磁共振引导聚焦超声在中枢神经系统疾病中的应用

张蕊, 白岩, 魏巍, 王梅云

张蕊, 白岩, 魏巍, 王梅云. 磁共振引导聚焦超声在中枢神经系统疾病中的应用[J]. 协和医学杂志, 2020, 11(1): 54-61. DOI: 10.3969/j.issn.1674-9081.20190214
引用本文: 张蕊, 白岩, 魏巍, 王梅云. 磁共振引导聚焦超声在中枢神经系统疾病中的应用[J]. 协和医学杂志, 2020, 11(1): 54-61. DOI: 10.3969/j.issn.1674-9081.20190214
Rui ZHANG, Yan BAI, Wei WEI, Mei-yun WANG. Application of Magnetic Resonance-guided Focused Ultrasound Therapy in Central Nervous System Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 54-61. DOI: 10.3969/j.issn.1674-9081.20190214
Citation: Rui ZHANG, Yan BAI, Wei WEI, Mei-yun WANG. Application of Magnetic Resonance-guided Focused Ultrasound Therapy in Central Nervous System Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 54-61. DOI: 10.3969/j.issn.1674-9081.20190214

磁共振引导聚焦超声在中枢神经系统疾病中的应用

基金项目: 

国家重点研发计划 2017YFE0103600

国家自然科学基金 81720108021

国家自然科学基金 81601466

详细信息
    通讯作者:

    王梅云 电话:0371-65580013, E-mail:marian9999@163.com

  • 中图分类号: R445.1

Application of Magnetic Resonance-guided Focused Ultrasound Therapy in Central Nervous System Diseases

More Information
    Corresponding author:

    Mei-yun WANG: WANG Mei-yun Tel: 86-371-65580013, E-mail:marian9999@163.com

  • 摘要: 磁共振引导聚焦超声是一种先进的无创治疗技术, 在通过靶向热消融及开放血脑屏障治疗中枢神经系统疾病方面具有较大潜力, 目前已被应用于特发性震颤、帕金森病、颅内肿瘤、阿尔兹海默病、强迫症、神经病理性疼痛等疾病的研究与治疗中。磁共振引导聚焦超声因其精准、无电离辐射、实时监测靶点温度等优势可能成为诸多疾病的潜在替代疗法, 为患者提供一种新的治疗选择。本文就目前磁共振引导聚焦超声在中枢神经系统疾病方面的临床应用及科学研究予以综述。
    Abstract: Magnetic resonance-guided focused ultrasound is an advanced non-invasive therapeutic technique, which has great potential in targeted thermal ablation and blood-brain barrier opening treatment of central nervous system diseases. It has been used in the research and treatment of essential tremor, Parkinson's disease, intracranial tumors, Alzheimer's disease, obsessive-compulsive disorder, neuropathic pain, and other diseases now. Magnetic resonance-guided focused ultrasound therapy may be a potential alternative therapy for many diseases due to its advantages such as precision, non-ionizing radiation, and real-time monitoring of target temperature. In this article, we reviewed the progress of magnetic resonance-guided focused ultrasound therapy in clinical applications and scientific researches.
  • 磁共振引导聚焦超声(magnetic resonance-guided focused ultrasound,MRgFUS)是一种将MRI与聚焦超声相结合的新型无创热消融技术[1-2]。在MRI的精准导航下,该技术能够使高强度的超声波穿透人体组织并形成稳定焦点,从而定向消融靶组织。在治疗过程中,MRI能够实时监测组织的温度变化[3],最大程度避免消融对周围重要组织的损伤。近年来,MRgFUS已成功应用于子宫肌瘤的临床治疗,并在前列腺癌、乳腺癌、腹部系统疾病的研究中取得了良好进展,而在特发性震颤(essential tremor,ET)、帕金森病(Parkinson's disease,PD)、颅内肿瘤、阿尔兹海默病(Alzheimer's disease,AD)、强迫症、神经病理性疼痛(neuropathic pain, NP)等复杂中枢神经系统疾病[4]的治疗中,MRgFUS亦具有广阔的应用前景。

