-
摘要: 新的诊断方法在临床开展之前, 必须经由严格设计的诊断试验准确性研究进行评价。诊断试验准确性研究设计包括应用PICOS(P:Patient; I:Intervention; C:Comparison; O:Outcome; S:Study design)原则构建研究问题、确定诊断金标准、选择具有代表性的研究对象、估算样本量、同步盲法比较诊断试验与金标准结果、确立最佳截点值、评价诊断准确性以及遵循诊断准确性研究报告规范进行论文报告8个方面。诊断试验的准确性指标包括灵敏度、特异度、预测值和似然比。其中, 诊断试验的似然比可帮助医生从验前概率获得验后概率。当医疗环境与研究环境相似、收治患者符合研究入组标准时, 应用诊断试验研究的似然比有助于对目标疾病进行诊断与鉴别诊断。Abstract: New diagnostic methods must be evaluated by rigorously designed diagnostic accuracy studies before clinical implementation. Designing a diagnostic accuracy study includes 8 procedures:constructing the research question with the PICOS (P:Patient; I:Intervention; C:Comparison; O:Outcome; S:Study design)framework, identifying an appropriate gold standard, choosing a representative patient sample, estimating the sample size, interpreting results of diagnostic tests and the gold standard blind to the other, setting up the optimal threshold, evaluating the diagnostic accuracy, and finally drafting a report according to the standards for reporting diagnostic accuracy. The accuracy of diagnostic tests includes sensitivity, specificity, predictive value (PV), and likelihood ratio (LR). The LR estimated by diagnostic tests can move clinicians from the pretest probability to a posttest probability. If the clinical setting is similar to that of the study and the patient meets all eligibility criteria of the study, the LR may facilitate the diagnostic process in clinical practice.
-
Keywords:
- diagnostic test /
- study design /
- clinical practice
-
淋巴瘤很少累及肾上腺,CT检出的继发性肾上腺非霍奇金淋巴瘤约占5%[1]。原发性肾上腺淋巴瘤(primary adrenal lymphoma,PAL)更为罕见,迄今报道200余例,其中老年男性患者较多,双侧者约占70%[1-2]。患者临床症状表现为局部疼痛或全身症状、发热、消瘦及肾上腺皮质功能不全[1, 3],同时伴免疫功能障碍(如恶性肿瘤病史、人类免疫缺陷病毒感染、自身免疫性疾病)[4-5]。EB病毒感染、p53和c-kit基因突变可能与发病机制有关[6]。PAL中最常见的类型是非生发中心型弥漫性大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL),占比达70%以上[4, 6-7]。诊断依靠影像引导下穿刺活检、手术切除或尸检。PAL的预后不良,尽管化疗的初始反应良好,但长期缓解患者少见[8]。由于PAL罕见,因此对其流行病学、发病机制、临床特点、病理生理学、诊断方法、治疗及预后研究多局限于病例报告。
1. 发病机制
PAL可能源于造血组织[8],也有支持自身免疫性肾上腺炎参与PAL发病的假说,证据是PAL肾上腺功能不全发生率较高的患者多有自身免疫性肾上腺炎[9];另一种可能性是淋巴瘤是肾上腺外发生,经过器官亲和性选择,随后归巢至一个或两个肾上腺。原发性中枢神经系统和睾丸淋巴瘤趋化因子及微小RNA驱动器官选择的研究发现[10-11],潜伏膜蛋白1(latent membrane protein 1, LMP1)基因是EB病毒诱导B细胞转化的关键环节,通过激活细胞信号途径影响细胞增殖和存活,并由此诱导和抑制B细胞凋亡。EB病毒基因组已被检测到PAL在淋巴瘤细胞中高达45%[2]。日本一项研究(n=17)发现,突变的c-kit基因、p53基因、β-连环蛋白和K-ras基因表达分别为71%、53%、25%和7%[12]。
