Citation: | SU Pengfei, YU Jianchun. Progress in the Research on the Role of Tumor-associated Macrophages in Drug-resistance and Treatment of Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 480-486. DOI: 10.12290/xhyxzz.2021-0605 |
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68: 394-424. DOI: 10.3322/caac.21492
|
[2] |
Zhang T, Yuan Q, Gu Z, et al. Advances of proteomics technologies for multidrug-resistant mechanisms[J]. Future Med Chem, 2019, 11: 2573-2593. DOI: 10.4155/fmc-2018-0507
|
[3] |
Taddia L, D'Arca D, Ferrari S, et al. Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance[J]. Drug Resist Updat, 2015, 23: 20-54. DOI: 10.1016/j.drup.2015.10.003
|
[4] |
Takeya M, Komohara Y. Role of tumor-associated macrophages in human malignancies: friend or foe?[J]. Pathol Int, 2016, 66: 491-505. DOI: 10.1111/pin.12440
|
[5] |
Wang M, Zhao J, Zhang L, et al. Role of tumor microenvironment in tumorigenesis[J]. J Cancer, 2017, 8: 761-773. DOI: 10.7150/jca.17648
|
[6] |
Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm[J]. J Immunol, 2000, 164: 6166-6173. DOI: 10.4049/jimmunol.164.12.6166
|
[7] |
Zhu J, Zhi Q, Zhou BP, et al. The role of tumor associated macrophages in the tumor microenvironment: mechanism and functions[J]. Anticancer Agents Med Chem, 2016, 16: 1133-1141. DOI: 10.2174/1871520616666160520112622
|
[8] |
Schultze JL, Schmidt SV. Molecular features of macrophage activation[J]. Semin Immunol, 2015, 27: 416-423. DOI: 10.1016/j.smim.2016.03.009
|
[9] |
Jeannin P, Paolini L, Adam C, et al. The roles of CSFs on the functional polarization of tumor-associated macrophages[J]. FEBS J, 2018, 285: 680-699. DOI: 10.1111/febs.14343
|
[10] |
Ostuni R, Kratochvill F, Murray PJ, et al. Macrophages and cancer: from mechanisms to therapeutic implications[J]. Trends Immunol, 2015, 36: 229-239. DOI: 10.1016/j.it.2015.02.004
|
[11] |
Li X, Liu R, Su X, et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy[J]. Mol Cancer, 2019, 18: 177. DOI: 10.1186/s12943-019-1102-3
|
[12] |
Wu K, Lin K, Li X, et al. Redefining tumor-associated Macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol, 2020, 11: 1731. DOI: 10.3389/fimmu.2020.01731
|
[13] |
Xue J, Schmidt SV, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation[J]. Immunity, 2014, 40: 274-288. DOI: 10.1016/j.immuni.2014.01.006
|
[14] |
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122: 787-795. DOI: 10.1172/JCI59643
|
[15] |
Candido JB, Morton JP, Bailey P, et al. CSF1R(+) macrophages sustain pancreatic tumor growth through T cell Suppression and maintenance of key gene programs that define the squamous subtype[J]. Cell Rep, 2018, 23: 1448-1460. DOI: 10.1016/j.celrep.2018.03.131
|
[16] |
Li M, Li M, Yang Y, et al. Remodeling tumor immune microenvironment via targeted blockade of PI3K-gamma and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy[J]. J Control Release, 2020, 321: 23-35. DOI: 10.1016/j.jconrel.2020.02.011
|
[17] |
Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer[J]. Immunotherapy, 2019, 11: 677-689. DOI: 10.2217/imt-2018-0156
|
[18] |
Sarode P, Zheng X, Giotopoulou GA, et al. Reprogramm-ing of tumor-associated macrophages by targeting beta-catenin/FOSL2/ARID5A signaling: A potential treatment of lung cancer[J]. Sci Adv, 2020, 6: eaaz6105. DOI: 10.1126/sciadv.aaz6105
|
[19] |
Yin Y, Yao S, Hu Y, et al. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6[J]. Clin Cancer Res, 2017, 23: 7375-7387. DOI: 10.1158/1078-0432.CCR-17-1283
|
[20] |
Li J, He K, Liu P, et al. Iron participated in breast cancer chemoresistance by reinforcing IL-6 paracrine loop[J]. Biochem Biophys Res Commun, 2016, 475: 154-160. DOI: 10.1016/j.bbrc.2016.05.064
|
[21] |
Yang C, He L, He P, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway[J]. Med Oncol, 2015, 32: 352.