    ET是临床上常见的一种以姿势性或动作性震颤为主要表现的运动障碍性疾病[5],严重的震颤症状不仅影响患者生活质量,而且会引发社交恐惧、焦虑抑郁等一系列心理问题[6-9]。普萘洛尔和扑米酮是ET的一线治疗药物,但约50%的患者因药物疗效有限或出现严重不良反应而停止服药[10],因此手术治疗则成为药物难治性ET患者的重要替代选择[11]。目前脑深部电刺激术(deep brain stimulation,DBS)和射频消融(radiofrequency ablation,RFA)是ET患者最常用的手术治疗方式,但侵入性手术存在术后感染和出血的风险。

    MRgFUS技术的出现为药物难治性ET的治疗带来了新的希望。Elias等[12]的一项猪脑研究实验中发现,MRgFUS治疗灶的演变过程与RFA相似,并具有更为陡峭的剂量边界曲线,证明了MRgFUS脑内消融的可行性,且能达到与传统RFA治疗法类似的消融效果。无须麻醉、无创等优点使其有望成为ET患者治疗的理想选择[13]。2013年,Elias等[14]对药物难治性ET患者的MRgFUS治疗开展了初步研究,15例ET患者均行优势手对侧的丘脑腹中间核(ventral intermediate thalamic nucleus, Vim)损毁治疗,并在术后进行为期12个月的随访,研究结果显示,ET患者治疗后手部震颤症状明显改善,临床震颤评分(clinical rating scale for tremor, CRST)总分从54.9降至24.3,手部CRST从基线的20.4下降至最终随访时的5.2。随后,Lipsman等[15]对4例难治性ET患者、Chang等[16]对11例ET患者进行类似研究,均得到一致结果,证实了MRgFUS靶向毁损Vim核治疗药物难治性ET是一种安全、有效的方法。2016年,Elias等[17]扩大样本量对MRgFUS治疗难治性ET的疗效进行深入随机双盲对照研究,将76例中重度患者随机分成治疗组(56例)和假治疗组(20例),于治疗前及治疗后1、3、6个月及1年分别进行CRST和ET生活质量评分(Quality of Life in Essential Tremor Questionnaire, QUEST)。研究结果显示,术后3个月治疗组手部CRST评分改善率达47%(假治疗组改善0.1%),QUEST评分改善率为46%(假治疗组改善3%),且改善效果可持续至术后1年,进一步证实MRgFUS治疗不仅能够缓解ET患者的震颤症状,且可改善患者的生活质量。2016年7月,MRgFUS治疗ET正式被美国食品药品监督管理局(Food and Drug Administration,FDA)批准[18]。随后各研究中心陆续报道其研究成果[19-21],解放军总医院的宗睿等[22]也发表了关于MRgFUS治疗ET疗效的病例报道。MRgFUS治疗ET的不良事件以及远期疗效成为国际上研究的热点。Fishman等[23]的多中心研究纳入了186例以Vim核为靶点行MRgFUS治疗的ET患者,并对术后发生的神经不良事件进行统计分析,结果显示感觉和平衡异常是最常见的相关不良事件,通常短暂且轻微(79%),与手术相关的严重不良事件较少见(1.6%),且无脑出血或感染等并发症,充分证明了MRgFUS技术的安全性和可行性。远期疗效方面,Chang等[24]选择MRgFUS靶向损毁Vim核治疗ET的76例患者,以CRST量表评估疗效并进行随访,最终67例完成了2年随访,治疗后半年、1年和2年的手部CRST评分较治疗前分别改善55%、53%和56%,CRST的生活障碍评分同样在治疗后2年得到很好的保持。2019年,Sinai等[25]的研究纳入44例ET患者进行MRgFUS治疗,最终2例完成为期5年的随访。随访期CRST和QUEST评分的改善显示出MRgFUS治疗安全有效,可长期缓解震颤症状并改善生活质量。ET是MRgFUS技术众多研究中比较成熟的适应证,治疗效果和远期疗效良好,为难治性ET患者提供了一项新的治疗方式。

    PD是一种常见于中老年的神经退行性疾病, 发病机制尚未完全明确,主要病理特征是脑干黑质内的多巴胺能神经元进行性减少,当丧失程度达50%~70%时,就会出现震颤、运动迟缓、僵硬等帕金森综合征典型的运动功能障碍。在疾病早期,多巴胺药物治疗可有效缓解运动症状,但随着疾病的进展,许多PD患者药物治疗效果不佳,甚至产生药物相关的副作用,严重影响生活质量,而外科手术则因创伤大的缺点令患者难以接受。