DLBCL是PAL最常见的类型,进一步可分为生发中心B细胞(germinal center B cell, GCB)和非GCB两种亚型。GCB较非GCB预后较好[7, 13-14]。GCB亚型又包括CD10+/MUM1-和CD10-/MUM1-/BCL6+,而非GCB亚型包括CD10-/BCL6-和CD10-/MUM1+/BCL6+。目前基因表达图谱仍然是确定DLBCL是否具有GCB状或活化B细胞样表达模式的“金标准”[15-16]。约95%的B细胞和T细胞淋巴瘤CD45染色为阳性[17-18],也有细胞角蛋白(Cytokeratin, CK)阳性以及CD45阴性的报道病例[19]。
2. 分类
根据文献,目前认为PAL是指涉及单侧或双侧的肾上腺淋巴瘤并有以下特点:无其他部位的淋巴瘤;如果淋巴结或其他器官受累,肾上腺病变则应是主要病灶。根据临床病理、免疫表型和组织形态学特点,应用2008分类标准[20],淋巴瘤临床病理类型如下:高度恶性淋巴瘤(包括弥漫性大B细胞淋巴瘤、伯基特淋巴瘤、细胞性淋巴瘤、外周T细胞淋巴瘤(peripheral T-cell lymphoma,PTCL)、成人T细胞白血病/淋巴瘤(adult T-cell leukemia/ATL,ATLL)、结外NK/T细胞淋巴瘤(鼻型)、低度恶性淋巴瘤(包括1级和2级滤泡性淋巴瘤)、成熟的B/T细胞和NK/T细胞与经典霍奇金淋巴瘤。迄今共报道PAL 187例,包括1980年之前2例、1980至1990年20例、1990至2000年53例、2000至2010年87例、2011至今25例。报道例数逐渐增加,可能与更先进诊断方法的出现和疾病临床认识提高有关。这些患者(n=185)中,日本(28%)、美国(19%)及中国病例(10%)共占一半以上,平均年龄(62±14)岁,男性与女性的比例约为1.8:1。
3. 临床表现
PAL患者大多有明显的临床症状,仅1%的肿瘤被偶然发现。疼痛和疲劳最常见,约占36%,其他症状包括皮肤/黏膜色素沉着(27%)、厌食(23%)、肝脾肿大(15%)、恶心/呕吐(14%)、神经系统症状(7%)、淋巴结肿大(7%)和腹泻(4%)[1, 20]。61%的患者伴有肾上腺皮质功能减退和色素沉着[10],双侧肿瘤占75%,如为单发,则左右侧肿瘤频率相等。约11%的患者并发免疫失调,多有潜在相关的自身免疫或非自身免疫状态病史。慢性肝炎/肝硬化(18%)常见,其次是自身免疫性溶血性贫血(14%)和噬血细胞淋巴组织(14%)。88%有乳酸脱氢酶(lactate dehydrogenase,LDH)升高,双侧肿瘤LDH升高显著高于单侧。患者还可伴发系统性红斑狼疮、结核病、人类免疫缺陷病毒、单克隆丙种球蛋白病、骨髓增生异常综合征以及特发性血小板减少性紫癜等[1]。肿瘤最大直径5.7~10 cm,常见的亚型是DLBCL、PTCL、结外NK/T细胞淋巴瘤和ATLL。双侧肿瘤症状更为典型,可能是肿瘤负荷较大,进入全身血管和淋巴通道机率更高以及淋巴瘤细胞驱动的细胞因子所致。
4. 诊断
淋巴瘤超声呈低回声结节状团块最常见[21-22]。继发性肾上腺受累淋巴瘤CT扫描时低密度软组织病灶更常见,增强后有轻至中度强化。在MRI上表现为T1低信号和T2高信号,弥散加权成像淋巴瘤由于细胞胞浆稀少通常会产生弥散受限和高信号强度[23]。这与原发性中枢神经系统淋巴瘤类似。正电子发射断层扫描/计算机体层成像(positron emission tomography/computed tomography,PET/CT)示葡萄糖摄取明显增加高代谢活性,可以帮助排除继发性肾上腺淋巴瘤,同时也可在监测治疗反应和复发病灶中发挥重要作用[24-25]。虽然影像学检查可能有助于诊断,但确诊只能采用细针活检、切除活检或尸检来确定,但由于存在高血压危象的风险,活检前要排除嗜铬细胞瘤。仅有约3%的非霍奇金淋巴瘤病例主要发生在内分泌器官,甲状腺的DLBCL最常见[26]。为便于研究和完善病史收集,PAL患者资料报告应包括:(1)报告年份、初诊年龄、性别、籍贯、单侧/双侧、症状、肝脾肿大体检与影像学检查、手术/尸检、皮肤/黏膜色素沉着、浅表淋巴结肿大体格检查、并发症或其他恶性肿瘤史及免疫相关的基础病、肾上腺皮质功能不全(绝对或相对的)和血清LDH水平;(2)影像学表现如超声(回声和异质性)、CT(密度和异质性)、MRI(信号强度和均匀性)、PET、镓扫描以及肿瘤血管成像;(3)诊断时有无广泛转移、骨髓受累情况、切除时肿瘤的大小、接受全身治疗情况和随访结果[1]。
5. 治疗及预后
