Platten M, Bunse L, Wick A, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma[J]. Nature, 2021, 592: 463-468. DOI: 10.1038/s41586-021-03363-z
|
[34] |
Kohanbash G, Carrera DA, Shrivastav S, et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas[J]. J Clin Invest, 2017, 127: 1425-1437. DOI: 10.1172/JCI90644
|
[35] |
Bunse L, Pusch S, Bunse T, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate[J]. Nat Med, 2018, 24: 1192-1203. DOI: 10.1038/s41591-018-0095-6
|
[36] |
DiNardo CD, Stein EM, de Botton S, et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML[J]. N Engl J Med, 2018, 378: 2386-2398. DOI: 10.1056/NEJMoa1716984
|
[37] |
Mellinghoff IK, Ellingson BM, Touat M, et al. Ivosidenib in Isocitrate Dehydrogenase 1-Mutated Advanced Glioma[J]. J Clin Oncol, 2020, 38: 3398-3406. DOI: 10.1200/JCO.19.03327
|
[38] |
Andronesi OC, Arrillaga-Romany IC, Ly KI, et al. Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate[J]. Nat Commun, 2018, 9: 1474. DOI: 10.1038/s41467-018-03905-6
|
[39] |
Lowery MA, Burris HA 3rd, Janku F, et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: a phase 1 study[J]. Lancet Gastroenterol Hepatol, 2019, 4: 711-720. DOI: 10.1016/S2468-1253(19)30189-X
|
[40] |
Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21: 796-807. DOI: 10.1016/S1470-2045(20)30157-1
|
[41] |
Cho YS, Levell JR, Liu G, et al. Discovery and Evaluation of Clinical Candidate IDH305, a Brain Penetrant Mutant IDH1 Inhibitor[J]. ACS Med Chem Lett, 2017, 8: 1116-1121. DOI: 10.1021/acsmedchemlett.7b00342
|
[42] |
Chaturvedi A, Herbst L, Pusch S, et al. Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo[J]. Leukemia, 2017, 31: 2020-2028. DOI: 10.1038/leu.2017.46
|
[43] |
Fathi AT, DiNardo CD, Kline I, et al. Differentiation Syndrome Associated With Enasidenib, a Selective Inhibitor of Mutant Isocitrate Dehydrogenase 2: Analysis of a Phase 1/2 Study[J]. JAMA Oncol, 2018, 4: 1106-1110. DOI: 10.1001/jamaoncol.2017.4695
|
[44] |
Pollyea DA, Tallman MS, de Botton S, et al. Enasi-denib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia[J]. Leukemia, 2019, 33: 2575-2584. DOI: 10.1038/s41375-019-0472-2
|
[45] |
Stein EM, DiNardo CD, Fathi AT, et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib[J]. Blood, 2019, 133: 676-687. DOI: 10.1182/blood-2018-08-869008
|
[46] |
Mellinghoff IK, Penas-Prado M, Peters KB, et al. Vorasidenib, a Dual Inhibitor of Mutant IDH1/2, in Recurrent or Progressive Glioma; Results of a First-in-Human Phase I Trial[J]. Clin Cancer Res, 2021, 27: 4491-4499. DOI: 10.1158/1078-0432.CCR-21-0611
|
[47] |
Konteatis Z, Artin E, Nicolay B, et al. Vorasidenib (AG-881): A First-in-Class, Brain-Penetrant Dual Inhibitor of Mutant IDH1 and 2 for Treatment of Glioma[J]. ACS Med Chem Lett, 2020, 11: 101-107. DOI: 10.1021/acsmedchemlett.9b00509
|
[48] |
Karpel-Massler G, Nguyen TTT, Shang E, et al. Novel IDH1-Targeted Glioma Therapies[J]. CNS Drugs, 2019, 33: 1155-1166. DOI: 10.1007/s40263-019-00684-6
|
[49] |
Fritz C, Portwood SM, Przespolewski A, et al. PARP goes the weasel! Emerging role of PARP inhibitors in acute leukemias[J]. Blood Rev, 2021, 45: 100696. DOI: 10.1016/j.blre.2020.100696
|
[50] |
Mao Y, Huang X, Shuang Z, et al. PARP inhibitor olaparib sensitizes cholangiocarcinoma cells to radiation[J]. Cancer Med, 2018, 7: 1285-1296. DOI: 10.1002/cam4.1318
|
[51] |
Chan SM, Thomas D, Corces-Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia[J]. Nat Med, 2015, 21: 178-184. DOI: 10.1038/nm.3788
|
[52] |
Morsia E, McCullough K, Joshi M, et al. Venetoclax and hypomethylating agents in acute myeloid leukemia: Mayo Clinic series on 86 patients[J]. Am J Hematol, 2020, 95: 1511-1521. DOI: 10.1002/ajh.25978
|
[1] | WANG Qi, CHEN Miao. Advances in Immunotargeted Therapy for Warm Autoimmune Hemolytic Anemia[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 423-430. DOI: 10.12290/xhyxzz.2024-0668 |
[2] | WANG Jun, MENG Juan. Targeted Therapy for Rheumatoid Arthritis in the New Era[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 19-27. DOI: 10.12290/xhyxzz.2024-0842 |
[3] | QIN Jing, ZHU Qingli. Early Efficacy Assessment of Targeted Therapy for Crohn's Disease by Ultrasound[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 130-134. DOI: 10.12290/xhyxzz.2023-0306 |
[4] | YANG Xiaoxi, TIAN Xinping, LI Mengtao, LENG Xiaomei, ZHAO Yan, ZENG Xiaofeng. Interpretation on the Consensus on Targeted Drug Therapy for Spondyloarthritis[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 58-67. DOI: 10.12290/xhyxzz.2023-0391 |
[5] | SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. DOI: 10.12290/xhyxzz.2022-0694 |
[6] | LI Linrong, LI Yan, SUN Qiang. Clinical Trials and Current Progress in the Treatment of Triple-negative Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 177-183. DOI: 10.12290/xhyxzz.2022-0085 |
[7] | LI Guo-yu, HE Ming. Research Progress of Targeted Therapy at Rare Targets for Non-small Cell Lung Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 268-274. DOI: 10.3969/j.issn.1674-9081.2020.00.019 |
[8] | Mei GUAN, Chun-mei BAI. Medical Treatment for Biliary Tract Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 325-333. DOI: 10.3969/j.issn.1674-9081.20190247 |
[9] | Ying XU, Yan LIN, Chang-jun WANG, Jia-lin ZHAO, Qiang SUN. Whether Elderly Patients with Her-2 Positive Breast Cancer but Without Heart Disease Should Receive Targeted Therapy?[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(4): 414-418. DOI: 10.3969/j.issn.1674-9081.2019.04.020 |
[10] | Lei TANG, Hua-dan XUE, Zheng-yu JIN. Radiological Evaluation of the Response of Abdominal Tumors to Targeted Therapy: Current Status and Prospect[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 82-89. DOI: 10.3969/j.issn.1674-9081.2017.03.001 |
1. |
于家琪,魏秀丽. 多药联合治疗老年急性髓系白血病1例并文献复习. 中国现代医生. 2024(09): 128-131 .
![]() | |
2. |
赵濛,任彦博,杜瑞平,宋利文,贺志雄,高民. 水飞蓟粕替代豆粕对羔羊生长性能、血液生化指标及肝脏抗氧化指标和代谢相关基因表达的影响. 动物营养学报. 2024(04): 2524-2540 .
![]() |