    近年来,MRgFUS治疗已被应用到PD震颤的临床研究中,相关研究结果已经提供了有关其安全性和有效性的初步证据。Schlesinger等[26]纳入7例难治性PD震颤患者,利用MRgFUS技术靶向消融Vim核,治疗后患者震颤症状停止,术后1周统一帕金森病评分量表(Unified Parkinson's Disease Rating Scale, UPDRS)第Ⅲ部分评分改善了50%;术后不良事件轻微,1例患者出现味觉减退,2例患者出现行走不稳或不适感,但在后期随访过程中,行走问题也得以解决。Zaaroor等[21]的研究结果表明,9例PD患者经过MRgFUS治疗后1个月时UPDRS平均分由24.9降至16.4,6个月时降至13.4,帕金森病问卷(Parkinson's disease questionnaire-39, PDQ39)平均分在治疗后1个月时由38.6降至26.1,6个月时降至20.6;术后主要不良事件为步态不稳,1例PD患者术后表现出短暂的步态共济失调,但在随访中症状逐渐好转,不良症状并未超过3个月。Bond等[27]的一项双盲、双中心随机对照试验纳入27例震颤为主的PD患者,随机将其分为手术组(20例)和假手术组(7例),通过MRgFUS靶向消融Vim核对手术组患者进行治疗。随访结果显示,手术组术后3个月的CRST评分较基线期改善62%,假手术组改善22%。Fasano等[28]研究中的3例PD患者Vim核热消融治疗后手部震颤同样得到了良好改善。这些研究结果充分说明了MRgFUS治疗PD震颤的可行性与有效性。2019年2月,河南省人民医院的王梅云教授带领团队成功完成了中国大陆地区首例PD震颤的MRgFUS治疗,术后患者的震颤症状得到了显著改善[29]。Vim核并非MRgFUS治疗PD的唯一有效靶点。最早MRgFUS治疗PD时所选择的靶区为苍白球-丘脑束,Magara等[30]以此为治疗靶点的相关研究纳入13例PD患者,其中4例因治疗方案欠佳、脑内未出现热损伤迹象从而引起复发,其余9例在调整方案后成功进行了MRgFUS治疗,术后3个月随访UPDRS得分下降60.9%,总体症状缓解率为56.7%,非常接近RFA的治疗结果。2015年Neurology报道了一例采用MRgFUS单侧苍白球损毁治疗成功控制PD运动症状的患者[31]。随后,Jung等[32]进行了一项前瞻性、非随机、单臂临床试验,旨在深入探究MRgFUS苍白球损毁治疗PD运动障碍的可行性和有效性。该研究纳入了10例难治性以运动障碍为主要症状的PD患者,其中8例(80%,8/10)成功进行单侧MRgFUS苍白球损毁治疗,并完成了6个月的随访,研究结果显示,UPDRS第Ⅲ部分评分改善了32.2%,统一运动障碍评定量表(Unified Dyskinesia Rating Scale, UDysRS)评分改善了52.7%;6例完成了1年随访,UPDRS和UDysRS评分分别改善了39.1%和42.7%,初步证明了以苍白球为MRgFUS靶点控制运动症状的可行性。另外,Martínez-Fern ndez等[33]对10例PD患者的丘脑底核进行靶向治疗,其中8例患者的症状在术后6个月改善程度超过30%。虽然针对苍白球-丘脑束、苍白球以及丘脑底核进行MRgFUS损毁的初步研究已显示出令人鼓舞的结果,但其有效性和远期疗效仍需大样本、多中心、随机对照试验以进一步验证。

    除了高强度MRgFUS病灶消融治疗方法外,低强度MRgFUS开放血脑屏障(blood-brain barrier, BBB)在PD治疗方面也具有较大潜力。BBB是中枢神经系统的自我保护屏障,但同时限制了许多治疗药物进入脑内,因此导致许多中枢神经系统疾病的药物治疗效果欠佳。大量研究已经证实MRgFUS能安全、暂时性靶向开放血脑屏障[34-35]。在PD大鼠模型中,前期研究利用低强度MRgFUS暂时开放BBB,成功将胶质细胞源性神经营养因子送至脑内使得大鼠的脑内多巴胺水平得以改善[36-37]。虽然暂时性开放BBB治疗PD的策略尚需深入研究,但前期结果表明这有可能是改善药物递送的一种有效方法[38]