PAL进展十分迅速,部分病例在治疗前即恶化死亡[27]。尽管PAL总体预后不佳,肾上腺切除手术联合利妥昔单克隆抗体以及CHOP方案(环磷酰胺+阿霉素+长春新碱+强的松)化疗仍是原发性肾上腺DLBCL有效的一线治疗方案(非GCB亚型、瘤体较大、LDH升高和疾病的二次打击表型相对疗效有限)。较小肿瘤可选择腹腔镜等微创手术[27-28]。在一组31例PAL化疗(利妥昔单克隆抗体联合CHOP方案)的研究中,患者均为DLBCL,中位化疗6个疗程,2年总生存率和无进展生存率分别为68%和51%,完全缓解和部分缓解患者分别达55%和32%,中枢神经系统复发者占13%,国际预后指数评分、Ann-Arbor分期和肾上腺双侧发病者对生存产生影响[29]。利妥昔单克隆抗体联合CHOP方案化疗作为一线治疗原发性肾上腺DLBCL有效性优于先前报道,时程延长是实现疾病完全缓解和无进展生存期的重要因素[29-30]。一项149例患者的报告提示,PAL预后差,3、6和12个月生存率仅为67%、46%和20%,中枢神经系统受累则分别为62%、46%和8%。中枢神经系统受累短期不出现恶化(例如对3~6个月的生存率影响),但降低12个月生存率;将生存时间分为<3、3~<6、6~<12和≥12个月4组,与预后差显著相关的是双侧病变(P=0.06)和肾上腺皮质功能不全(P=0.01),预后情况并不与性别(P=0.99)、年龄(P=0.60)、LDH升高(P=0.97)、肝脾肿大(P=0.75)、淋巴结肿大(P=0.32)、色素沉着(P=0.59)、就诊时已有转移(P=0.54)、骨髓受累(P=0.62)、并发其他恶性肿瘤或免疫相关疾病(P=0.17)、淋巴瘤分级(P=0.46)、淋巴瘤细胞起源(P=0.92)及EB病毒阳性(P=1.00)等因素显著相关[27]。Coiffier等[31]报道160例患者接受相关治疗,其中127例(79%)选择了化疗,21例接受利妥昔单克隆抗体联合CHOP方案/CHOP样方案,手术(单侧和双侧肾上腺切除)和放射治疗分别为33和10例;单因素分析发现,手术(P<0.01)、化疗(P<0.01)与更长的生存期相关;多因素回归分析显示,接受利妥昔单克隆抗体联合CHOP方案化疗(P<0.01)和肾上腺皮质功能不全的良好管理者(P=0.02)可改善预后。手术可减轻瘤负荷,尽可能保留部分正常肾上腺组织有助于化疗[8],在化疗前应检测血和尿中的皮质醇水平,适时补充糖皮质激素,以免在治疗过程中出现急性肾上腺功能不全。中枢神经系统受累约2%~10%,最常见的部位是软脑膜[32]。血清LDH水平较高和多个结外部位肿瘤均提示预后较差[33-34]。有关预后因素尚缺乏足够的证据,仍需进一步研究。
6. 小结
非霍奇金淋巴瘤是一种全身性疾病,要区分是转移性还是原发性还需形态学、免疫表型或细胞遗传学特征进一步明确亚型。PAL是一种独立的高侵袭性淋巴瘤,PET/CT扫描显示高摄取的肾上腺淋巴瘤预后不佳。借助利妥昔单克隆抗体联合CHOP化疗方案早期反应已经显示了良好效果,但新的治疗方案远期疗效仍需进一步研究和临床试验验证。
利益冲突 无 -
表 1 诊断试验四格表
诊断试验 金标准诊断 合计 有病 无病 阳性 真阳性(a) 假阳性(b) a+b 阴性 假阴性(c) 真阴性(d) c+d 合计 a+c b+d a+b+c+d a.真阳性,指金标准诊断为“有病”且诊断试验结果是“阳性”的例数;b.假阳性,指金标准诊断为“无病”但诊断试验结果是“阳性”的例数;c.假阴性,指金标准诊断为“有病”但诊断试验结果是“阴性”的例数;d.真阴性,指金标准诊断为“无病”且诊断试验结果是“阴性”的例数 -
[1] Yerushalmy J. Statistical problems in assessing methods of medical diagnosis, with special reference to X-ray techniques[J]. Public Health Rep, 1947, 62:1432-1449. DOI: 10.2307/4586294
[2] Vecchio TJ. Predictive value of a single diagnostic test in unselected populations[J]. N Engl J Med, 1966, 274:1171-1173. DOI: 10.1056/NEJM196605262742104
[3] Grimes DA, Schulz KF. Refining clinical diagnosis with likelihood ratios[J]. Lancet, 2005, 365:1500-1505. DOI: 10.1016/S0140-6736(05)66422-7
[4] Sackett DL, Haynes RB. The architecture of diagnostic research[J]. BMJ, 2002, 324:539-541. DOI: 10.1136/bmj.324.7336.539
[5] Lijmer JG, Mol BW, Heisterkamp S, et al. Empirical evidence of design-related bias in studies of diagnostic tests[J]. JAMA, 1999, 282:1061-1066. DOI: 10.1001/jama.282.11.1061