|
[22] |
Wei C, Yang CG, Wang SY, et al. M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling[J]. Onco Targets Ther, 2019, 12: 3051-3063. DOI: 10.2147/OTT.S198126
|
[23] |
Yu S, Li Q, Yu Y, et al. Activated HIF1alpha of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer[J]. Cancer Immunol Immun, 2020, 69: 1973-1987. DOI: 10.1007/s00262-020-02598-5
|
[24] |
Ireland L, Santos A, Ahmed MS, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors[J]. Cancer Res, 2016, 76: 6851-6863. DOI: 10.1158/0008-5472.CAN-16-1201
|
[25] |
Zhang M, Zhang H, Tang F, et al. Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells[J]. Exp Biol Med (Maywood), 2016, 241: 2086-2093. DOI: 10.1177/1535370216660399
|
[26] |
Li D, Ji H, Niu X, et al. Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer[J]. Cancer Sci, 2020, 111: 47-58. DOI: 10.1111/cas.14230
|
[27] |
He Z, Chen D, Wu J, et al. Yes associated protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating GLUT3-dependent glycometabolism reprogramming of tumor-associated macrophages[J]. Arch Biochem Biophys, 2021, 702: 108838. DOI: 10.1016/j.abb.2021.108838
|
[28] |
Yu S, Li Q, Wang Y, et al. Tumor-derived LIF promotes chemoresistance via activating tumor-associated macrophages in gastric cancers[J]. Exp Cell Res, 2021, 406: 112734. DOI: 10.1016/j.yexcr.2021.112734
|
[29] |
Wang H, Wang L, Pan H, et al. Exosomes derived from macrophages enhance aerobic glycolysis and chemoresistance in lung cancer by stabilizing c-Myc via the inhibition of NEDD4L[J]. Front Cell Dev Biol, 2021, 8: 231-246.
|
[30] |
Zhu X, Shen H, Yin X, et al. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype[J]. J Exp Clin Cancer Res, 2019, 38: 81. DOI: 10.1186/s13046-019-1095-1
|
[31] |
Stockmann C, Doedens A, Weidemann A, et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis[J]. Nature, 2008, 456: 814-818. DOI: 10.1038/nature07445
|
[32] |
De Palma M, Lewis CE. Cancer: Macrophages limit chemotherapy[J]. Nature, 2011, 472: 303-304. DOI: 10.1038/472303a
|
[33] |
Li Y, Weng Y, Zhong L, et al. VEGFR3 inhibition chemosensitizes lung adenocarcinoma A549 cells in the tumor-associated macrophage microenvironment through upregulation of p53 and PTEN[J]. Oncol Rep, 2017, 38: 2761-2773. DOI: 10.3892/or.2017.5969
|
[34] |
Dalton HJ, Pradeep S, Mcguire M, et al. Macrophages facilitate resistance to anti-VEGF therapy by altered VEGFR expression[J]. Clin Cancer Res, 2017, 23: 7034-7046. DOI: 10.1158/1078-0432.CCR-17-0647
|
[35] |
Bracci L, Schiavoni G, Sistigu A, et al. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer[J]. Cell Death Differ, 2014, 21: 15-25. DOI: 10.1038/cdd.2013.67
|
[36] |
Denardo DG, Brennan DJ, Rexhepaj E, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy[J]. Cancer Discov, 2011, 1: 54-67. DOI: 10.1158/2159-8274.CD-10-0028
|
[37] |
Baghdadi M, Wada H, Nakanishi S, et al. Chemotherapy-induced IL-34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells[J]. Cancer Res, 2016, 76: 6030-6042. DOI: 10.1158/0008-5472.CAN-16-1170
|
[38] |
Larionova I, Cherdyntseva N, Liu T, et al. Interaction of tumor-associated macrophages and cancer chemotherapy[J]. Oncoimmunology, 2019, 8: 1596004. DOI: 10.1080/2162402X.2019.1596004
