留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人体肠道微生物组与疾病研究:现状、机遇与挑战

方圆 潘元龙 朱宝利

方圆, 潘元龙, 朱宝利. 人体肠道微生物组与疾病研究:现状、机遇与挑战[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2022-0288
引用本文: 方圆, 潘元龙, 朱宝利. 人体肠道微生物组与疾病研究:现状、机遇与挑战[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2022-0288
FANG Yuan, PAN Yuanlong, ZHU Baoli. Research on Human Gut Microbiome and Disease:Current Status, Opportunity and Challenges[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2022-0288
Citation: FANG Yuan, PAN Yuanlong, ZHU Baoli. Research on Human Gut Microbiome and Disease:Current Status, Opportunity and Challenges[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2022-0288

人体肠道微生物组与疾病研究:现状、机遇与挑战

doi: 10.12290/xhyxzz.2022-0288
基金项目: 

国家重点研发计划(2021YFA1301000);国家自然科学基金(32170068); 济南微生态生物医学省实验室科研项目( JNL-2022013B)

详细信息
    通讯作者:

    朱宝利,E-mail:zhubaoli@im.ac.cn

  • 中图分类号: R-1;R37

Research on Human Gut Microbiome and Disease:Current Status, Opportunity and Challenges

Funds: 

National Key Research and Development Program (2021YFA1301000)