[6] Glasziou P, Irwig L, Deeks JJ. When should a new test become the current reference standard?[J]. Ann Intern Med, 2008, 149:816-822. DOI: 10.7326/0003-4819-149-11-200812020-00009
[7] Worster A, Carpenter C. Incorporation bias in studies of diagnostic tests:how to avoid being biased about bias[J]. CJEM, 2008, 10:174-175. DOI: 10.1017/S1481803500009891
[8] Weiss NS. Control definition in case-control studies of the efficacy of screening and diagnostic testing[J]. Am J Epidemiol, 1983, 118:457-460. DOI: 10.1093/oxfordjournals.aje.a113650
[9] Whiting PF, Rutjes AW, Westwood ME, et al. A systematic review classifies sources of bias and variation in diagnostic test accuracy studies[J]. J Clin Epidemiol, 2013, 66:1093-1104. DOI: 10.1016/j.jclinepi.2013.05.014
[10] Rutjes AW, Reitsma JB, Di Nisio M, et al. Evidence of bias and variation in diagnostic accuracy studies[J]. CMAJ, 2006, 174:469-476. DOI: 10.1503/cmaj.050090
[11] Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics[J]. J Biomed Inform, 2014, 48:193-204. DOI: 10.1016/j.jbi.2014.02.013
[12] Simel DL, Samsa GP, Matchar DB. Likelihood ratios with confidence:sample size estimation for diagnostic test studies[J]. J Clin Epidemiol, 1991, 44:763-770. DOI: 10.1016/0895-4356(91)90128-V
[13] Whiting P, Rutjes AW, Reitsma JB, et al. Sources of variation and bias in studies of diagnostic accuracy:a systematic review[J]. Ann Intern Med, 2004, 140:189-202. DOI: 10.7326/0003-4819-140-3-200402030-00010
[14] Leeflang MM, Rutjes AW, Reitsma JB, et al. Variation of a test's sensitivity and specificity with disease prevalence[J]. CMAJ, 2013, 185:E537-E544. DOI: 10.1503/cmaj.121286
[15] Akobeng AK. Understanding diagnostic tests 1:sensitivity, specificity and predictive values[J]. Acta Paediatr, 2007, 96:338-341. DOI: 10.1111/j.1651-2227.2006.00180.x
[16] Akobeng AK. Understanding diagnostic tests 2:likelihood ratios, pre- and post-test probabilities and their use in clinical practice[J]. Acta Paediatr, 2007, 96:487-491. DOI: 10.1111/j.1651-2227.2006.00179.x