|
[39] |
Vahidian F, Duijf P, Safarzadeh E, et al. Interactions between cancer stem cells, immune system and some environmental components: Friends or foes?[J]. Immunol Lett, 2019, 208: 19-29. DOI: 10.1016/j.imlet.2019.03.004
|
[40] |
Xiang T, Long H, He L, et al. Interleukin-17 produced by tumor microenvironment promotes self-renewal of CD133+ cancer stem-like cells in ovarian cancer[J]. Oncogene, 2015, 34: 165-176. DOI: 10.1038/onc.2013.537
|
[41] |
Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses[J]. Cancer Res, 2013, 73: 1128-1141. DOI: 10.1158/0008-5472.CAN-12-2731
|
[42] |
Yang L, Dong Y, Li Y, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-kappaB/Notch1 pathway in non-small cell lung cancer[J]. Int J Cancer, 2019, 145: 1099-1110. DOI: 10.1002/ijc.32151
|
[43] |
Zhou W, Ke SQ, Huang Z, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth[J]. Nat Cell Biol, 2015, 17: 170-182. DOI: 10.1038/ncb3090
|
[44] |
Sainz BJ, Alcala S, Garcia E, et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment[J]. Gut, 2015, 64: 1921-1935. DOI: 10.1136/gutjnl-2014-308935
|
[45] |
Nywening TM, Belt BA, Cullinan DR, et al. Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma[J]. Gut, 2018, 67: 1112-1123. DOI: 10.1136/gutjnl-2017-313738
|
[46] |
Lederman MM, Sieg SF. CCR5 and its ligands: a new axis of evil?[J]. Nat Immunol, 2007, 8: 1283-1285. DOI: 10.1038/ni1207-1283
|
[47] |
Gao D, Cazares LH, Fish EN. CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis[J]. BMC Cancer, 2017, 17: 834. DOI: 10.1186/s12885-017-3817-0
|
[48] |
Halama N, Zoernig I, Berthel A, et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients[J]. Cancer cell, 2016, 29: 587-601. DOI: 10.1016/j.ccell.2016.03.005
|
[49] |
Aldinucci D, Casagrande N. Inhibition of the CCL5/CCR5 axis against the progression of gastric cancer[J]. Int J Mol Sci, 2018, 19: 1477. DOI: 10.3390/ijms19051477
|
[50] |
Huang H, Zepp M, Georges RB, et al. The CCR5 antagonist maraviroc causes remission of pancreatic cancer liver metastasis in nude rats based on cell cycle inhibition and apoptosis induction[J]. Cancer Lett, 2020, 474: 82-93. DOI: 10.1016/j.canlet.2020.01.009
|
[51] |
Lee C, Jeong H, Bae Y, et al. Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide[J]. J Immunother Cancer, 2019, 7: 147. DOI: 10.1186/s40425-019-0610-4
|
[52] |
Hume DA, Macdonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling[J]. Blood, 2012, 119: 1810-1820. DOI: 10.1182/blood-2011-09-379214
|
[53] |
Andersen MN, Etzerodt A, Graversen JH, et al. STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes[J]. Cancer Immunol Immunother, 2019, 68: 489-502. DOI: 10.1007/s00262-019-02301-3
|
[54] |
Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nat Biomed Eng, 2018, 2: 578-588. DOI: 10.1038/s41551-018-0236-8
|
[55] |
Tanei T, Leonard F, Liu X, et al. Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases[J]. Cancer Res, 2016, 76: 429-439. DOI: 10.1158/0008-5472.CAN-15-1576
|
[56] |
Choi J, Kim HY, Ju EJ, et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors[J]. Biomaterials, 2012, 33: 4195-4203. DOI: 10.1016/j.biomaterials.2012.02.022
|