  • 摘要: 微生物组是人体的第二基因组,能够决定人的健康状态。微生物组研究促进了人类对微生物群体与人体、生态环境关系的新认识。对人体肠道微生物组的组成和功能进行系统研究,解析相关核心菌群的互作关系和调控机制,将为解决人类面临的健康问题带来革命性的理论创新,由此产生颠覆性的技术革新,有望为微生物组研究提供更好的解决方案。
  • [1] Berg G, Rybakova D, Fischer D, et al. Microbiome definition re-visited:old concepts and new challenges[J]. Microbiome, 2020, 8:103.
    [2] 段云峰,王升跃,陈禹保,等.微生物组测序与分析专家共识[J].生物工程学报, 2020, 36:2516-2524.
    [3] Zhao L. Genomics:The tale of our other genome[J]. Nature, 2010, 465:879-880.
    [4] Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics:genomic analysis of microbial communities[J]. Annu Rev Genet, 2004, 38:525-552.
    [5] Integrative HMPRNC. The Integrative Human Microbiome Project:dynamic analysis of microbiome-host omics profiles during periods of human health and disease[J]. Cell Host Microbe, 2014, 16:276-289.
    [6] Integrative HMPRNC. The Integrative Human Microbiome Project[J]. Nature, 2019, 569:641-648.
    [7] Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome[J]. Nat Biotechnol, 2014, 32:834-841.
    [8] Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464:59-65.
    [9] Sinha R, Abu-Ali G, Vogtmann E, et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium[J]. Nat Biotechnol, 2017, 35:1077-1086.
    [10] Relman DA. The human microbiome:ecosystem resilience and health[J]. Nutr Rev, 2012, 70:S2-S9.
    [11] Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308:1635-1638.
    [12] Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444:1027-1031.
    [13] Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486:207-214.
    [14] Lloyd-Price J, Mahurkar A, Rahnavard G, et al. Strains, functions and dynamics in the expanded Human Microbiome Project[J]. Nature, 2017, 550:61-66.
    [15] Ruhlemann MC, Hermes BM, Bang C, et al. Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome[J]. Nat Genet, 2021, 53:147-155.
    [16] Qin Y, Havulinna AS, Liu Y, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort[J]. Nat Genet, 2022, 54:134-142.
    [17] De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean dietbeneficially impacts the gut microbiota and associated metabolome[J]. Gut, 2016, 65:1812-1821.
    [18] Meslier V, Laiola M, Roager HM, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake[J]. Gut, 2020, 69:1258-1268.
    [19] Rinott E, Meir AY, Tsaban G, et al. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications:a randomized controlled trial[J]. Genome Med, 2022, 14:29.
    [20] Zeevi D, Korem T, Zmora N, et al. Personalized Nutrition by Prediction of Glycemic Responses[J]. Cell, 2015, 163:1079-1094.
    [21] Rosario D, Bidkhori G, Lee S, et al. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson's disease[J]. Cell Rep, 2021, 34:108807.
    [22] Moreno-Indias I, Lahti L, Nedyalkova M, et al. Statistical and Machine Learning Techniques in Human Microbiome Studies:Contemporary Challenges and Solutions[J]. Front Microbiol, 2021, 12:635781.
    [23] Gacesa R, Kurilshikov A, Vich Vila A, et al. Environmental factors shaping the gut microbiome in a Dutch population[J]. Nature, 2022, 604:732-739.
    [24] Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis[J]. Nature, 2014, 513:59-64.
    [25] Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment[J]. Nat Med, 2015, 21:895-905.
    [26] Ramos A, Hemann MT. Drugs, Bugs, and Cancer:Fusobacterium nucleatum Promotes Chemoresistance in Colorectal Cancer[J]. Cell, 2017, 170:411-413.
    [27] Tsoi H, Chu ESH, Zhang X, et al. Peptostreptococcus anaerobius Induces Intracellular Cholesterol Biosynthesis in Colon Cells to Induce Proliferation and Causes Dysplasia in Mice[J]. Gastroenterology, 2017, 152:1419-33.e5.
    [28] Zou Y, Xue W, Luo G, et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses[J]. Nat Biotechnol, 2019, 37:179-185.
    [29] Ji P, Zhang Y, Wang J, et al. MetaSort untangles metagenome assembly by reducing microbial community complexity[J]. Nat Commun, 2017, 8:14306.
    [30] Peng G, Ji P, Zhao F. A novel codon-based de Bruijn graph algorithm for gene construction from unassembled transcriptomes[J]. Genome Biol, 2016, 17:232.
    [31] He S, Huang Z, Wang X, et al. SOAPMetaS:profiling large metagenome datasets efficiently on distributed clusters[J]. Bioinformatics, 2021, 37:1021-1023.
    [32] Hattori N, Yamashiro Y. The Gut-Brain Axis[J]. Ann Nutr Metab, 2021, 77:1-3.
    [33] Mayer EA, Nance K, Chen S. The Gut-Brain Axis[J]. Annu Rev Med, 2022, 73:439-453.
    [34] Silveira MAD, Bilodeau S, Greten TF, et al. The gut-liver axis:host microbiota interactions shape hepatocarcinogenesis[J]. Trends Cancer, 20228:583-597.
    [35] He Y, Wen Q, Yao F, et al. Gut-lung axis:The microbial contributions and clinical implications[J]. Crit Rev Microbiol, 2017, 43:81-95.
    [36] Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359:1151-1156.
    [37] Coutzac C, Jouniaux JM, Paci A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer[J]. Nat Commun, 2020, 11:2168.
    [38] Vetizou M, Pitt JM, Daillere R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350:1079-1084.
    [39] Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359:91-97.
    [40] Mao J, Wang D, Long J, et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers[J]. J Immunother Cancer, 2021, 9:e003334.
    [41] Mcculloch JA, Davar D, Rodrigues RR, et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with antiPD-1[J]. Nat Med, 2022, 28:545-556.
    [42] Yi Y, Shen L, Shi W, et al. Gut Microbiome Components Predict Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer:A Prospective, Longitudinal Study[J]. Clin Cancer Res, 2021, 27:1329-1340.
    [43] Shen S, Lim G, You Z, et al. Gut microbiota is critical for the induction of chemotherapyinduced pain[J]. Nat Neurosci, 2017, 20:1213-1216.
    [44] Tian J, Bai B, Gao Z, et al. Alleviation Effects of GQD, a Traditional Chinese Medicine Formula, on Diabetes Rats Linked to Modulation of the Gut Microbiome[J]. Front Cell Infect Microbiol, 2021, 11:740236.
    [45] Juul FE, Garborg K, Bretthauer M, et al. Fecal Microbiota Transplantation for Primary Clostridium difficile Infection[J]. N Engl J Med, 2018, 378:2535-2536.
    [46] Kassam Z, Dubois N, Ramakrishna B, et al. Donor Screening for Fecal Microbiota Transplantation[J]. N Engl J Med, 2019, 381:2070-2072.
    [47] Siegmund B. Is intensity the solution for FMT in ulcerative colitis?[J]. Lancet, 2017, 389:1170-1172.
    [48] Van Rossum T, Ferretti P, Maistrenko OM, et al. Diversity within species:interpreting strains in microbiomes[J]. Nat Rev Microbiol, 2020, 18:491-506.
  • 加载中
计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 录用日期:  2022-07-21
  • 网络出版日期:  2022-07-28

目录

    /

    返回文章
    返回