Volume 13 Issue 3
May  2022
Turn off MathJax
Article Contents
CHEN Zihan, LI Naishi, LIAN Xiaolan. Coronavirus Disease 2019 and Thyroid Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 487-492. doi: 10.12290/xhyxzz.2021-0791
Citation: CHEN Zihan, LI Naishi, LIAN Xiaolan. Coronavirus Disease 2019 and Thyroid Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 487-492. doi: 10.12290/xhyxzz.2021-0791

Coronavirus Disease 2019 and Thyroid Diseases

doi: 10.12290/xhyxzz.2021-0791
Funds:

CAMS Innovation Fund for Medical Sciences 2021-1-I2M-022

More Information
  • Corresponding author: LI Naishi, E-mail: lns@medmail.com.cn
  • Received Date: 2021-12-15
  • Accepted Date: 2021-12-27
  • Available Online: 2021-12-30
  • Publish Date: 2022-05-30
  • Since the outbreak of coronavirus disease 2019 (COVID-19), a number of COVID-19 related thyroid disorders have been reported, including subacute thyroiditis, autoimmune thyroid disease, non-thyroidal illness syndrome and some unexplained thyroid dysfunction. This review aimed to summarize clinical characteristics of COVID-19 related thyroid disorders and to discuss some possible mechanisms.
  • loading
  • [1] Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study[J]. Lancet Respir Med, 2020, 8: 475-481. doi:  10.1016/S2213-2600(20)30079-5
    [2] Ge H, Wang X, Yuan X, et al. The epidemiology and clinical information about COVID-19[J]. Eur J Clin Microbiol Infect Dis, 2020, 39: 1011-1019. doi:  10.1007/s10096-020-03874-z
    [3] Doustmohammadian S, Doustmohammadian A, Momeni M. Association between thyroid disorders and COVID-19: a protocol for a systematic review and meta-analysis[J]. Thyroid Res, 2021, 14: 21. doi:  10.1186/s13044-021-00113-1
    [4] Pearce EN, Farwell AP, Braverman LE. Thyroiditis[J]. N Engl J Med, 2003, 348: 2646-2655. doi:  10.1056/NEJMra021194
    [5] Desailloud R, Hober D. Viruses and thyroiditis: an update[J]. Virol J, 2009, 6: 5. doi:  10.1186/1743-422X-6-5
    [6] Brancatella A, Ricci D, Viola N, et al. Subacute Thyroiditis After SARS-CoV-2 Infection[J]. J Clin Endocrinol Metab, 2020, 105: dgaa276. doi:  10.1210/clinem/dgz049
    [7] Caron P. Thyroiditis and SARS-CoV-2 pandemic: a review[J]. Endocrine, 2021, 72: 326-331. doi:  10.1007/s12020-021-02689-y
    [8] Inaba H, Aizawa T. Coronavirus Disease 2019 and the Thyroid-Progress and Perspectives[J]. Front Endocrinol(Lausanne), 2021, 12: 708333. doi:  10.3389/fendo.2021.708333
    [9] Ippolito S, Dentali F, Tanda ML. SARS-CoV-2: a potential trigger for subacute thyroiditis? Insights from a case report[J]. J Endocrinol Invest, 2020, 43: 1171-1172. doi:  10.1007/s40618-020-01312-7
    [10] Galeotti C, Bayry J. Autoimmune and inflammatory diseases following COVID-19[J]. Nat Rev Rheumatol, 2020, 16: 413-414. doi:  10.1038/s41584-020-0448-7
    [11] Testa A, Castaldi P, Fant V, et al. Prevalence of HCV Antibodies in Autoimmune Thyroid Disease[J]. Eur Rev Med Pharmacol Sci, 2006, 10: 183-186.
    [12] Sultanova A, Cistjakovs M, Gravelsina S, et al. Association of Active Human Herpesvirus-6 (HHV-6) Infection With Autoimmune Thyroid Gland Diseases[J]. Clin Microbiol Infect, 2017, 23: 50 e51-50 e55.
    [13] Harris A, Al Mushref M. Graves' Thyrotoxicosis Following SARS-CoV-2 Infection[J]. AACE Clin Case Rep, 2021, 7: 14-16. doi:  10.1016/j.aace.2020.12.005
    [14] Jiménez-Blanco S, Pla-Peris B, Marazuela M. COVID-19: a cause of recurrent Graves' hyperthyroidism? [J]. J Endocrinol Invest, 2021, 44: 387-388. doi:  10.1007/s40618-020-01440-0
    [15] Mateu-Salat M, Urgell E, Chico A. SARS-CoV-2 as a trigger for autoimmune disease: report of two cases of Graves' disease after COVID-19[J]. J Endocrinol Invest, 2020, 43: 1527-1528. doi:  10.1007/s40618-020-01366-7
    [16] Tee LY, Hajanto S, Rosario BH. COVID-19 Complicated by Hashimoto's Thyroiditis[J]. Singapore Med J, 2021, 62: 265. doi:  10.11622/smedj.2020106
    [17] Fliers E, Boelen A. An update on non-thyroidal illness syndrome[J]. J Endocrinol Invest, 2021, 44: 1597-1607. doi:  10.1007/s40618-020-01482-4
    [18] Zou R, Wu C, Zhang S, et al. Euthyroid Sick Syndrome in Patients With COVID-19[J]. Front Endocrinol (Lausanne), 2020, 11: 566439. doi:  10.3389/fendo.2020.566439
    [19] Khoo B, Tan T, Clarke SA, et al. Thyroid Function Before, During, and After COVID-19[J]. J Clin Endocrinol Metab, 2021, 106: e803-e811. doi:  10.1210/clinem/dgaa830
    [20] Shabana TS, Anis SG, Ibrahim DM. Association between Thyroid Dysfunction and Intensive Care Unit-Acquired Weakness: A Case-Control Study[J]. Crit Care Res Pract, 2021, 2021: 8889036.
    [21] Wang W, Su X, Ding Y, et al. Thyroid function abnormalities in COVID-19 patients[J]. Front Endocrinol (Lausanne), 2020, 11: 623792.
