The Regulation of Bone Morphogenetic Protein Signaling in Endothelial Physiology and Pulmonary Hypertension
-
摘要: 骨形态形成蛋白(bone morphogenetic protein, BMP)家族成员除在胚胎发育早期的中胚层形成过程中发挥作用外,其在血管功能紊乱过程中亦发挥重要作用,如参与调控内皮细胞成管、迁移和氧化应激效应等。BMP信号通路的异常与多种心肺血管疾病的发生、发展相关,如肺动脉高压、遗传性出血性毛细血管扩张症和动脉粥样硬化。本文主要阐述BMP信号通路在不同内皮细胞中的功能,以及BMP9和BMP10在肺动脉高压相关病理过程中的调控机制。Abstract: Family members of bone morphogenetic protein(BMP) play an important role in mesoderm formation during embryonic development. They are also involved in angiogenesis, migration, and oxidative stress responses. The abnormal BMP signaling pathway results in a variety of cardiopulmonary vascular diseases, such as pulmonary hypertension, hereditary hemorrhagic telangiectasia, and atherosclerosis. This review focused on the different functions of BMP signaling in several types of endothelial cells, and the differential regulation mechanism by BMP9/10 for the occurrence of pulmonary hypertension.利益冲突: 无
-
表 1 BMP在不同类型内皮细胞中的作用及机制
BMP配体 Ⅰ型受体 Ⅱ型受体 内皮细胞类型 生理作用 相关机制 文献 BMP2 ALK3(BMPR1A) BMPRⅡ HUVEC 上调迁移、成管能力 - [11] BMP4 ALK6(BMPR1B) ACTRⅡA 小鼠PVEC 上调增殖能力 上调VEGF [30] ACTRⅡB 小鼠视网膜血管内皮细胞 下调成管能力 下调VEGF和基质金属蛋白酶-9 [16] BMP2/4 BAEC 上调增殖、成管能力 上调VEGF [31] BMP9 ALK1 BMPRⅡ HPAEC 上调成管能力 上调内皮素-1 [18] ALK2 BMPRⅡA EC 上调增殖、成管能力 上调VEGFR/Tie2 [17] ACTRⅡB BAEC
HMEC下调增殖、迁移能力
下调增殖、迁移能力-
-[20-21]
[20-21]BMP9/10 小鼠视网膜血管内皮细胞 下调成管能力 - [26, 28] HUVEC 下调成管能力 上调Notch通路 [28-29] BMP:骨形态形成蛋白; ALK:活化素受体样激酶; BMPR:骨形态形成蛋白受体; ACTR:活化素受体; HUVEC:人脐静脉内皮细胞; PVEC:肺血管内皮细胞; BAEC:牛动脉内皮细胞; HPAEC:人肺动脉内皮细胞; EC:内皮细胞; HMEC:人皮肤微血管内皮细胞; VEGF:血管内皮生长因子; VEGFR:血管内皮生长因子受体; Tie2:酪氨酸蛋白激酶2;-:尚不明确 -
[1] Wiley DM, Jin SW. Bone Morphogenetic Protein functions as a context-dependent angiogenic cue in vertebrates[J]. Semin Cell Dev Biol, 2011, 22: 1012-1018. doi: 10.1016/j.semcdb.2011.10.005 [2] Bandyopadhyay A, Yadav PS, Prashar P. BMP signaling in development and diseases: a pharmacological perspective[J]. Biochem Pharmacol, 2013, 85: 857-864. doi: 10.1016/j.bcp.2013.01.004 [3] Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction[J]. J Biochem, 2010, 147: 35-51. doi: 10.1093/jb/mvp148 [4] Guignabert C, Bailly S, Humbert M. Restoring BMPRⅡ functions in pulmonary arterial hypertension: opportunities, challenges and limitations[J]. Expert Opin Ther Targets, 2017, 21: 181-190. doi: 10.1080/14728222.2017.1275567 [5] Trembath RC, Thomson JR, Machado RD, et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia[J]. N Engl J Med, 2001, 345: 325-334. doi: 10.1056/NEJM200108023450503 [6] Upton PD, Long L, Trembath RC, et al. Functional characterization of bone morphogenetic protein binding sites and Smad1/5 activation in human vascular cells[J]. Mol Pharmacol, 2008, 73: 539-552. doi: 10.1124/mol.107.041673 [7] Atkinson C, Stewart S, Upton PD, et al. Primary pulmo-nary hypertension is associated with reduced pulmon-ary vascular expression of type Ⅱ bone morphogenetic protein receptor[J]. Circulation, 2002, 105: 1672-1678. doi: 10.1161/01.CIR.0000012754.72951.3D [8] Southwood M, Jeffery TK, Yang X, et al. Regulation of bone morphogenetic protein signalling in human pulmonary vascular development[J]. J Pathol, 2008, 214: 85-95. doi: 10.1002/path.2261 [9] Tian HY, Mythreye K, Golzio C, et al. Endoglin mediates fibronectin/α5β1 integrin and TGF-β pathway crosstalk in endothelial cells[J]. EMBO J, 2012, 31: 3885-3900. doi: 10.1038/emboj.2012.246 [10] Wong WT, Tian XY, Chen Y, et al. Bone morphogenic protein-4 impairs endothelial function through oxidative stress-dependent cyclooxygenase-2 upregulation: implica-tions on hypertension[J]. Circ Res, 2010, 107: 984-991. doi: 10.1161/CIRCRESAHA.110.222794 [11] Finkenzeller G, Hager S, Stark GB. Effects of bone morphogenetic protein 2 on human umbilical vein endothelial cells[J]. Microvasc Res, 2012, 84: 81-85. doi: 10.1016/j.mvr.2012.03.010 [12] Pi X, Schmitt CE, Xie L, et al. LRP1-dependent endocytic mechanism governs the signaling output of the bmp system in endothelial cells and in angiogenesis[J]. Circ Res, 2012, 111: 564-574. doi: 10.1161/CIRCRESAHA.112.274597 [13] Tian XY, Yung LH, Wong WT, et al. Bone morphogenic protein-4 induces endothelial cell apoptosis through oxida-tive stress-dependent p38MAPK and JNK pathway[J]. J Mol Cell Cardiol, 2012, 52: 237-244. doi: 10.1016/j.yjmcc.2011.10.013 [14] de Jesus Perez VA, Alastalo TP, Wu JC, et al. Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-RhoA-Rac1 pathways[J]. J Cell Biol, 2009, 184: 83-99. doi: 10.1083/jcb.200806049 [15] Wiley DM, Kim JD, Hao J, et al. Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein[J]. Nat Cell Biol, 2011, 13: 686-692. doi: 10.1038/ncb2232 [16] Xu J, Zhu D, Sonoda S, et al. Over-expression of BMP4 inhibits experimental choroidal neovascularization by modulating VEGF and MMP-9[J]. Angiogenesis, 2012, 15: 213-227. doi: 10.1007/s10456-012-9254-4 [17] Nolan-Stevaux O, Zhong W, Culp S, et al. Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin anti-bodies[J]. PLoS One, 2012, 7: e50920. doi: 10.1371/journal.pone.0050920 [18] Park JE, Shao D, Upton PD, et al. BMP-9 induced endothelial cell tubule formation and inhibition of migration involves Smad1 driven endothelin-1 production[J]. PLoS One, 2012, 7: e30075. doi: 10.1371/journal.pone.0030075 [19] Poirier O, Ciumas M, Eyries M, et al. Inhibition of apelin expression by BMP signaling in endothelial cells[J]. Am J Physiol Cell Physiol, 2012, 303: C1139-1145. doi: 10.1152/ajpcell.00168.2012 [20] David L, Mallet C, Mazerbourg S, et al. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells[J]. Blood, 2007, 109: 1953-1961. doi: 10.1182/blood-2006-07-034124 [21] Scharpfenecker M, van Dinther M, Liu Z, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis[J]. J Cell Sci, 2007, 120: 964-972. doi: 10.1242/jcs.002949 [22] Yao Y, Jumabay M, Ly A, et al. Crossveinless 2 regulates bone morphogenetic protein 9 in human and mouse vascular endothelium[J]. Blood, 2012, 119: 5037-5047. doi: 10.1182/blood-2011-10-385906 [23] Moreno-Miralles I, Ren R, Moser M, et al. Bone morphogenetic protein endothelial cell precursor-derived regulator regulates retinal angiogenesis in vivo in a mouse model of oxygen-induced retinopathy[J]. Arterioscler Thromb Vasc Biol, 2011, 31: 2216-2222. doi: 10.1161/ATVBAHA.111.230235 [24] Appleby SL, Mitrofan CG, Crosby A, et al. Bone Morphogenetic Protein 9 Enhances Lipopolysaccharide-Induced Leukocyte Recruitment to the Vascular Endothelium[J]. J Immunol, 2016, 197: 3302-3314. doi: 10.4049/jimmunol.1601219 [25] Mitrofan CG, Appleby SL, Nash GB, et al. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-alpha-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2[J]. J Biol Chem, 2017, 292: 13714-13726. doi: 10.1074/jbc.M117.778506 [26] Ricard N, Ciais D, Levet S, et al. BMP9 and BMP10 are critical for postnatal retinal vascular remodeling[J]. Blood, 2012, 119: 6162-6171. doi: 10.1182/blood-2012-01-407593 [27] Somekawa S, Imagawa K, Hayashi H, et al. Tmem100, an ALK1 receptor signaling-dependent gene essential for arterial endothelium differentiation and vascular morphogene-sis[J]. Proc Natl Acad Sci U S A, 2012, 109: 12064-12069. doi: 10.1073/pnas.1207210109 [28] Larrivee B, Prahst C, Gordon E, et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway[J]. Dev Cell, 2012, 22: 489-500. doi: 10.1016/j.devcel.2012.02.005 [29] Moya IM, Umans L, Maas E, et al. Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades[J]. Dev Cell, 2012, 22: 501-514. doi: 10.1016/j.devcel.2012.01.007 [30] Yao Y, Jumabay M, Wang A, et al. Matrix Gla protein deficiency causes arteriovenous malformations in mice[J]. J Clin Invest, 2011, 121: 2993-3004. doi: 10.1172/JCI57567 [31] Yao Y, Watson AD, Ji S, et al. Heat shock protein 70 enhances vascular bone morphogenetic protein-4 signaling by binding matrix Gla protein[J]. Circ Res, 2009, 105: 575-584. doi: 10.1161/CIRCRESAHA.109.202333 [32] Evans JD, Girerd B, Montani D, et al. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis[J]. Lancet Respir Med, 2016, 4: 129-137. doi: 10.1016/S2213-2600(15)00544-5 [33] Machado RD, Southgate L, Eichstaedt CA, et al. Pul-monary Arterial Hypertension: A Current Perspective on Established and Emerging Molecular Genetic Defects[J]. Hum Mutat, 2015, 36: 1113-1127. doi: 10.1002/humu.22904 [34] Soubrier F, Chung WK, Machado R, et al. Genetics and genomics of pulmonary arterial hypertension[J]. J Am Coll Cardiol, 2013, 62: D13-D21. doi: 10.1016/j.jacc.2013.10.035 [35] Shintani M, Yagi H, Nakayama T, et al. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension[J]. J Med Genet, 2009, 46: 331-337. doi: 10.1136/jmg.2008.062703 [36] Wang G, Fan R, Ji R, et al. Novel homozygous BMP9 nonsense mutation causes pulmonary arterial hypertension: a case report[J]. BMC Pulm Med, 2016, 16: 17. doi: 10.1186/s12890-016-0183-7 [37] Pousada G, Baloira A, Fontan D, et al. Mutational and clinical analysis of the ENG gene in patients with pulmonary arterial hypertension[J]. BMC Genet, 2016, 17: 72. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893224/ [38] Yang X, Long L, Southwood M, et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension[J]. Circ Res, 2005, 96: 1053-1063. doi: 10.1161/01.RES.0000166926.54293.68 [39] Richter A, Yeager ME, Zaiman A, et al. Impaired transforming growth factor-beta signaling in idiopathic pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2004, 170: 1340-1348. doi: 10.1164/rccm.200311-1602OC [40] Du L, Sullivan CC, Chu D, et al. Signaling molecules in nonfamilial pulmonary hypertension[J]. N Engl J Med, 2003, 348: 500-509. doi: 10.1056/NEJMoa021650 [41] Gangopahyay A, Oran M, Bauer EM, et al. Bone morphogenetic protein receptor Ⅱ is a novel mediator of endo-thelial nitric-oxide synthase activation[J]. J Biol Chem, 2011, 286: 33134-33140. doi: 10.1074/jbc.M111.274100 [42] Anderson L, Lowery JW, Frank DB, et al. Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298: R833-R842. doi: 10.1152/ajpregu.00534.2009 [43] Frank DB, Abtahi A, Yamaguchi DJ, et al. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension[J]. Cir Res, 2005, 97: 496-504. doi: 10.1161/01.RES.0000181152.65534.07 [44] Long L, Ormiston ML, Yang X, et al. Selective enhance-ment of endothelial BMPR-Ⅱ with BMP9 reverses pulmonary arterial hypertension[J]. Nat Med, 2015, 21: 777-785. doi: 10.1038/nm.3877 [45] Brock M, Samillan VJ, Trenkmann M, et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension[J]. Eur Heart J, 2014, 35: 3203-3211. doi: 10.1093/eurheartj/ehs060 [46] Feng F, Harper RL, Reynolds PN. BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-beta-mediated pulmonary cell signalling[J]. Respirology, 2016, 21: 526-532. doi: 10.1111/resp.12712 [47] Ciuclan L, Sheppard K, Dong L, et al. Treatment with anti-gremlin 1 antibody ameliorates chronic hypoxia/SU5416-induced pulmonary arterial hypertension in mice[J]. Am J Pathol, 2013, 183: 1461-1473. doi: 10.1016/j.ajpath.2013.07.017 [48] Spiekerkoetter E, Tian X, Cai J, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension[J]. J Clin Invest, 2013, 123: 3600-3613. doi: 10.1172/JCI65592 [49] Yang J, Li X, Al-Lamki RS, et al. Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension[J]. Arterioscler Thromb Vasc Biol, 2013, 33: 34-42. doi: 10.1161/ATVBAHA.112.300121 [50] Xing YJ, Zhao SX, Wei QX, et al. A novel piperidine identified by stem cell based screening attenuates pulmonary arterial hypertension via regulating BMP2 and PTGS2 levels[J]. Eur Respir J, 2018, 51:1702229. doi: 10.1183/13993003.02229-2017 -

表(1)
计量
- 文章访问数: 196
- HTML全文浏览量: 59
- PDF下载量: 25
- 被引次数: 0