[17] Bossuyt PM, Reitsma JB, Bruns DE, et al. Towards complete and accurate reporting of studies of diagnostic accuracy:the STARD initiative[J]. BMJ, 2003, 326:41-44. DOI: 10.1136/bmj.326.7379.41
[18] Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015:an updated list of essential items for reporting diagnostic accuracy studies[J]. BMJ, 2015, 351:h5527. http://www.bmj.com/content/351/bmj.h5527
[19] 王波, 詹思延.如何撰写高质量的流行病学研究论文第三讲诊断试验准确性研究的报告规范——STARD介绍[J].中华流行病学杂志, 2006, 27:909-912. http://d.wanfangdata.com.cn/Periodical/zhlxbx200610020 [20] 朱一丹, 李会娟, 武阳丰.诊断准确性研究报告规范(STARD)2015介绍与解读[J].中国循证医学杂志, 2016, 16:730-735. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxzyx201606017 [21] 孙凤.医学研究报告规范解读[M].北京:北京大学医学出版社, 2015:181-188. [22] Whiting P, Rutjes AW, Reitsma JB, et al. The development of QUADAS:a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews[J]. BMC Med Res Methodol, 2003, 3:25. DOI: 10.1186/1471-2288-3-25
[23] Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2:a revised tool for the quality assessment of diagnostic accuracy studies[J]. Ann Intern Med, 2011, 155:529-536. DOI: 10.7326/0003-4819-155-8-201110180-00009
[24] Schunemann HJ, Oxman AD, Brozek J, et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies[J]. BMJ, 2008, 336:1106-1110. https://core.ac.uk/display/77296584
[25] Richardson WS. Where do pretest probabilities come from?[J]. Evid Based Med, 1999, 4:68-69. http://www.onacademic.com/detail/journal_1000038118494510_f71d.html
[26] Fagan TJ. Letter:Nomogram for Bayes theorem[J]. N Engl J Med, 1975, 293:257. http://europepmc.org/abstract/med/1143310
[27] Shi X, Zhang L, Zhang Y, et al. Utility of T-Cell Interferon-gamma Release Assays for Etiological Diagnosis of Classic Fever of Unknown Origin in a High Tuberculosis Endemic Area-a pilot prospective cohort[J]. PLoS One, 2016, 11:e0146879. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718655/
-
期刊类型引用(4)
1. 张鹏,彭森,董洋,刘大闯. 原发性肾上腺弥漫大B细胞淋巴瘤一例. 临床外科杂志. 2024(05): 479-480 . 百度学术
2. 张义木,周政宇,赵鹏程,杨栋,何朝宏. 男性乳腺癌术后肾上腺单发弥漫大B细胞淋巴瘤1例. 现代泌尿生殖肿瘤杂志. 2022(01): 55-56 . 百度学术
3. 朱淼,朱沁玲,刘彦,徐庆成,王维钊,曹灵. 以肾上腺危象起病的肾上腺转移性淋巴瘤1例并文献复习. 内科急危重症杂志. 2022(04): 335-339 . 百度学术
4. 张颖,马婧,吴洋,杜雅丽. 原发性肾上腺淋巴瘤临床诊治的研究进展. 山东医药. 2021(04): 108-111 . 百度学术
其他类型引用(1)