    相较于其他癌症,颅内肿瘤的致死性仍然很高[39]。尽管靶向疗法在分子水平上已极大改善了颅内肿瘤患者的预后,但这些药物仍然面临难以通过BBB到达中枢神经系统的问题[40]。MRgFUS能够安全暂时性开放BBB,为颅内肿瘤患者的治疗带来了新的希望。Wei等[41]的一项临床前研究评估了MRgFUS诱导大鼠模型BBB开放以增强替莫唑胺(Temozolomide, TMZ)递送治疗胶质母细胞瘤(Glioblastoma, GBM)的疗效,研究结果显示,MRgFUS开放BBB可增加颅内TMZ浓度,降低肿瘤7 d进展率并将大鼠的中位生存期从20 d延长至23 d。对于人类表皮生长因子受体2基因阳性、伴有颅外转移的乳腺癌患者而言,曲妥珠单克隆抗体和帕妥珠单克隆抗体作为靶向抗体可有效延长其生存期,但这些药物对于脑转移的患者效果不佳。Kobus等[42]利用乳腺癌脑转移的裸鼠模型探究MRgFUS暂时开放BBB介导的药物输送是否可抑制肿瘤的生长,研究结果显示,抗体联合MRgFUS治疗使40%的乳腺癌脑转移大鼠对药物产生应答,而仅抗体组则无应答。越来越多的动物实验亦证实MRgFUS开放BBB后,可使本不能通过BBB的药物到达脑组织的治疗区域,提高脑内局部药物浓度从而发挥药物疗效[43-44]。这些初步研究结果为在临床上采用MRgFUS介导BBB开放治疗颅内肿瘤打下了良好基础。目前临床上已有初步数据证明了低强度脉冲超声开放BBB联合卡铂治疗胶质瘤的安全性和可行性[45]。2014年,Idbaih等[46]首次以复发性GBM患者为研究对象开展短暂开放BBB的研究,患者植入超声设备,在静脉注射卡铂化疗之前激活该设备以暂时开放BBB,结果显示MRI上无明显BBB开放的患者(n=8)中位无进展生存期(progression-free survival, PFS)为2.73个月,中位总生存期(overall survival, OS)为8.64个月。MRI上明确有BBB开放者(n=11)的中位PFS为4.11个月,中位OS为12.94个月;治疗后有2例患者出现脑水肿,虽与治疗相关但短暂可控,并未观察到患者出现与卡铂相关的神经毒性症状。相关的MRgFUS递送阿霉素和替莫唑胺治疗颅内肿瘤等其他研究也正在进行中[47]

    除了应用低强度MRgFUS开放BBB治疗颅内肿瘤外,高强度MRgFUS的热消融法也被研究者作为颅内肿瘤治疗的另一种选择。2010年,McDannold等[48]首次利用MRgFUS对3例GBM患者进行热消融治疗。但当时由于受到技术水平的限制,超声波虽穿透颅骨但未在脑内达到目标温度,故未能使病灶组织凝固坏死。随着技术的不断改进,Coluccia等[49]对一例63岁复发性GBM患者进行了25次高强度MRgFUS治疗,治疗后部分肿瘤实现消融,且未出现其他不良反应,从而首次证明MRgFUS安全消融颅内肿瘤的可行性。目前,一些验证MRgFUS介导颅内肿瘤消融安全性和有效性的研究正在进行中。