    [22] Chen M, Zhou W, Xu W. Thyroid function analysis in 50 patients with COVID-19: a retrospective study[J]. Thyroid, 2020, 31: 8-11.
    [23] Lania A, Sandri MT, Cellini M, et al. Thyrotoxicosis in patients with COVID-19: the Thyrcov study[J]. Eur J Endocrinol, 2020, 183: 381-387. doi:  10.1530/EJE-20-0335
    [24] Gao W, Guo W, Guo Y, et al. Thyroid hormone concentrations in severely or critically ill patients with COVID-19[J]. J Endocrinol Invest, 2021, 44: 1031-1040. doi:  10.1007/s40618-020-01460-w
    [25] Campi I, Bulgarelli I, Dubini A, et al. The spectrum of thyroid function tests during hospitalization for SARS-CoV-2 infection[J]. Eur J Endocrinol, 2021, 184: 699-709. doi:  10.1530/EJE-20-1391
    [26] Güven M, Gültekin H. The prognostic impact of thyroid disorders on the clinical severity of COVID-19: results of single-centre pandemic hospital[J]. Int J Clin Pract, 2021, 75: e14129.
    [27] Daraei M, Hasibi M, Abdollahi H, et al. Possible role of hypothyroidism in the prognosis of COVID-19[J]. Intern Med J, 2020, 50: 1410-1412. doi:  10.1111/imj.15000
    [28] Muller I, Cannavaro D, Dazzi D, et al. SARS-CoV-2-related atypical thyroiditis[J]. Lancet Diabetes Endocrinol, 2020, 8: 739-741. doi:  10.1016/S2213-8587(20)30266-7
    [29] Lam SD, Bordin N, Waman VP, et al. SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals[J]. Sci Rep, 2020, 10: 16471. doi:  10.1038/s41598-020-71936-5
    [30] Li MY, Li L, Zhang Y, et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues[J]. Infect Dis Poverty, 2020, 9: 45. doi:  10.1186/s40249-020-00662-x
    [31] Rotondi M, Coperchini F, Ricci G, et al. Detection of SARS-CoV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis[J]. J Endocrinol Invest, 2021, 44: 1085-1090. doi:  10.1007/s40618-020-01436-w
    [32] Moore JB, June CH. Cytokine release syndrome in severe COVID-19[J]. Science, 2020, 368: 473-474. doi:  10.1126/science.abb8925
    [33] Turner AJ, Tipnis SR, Guy JL, et al. Aceh/Ace2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ace inhibitors[J]. Can J Physiol Pharmacol, 2002, 80: 346-353. doi:  10.1139/y02-021
    [34] Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2[J]. Antiviral Res, 2020, 177: 104759. doi:  10.1016/j.antiviral.2020.104759
    [35] Luan J, Lu Y, Gao S, et al. A potential inhibitory role for integrin in the receptor targeting of SARS-CoV-2[J]. J Infect, 2020, 81: 318-356.
    [36] Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4+ and CD8+T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19[J]. Nat Immunol, 2020, 21: 1336-1345. doi:  10.1038/s41590-020-0782-6
    [37] Coomes EA, Haghbayan H. Interleukin-6 in COVID-19: A systematic review and meta-analysis[J]. Rev Med Virol, 2020, 30: 1-9.
    [38] Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID-19[J]. Nature, 2020, 583: 437-440. doi:  10.1038/s41586-020-2355-0
    [39] Lee JS, Park S, Jeong HW, et al. Immunophenotyping of COVID-19 and influenza highlights the role of type Ⅰ interferons in development of severe COVID-19[J]. Sci Immunol, 2020, 5: eabd1554. doi:  10.1126/sciimmunol.abd1554
    [40] Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19[J]. Nature, 2020, 584: 463-469. doi:  10.1038/s41586-020-2588-y
    [41] Melo Silva Junior ML, Souza LMA, Dutra R, et al. Review on therapeutic targets for COVID-19: insights from cytokine storm[J]. Postgrad Med J, 2021, 97: 391-398. doi:  10.1136/postgradmedj-2020-138791
    [42] Hariyanto TI, Kurniawan A. Thyroid disease is associated with severe coronavirus disease 2019 (COVID-19) infection[J]. Diabetes Metab Syndr, 2020, 14: 1429-1430. doi:  10.1016/j.dsx.2020.07.044
    [43] Caron P. Thyroid disorders and SARS-CoV-2 infection: from pathophysiological mechanism to patient management[J]. Ann Endocrinol (Paris), 2020, 81: 507-510. doi:  10.1016/j.ando.2020.09.001
    [44] Morshed SA, Latif R, Davies TF. Delineating the autoimmune mechanisms in Graves' disease[J]. Immunol Res, 2012, 54: 191-203. doi:  10.1007/s12026-012-8312-8
    [45] Kawashima A, Yamazaki K, Hara T, et al. Demonstration of innate immune responses in the thyroid gland: potential to sense danger and a possible trigger for autoimmune reactions[J]. Thyroid, 2013, 23: 477-487. doi:  10.1089/thy.2011.0480
    [46] Lisco G, De Tullio A, Jirillo E, et al. Thyroid and COVID-19: a review on pathophysiological, clinical and organiza-tional aspects[J]. J Endocrinol Invest, 2021, 44: 1801-1814. doi:  10.1007/s40618-021-01554-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (1268) PDF downloads(232) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return