    AD是由多种病因诱发的一种神经退行性疾病,显著的病理改变为出现淀粉样β(Amyloid β, Aβ)蛋白聚集而成的老年斑和神经纤维异常缠结[50]。BBB也是AD治疗药物有效递送至大脑的主要障碍,MRgFUS技术在治疗AD上同样有着很大潜力。前期动物实验表明,MRgFUS介导的BBB开放可有效将抗体送至脑内,降低与神经纤维缠结相关的磷酸化Tau蛋白水平以及Aβ斑块的形成[51-52]。另外,当仅有BBB开放而无外用抗体时同样观察到了Aβ斑块的减少[53],这可能与BBB开放后血液中内源性免疫球蛋白进入大脑与Aβ斑块结合,激活天然免疫系统有关。Leinenga等[54]在开放10只APP23转基因小鼠BBB的实验中发现,与假处理的10只小鼠相比,经过MRgFUS处理后的小鼠体内Aβ斑块数量和表面积有所减少,并在Y迷宫,新颖物体识别和主动回避实验3个记忆任务上表现更佳。当然治疗AD的机制除了减少Aβ斑块外,超声处理还可增加AD老鼠模型中海马体神经元的发生,诱导激活其磷脂肌醇3激酶-蛋白激酶-雷帕霉素靶蛋白(phosphatidylinositol-3-kinase-protein kinase-mammalian target of rapamycin, PI3K-Akt-mTOR)的信号通路。Burgess等[53]利用MRgFUS靶向AD小鼠的背侧海马,经过4周治疗后,海马齿状回中新生神经元的数量显著增加了252%,而这些神经元的增殖和成熟与空间记忆的改善有着密切关系。PI3K-Akt-mTOR通路的激活可改善AD老鼠模型中齿状回新生神经元的存活,使新生神经元避免Aβ导致的树突生长缺陷[55]。Jalali等[56]的研究发现,超声联合微泡造影剂介导的BBB开放可诱导AD大鼠神经元中PI3K-Akt信号通路的激活。这些动物实验结果为AD患者的临床研究提供了可靠的理论支持。目前,已有评估MRgFUS安全性和可行性的临床试验应用于早期AD患者[57]。Lipsman等[58]的研究纳入5例AD患者,旨在探究MRgFUS是否可安全地开放轻中度Aβ阳性AD患者的BBB,该研究结果显示,MRgFUS可使BBB安全可逆开放且并未产生其他不良事件。另一项研究利用静息态功能MRI分析了5例AD患者经MRgFUS BBB开放后脑网络的变化,研究结果表明MRgFUS虽会暂时影响受试者功能连接,但其在术后1 d即可恢复并在随后3个月内保持不变[59]。这些MRgFUS安全开放AD患者BBB的初步数据对研究治疗药物输送和神经功能调节等具有重要意义。

    强迫症是一种以强迫行为和强迫观念为主要症状的精神障碍,对患者的日常工作以及人际交往产生重大影响,但一线药物治疗和心理治疗往往对40%~60%的强迫症患者无效[60]。越来越多的影像学、神经心理学和临床前研究认为强迫症是一种神经回路疾病,故对于保守治疗无效的患者而言,针对特定脑区的外科治疗可作为另一种选择。临床上常选择内囊前肢(anterior limb of the internal capsule,ALIC)作为手术靶点[61],因其可在边缘皮质和丘脑之间传递信息,被认为与情绪有关。近期的一项Meta分析显示,MRgFUS治疗难治性强迫症可能较其他外科手术方式更具优势[62]。Jung等[63]开展了一项MRgFUS双侧内囊损毁治疗4例难治性强迫症的研究,结果显示,至6个月随访期耶鲁-布朗强迫量表(Yale-Brown Obsessive- Compulsive Scale, Y-BOCS)评分平均改善了33%,所有患者在抑郁及焦虑方面均得到持续改善且并未产生相关副作用。一项MRgFUS双侧内囊损毁治疗11例强迫症并随访2年的研究显示,Y-BOCS评分及汉密尔顿抑郁和焦虑评分均下降,总体功能评分也得到了显著改善[64]。MRgFUS内囊损毁治疗有望为难治性强迫症患者提供新的有效治疗方法,但其长期安全性、疗效持久性以及相较于安慰剂或传统消融方法(如RFA)和非消融方法(如DBS)的疗效价值仍需进一步深入研究。基于既往MRgFUS治疗强迫症结果中抑郁评分的改善,MRgFUS消融法作为其他精神疾病的疗法亦正处于开发中。Kim等[65]率先报道了一例56岁患有重度抑郁症的女性患者接受MRgFUS靶向损毁ALIC治疗的经验, 术后一年随访结果显示汉密尔顿抑郁量表评分较术前改善了73.1%,贝克抑郁量表评分改善了53.8%。目前其他相关临床试验正在进行中,以进一步确定超声在强迫症和抑郁症中的作用。

    NP是由疾病或感觉神经损伤等多种原因引起的一种慢性疼痛,严重影响患者生活质量[66]。常规药物治疗的副作用与耐受性使得许多手术方式得以发展,具体手术方案可根据身体部位和疼痛原因进行选择。其中内侧丘脑已被诸多外科手术方式作为体感通路的主要中继站,顽固性NP患者经放射外科手术、RFA以及丘脑DBS置换术治疗后可有效控制疼痛[67]。如今MRgFUS技术提供了一种新型无创的替代治疗方式,在难治性NP中有着广阔的应用前景[68]。Jeanmonod等[69]的研究中纳入了9例成功进行MRgFUS中央外侧丘脑切除术治疗的NP患者,术后2 d 9例患者的疼痛缓解率达71.1%,3个月随访的平均疼痛缓解率达49%,8例患者1年随访的疼痛缓解率达57%。目前相关研究中心正在对MRgFUS丘脑疗法治疗NP患者进行深入研究,不久即会提供大规模临床分析结果。

    2011年《时代周刊》将MRgFUS技术评选为全球50大发明之一,并在全球引起广泛研究。目前MRgFUS靶向Vim核热消融治疗震颤为主型药物难治性ET、PD已被认可,并已在美国、日本等国家用于临床治疗。与传统外科治疗方式相比,MRgFUS治疗过程简单、术后住院周期短,更加适应当下快节奏的生活与工作。此外,相关动物实验结果表明,MRgFUS介导的BBB开放可能改善颅内肿瘤、AD等疾病的治疗效果,因此在常规应用MRgFUS开放人类BBB之前需将现有的动物数据积极转化为有意义的人类研究。而MRgFUS在强迫症、NP中的有效治疗以及在癫痫[70-71]和神经调控[72]等中枢神经系统疾病方面的广泛应用前景让我们看到了脑疾病治疗新时代的到来。

    利益冲突  无
  • [1]

    Kobus T, McDannold N. Update on Clinical Magnetic Resonance-Guided Focused Ultrasound Applications[J]. Magn Reson Imaging Clin N Am, 2015, 23:657-667. DOI: 10.1016/j.mric.2015.05.013

    [2] 金征宇, 苏佰燕, 薛华丹.磁共振引导下聚焦超声新技术进展及其临床应用[J].磁共振成像, 2014, 5:26-30. http://www.cnki.com.cn/Article/CJFDTotal-CGZC2014S1008.htm
    [3] 苏佰燕, 薛华丹, 金征宇.子宫肌瘤的影像诊断及与影像医学相关的治疗[J].协和医学杂志, 2011, 2:273-276. http://d.wanfangdata.com.cn/Periodical/xhyx201103017
    [4]

    Meng Y, Suppiah S, Mithani K, et al. Current and emerging brain applications of MR-guided focused ultrasound[J]. J Ther Ultrasound, 2017, 5:26. DOI: 10.1186/s40349-017-0105-z

    [5]

    Louis ED, Ferreira JJ. How common is the most common adult movement disorder:update on the worldwide prevalence of essential tremor[J]. Mov Disord, 2010, 25:534-541. DOI: 10.1002/mds.22838

    [6]

    Chandran V, Pal PK, Reddy JYC, et al. Non-motor features in essential tremor[J]. Acta Neurol Scand, 2012, 125:332-337. DOI: 10.1111/j.1600-0404.2011.01573.x

    [7]

    Lundervold DA, Ament PA, Holt P. Social anxiety, tremor severity, and tremor disability:a search for clinically relevant measures[J]. Psychiatry J, 2013, 2013:257459. DOI: 10.1155/2013/257459

    [8]

    Lorenz D, Poremba C, Papengut F, et al. The psychosocial burden of essential tremor in an outpatient-and a community-based cohort[J]. Eur J Neurol, 2011, 18:972-979. DOI: 10.1111/j.1468-1331.2010.03295.x

    [9] 毛成洁, 陈菊萍, 胡伟东, 等.运动障碍疾病伴发抑郁的临床观察[J].中华医学杂志, 2013, 93:26-29. http://www.cqvip.com/QK/93850X/201301/44534208.html
    [10]

    Haubenberger D, Hallett M. Essential Tremor[J]. N Engl J Med, 2018, 378:1802-1810. DOI: 10.1056/NEJMcp1707928

    [11]

    Elias WJ, Shah BB. Tremor[J]. JAMA, 2014, 311:948-954. DOI: 10.1001/jama.2014.1397

    [12]

    Elias WJ, Khaled M, Hilliard JD, et al. A magnetic resonance imaging, histological, and dose modeling comparison of focused ultrasound radiofrequency, and Gamma Knife radiosurgery lesions in swine thalamus[J]. J Neurosurg, 2013, 119:307-317. DOI: 10.3171/2013.5.JNS122327

    [13]

    Shanker V. Essential tremor:diagnosis and management.[J]. BMJ, 2019, 366:l4485. https://pubmed.ncbi.nlm.nih.gov/31383632/

    [14]

    Elias WJ, Huss D, Voss T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor[J]. N Engl J Med, 2013, 369:640-648. DOI: 10.1056/NEJMoa1300962

    [15]

    Lipsman N, Schwartz ML, Huang Y, et al. MR-guided focused ultrasound thalamotomy for essential tremor:a proof-of-concept study[J]. Lancet Neurol, 2013, 12:462-468. DOI: 10.1016/S1474-4422(13)70048-6

    [16]

    Chang WS, Jung HH, Kweon EJ, et al. Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor:practices and clinicoradiological outcomes[J]. J Neurol Neurosurg Psychiatry, 2015, 86:257-264. DOI: 10.1136/jnnp-2014-307642

    [17]

    Elias WJ, Lipsman N, Ondo WG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor[J]. N Engl J Med, 2016, 375:730-739. DOI: 10.1056/NEJMoa1600159

    [18]

    Fishman PS. Thalamotomy for essential tremor:FDA approval brings brain treatment with FUS to the clinic[J]. J Ther Ultrasound, 2017, 5:19. DOI: 10.1186/s40349-017-0096-9

    [19]

    Iacopino DG, Gagliardo C, Giugno A, et al. Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson's disease[J]. Neurosurg Focus, 2018, 44:E7. http://www.ncbi.nlm.nih.gov/pubmed/29385927

    [20]

    Jung NY, Park CK, Chang WS, et al. Effects on cognition and quality of life with unilateral magnetic resonance-guided focused ultrasound thalamotomy for essential tremor[J]. Neurosurg Focus, 2018, 44:E8. https://pubmed.ncbi.nlm.nih.gov/29385928/

    [21]

    Zaaroor M, Sinai A, Goldsher D, et al. Magnetic resonance-guided focused ultrasound thalamotomy for tremor:a report of 30 Parkinson's disease and essential tremor cases[J]. J Neurosurg, 2018, 128:202-210. DOI: 10.3171/2016.10.JNS16758

    [22] 宗睿, 何建风, 张德康, 等.磁共振引导超声聚焦系统("磁波刀")在治疗特发性震颤中的应用[J].解放军医学院学报, 2019, 40:1-6. http://www.cqvip.com/Main/Detail.aspx?id=74897488504849574849484850
    [23]

    Fishman PS, Elias WJ, Ghanouni P, et al. Neurological adverse event profile of magnetic resonance imaging-guided focused ultrasound thalamotomy for essential tremor[J]. Mov Disord, 2018, 33:843-847. DOI: 10.1002/mds.27401

    [24]

    Chang JW, Park CK, Lipsman N, et al. A prospective trial of magnetic resonance-guided focused ultrasound thalamo-tomy for essential tremor:Results at the 2-year follow-up[J]. Ann Neurol, 2018, 83:107-114. DOI: 10.1002/ana.25126

    [25]

    Sinai A, Nassar M, Eran A, et al. Magnetic resonance-guided focused ultrasound thalamotomy for essential tremor:a 5-year single-center experience[J]. J Neurosurg, 2019, 1:1-8. http://www.researchgate.net/publication/339290667_Erratum_Magnetic_resonance-guided_focused_ultrasound_thalamotomy_for_essential_tremor_a_5-year_single-center_experience

    [26]

    Schlesinger I, Eran A, Sinai A, et al. MRI guided focused ultrasound thalamotomy for moderate-to-severe tremor in Parkinson's disease[J]. Parkinsons Dis, 2015, 2015:219149. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572440/

    [27]

    Bond AE, Shah BB, Huss DS, et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease:a randomized clinical trial[J]. JAMA Neurol, 2017, 74:1412-1418. DOI: 10.1001/jamaneurol.2017.3098

    [28]

    Fasano A, Llinas M, Munhoz RP, et al. MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes[J]. Neurology, 2017, 89:771-775. DOI: 10.1212/WNL.0000000000004268

    [29] 史俊庭, 崔冰心.河南完成大陆地区首例帕金森病震颤磁波刀治疗[EB/OL]. http://news.sciencenet.cn/htmlnews/2019/3/423392.shtm.
    [30]

    Magara A, Bühler R, Moser D, et al. First experience with MR-guided focused ultrasound in the treatment of Parkinson's disease[J]. J Ther Ultrasound, 2014, 2:11. DOI: 10.1186/2050-5736-2-11

    [31]

    Na YC, Chang WS, Jung HH, et al. Unilateral magnetic resonance-guided focused ultrasound pallidotomy for Parkinson disease[J]. Neurology, 2015, 85:549-551. DOI: 10.1212/WNL.0000000000001826

    [32]

    Jung NY, Park CK, Kim M, et al. The efficacy and limits of magnetic resonance-guided focused ultrasound pallidotomy for Parkinson's disease:a Phase I clinical trial[J]. J Neurosurg, 2018, 1:1-9. https://thejns.org/downloadpdf/journals/j-neurosurg/130/6/article-p1853.xml

    [33]

    Martínez-Fernández R, Rodríguez-Rojas R, del Álamo M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson's disease:a pilot study[J]. Lancet Neurol, 2018, 17:54-63. DOI: 10.1016/S1474-4422(17)30403-9

    [34]

    Yang FY, Horng SC. Ultrasound enhanced delivery of macromolecular agents in brain tumor rat model[C]. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011: 5573-5576.

    [35]

    Burgess A, Hynynen K. Noninvasive and targeted drug delivery to the brain using focused ultrasound[J]. ACS Chem Neurosci, 2013, 4:519-526. DOI: 10.1021/cn300191b

    [36]

    Fan CH, Ting CY, Lin CY, et al. Noninvasive, targeted, and non-viral ultrasound-mediated GDNF-plasmid delivery for treatment of Parkinson's disease[J]. Sci Rep, 2016, 6:19579. DOI: 10.1038/srep19579

    [37]

    Mead BP, Kim N, Miller GW, et al. Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson's disease model[J]. Nano Lett, 2017, 17:3533-3542. DOI: 10.1021/acs.nanolett.7b00616

    [38]

    Meng Y, Voisin MR, Suppiah S, et al. Is there a role for MR-guided focused ultrasound in Parkinson's disease?[J]. Mov Disord, 2018, 33:575-579. DOI: 10.1002/mds.27308

    [39]

    Mainprize T, Lipsman N, Huang Y, et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound:a clinical safety and feasibility study[J]. Sci Rep, 2019, 9:321. DOI: 10.1038/s41598-018-36340-0

    [40]

    Rochet NM, Dronca RS, Kottschade LA, et al. Melanoma brain metastases and vemurafenib:need for further investigation[J]. Mayo Clin Proc, 2012, 87:976-981. DOI: 10.1016/j.mayocp.2012.07.006

    [41]

    Wei KC, Chu PC, Wang HYJ, et al. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment:a preclinical study[J]. PLoS One, 2013, 8:e58995. DOI: 10.1371/journal.pone.0058995

    [42]

    Kobus T, Zervantonakis IK, Zhang Y, et al. Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption[J]. J Control Release, 2016, 238:281-288. DOI: 10.1016/j.jconrel.2016.08.001

    [43]

    Treat LH, McDannold N, Zhang Y, et al. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma[J]. Ultrasound Med Biol, 2012, 38:1716-1725. DOI: 10.1016/j.ultrasmedbio.2012.04.015

    [44]

    Alli S, Figueiredo CA, Golbourn B, et al. Brainstem blood brain barrier disruption using focused ultrasound:A demonstration of feasibility and enhanced doxorubicin delivery[J]. J Control Release, 2018, 281:29-41. DOI: 10.1016/j.jconrel.2018.05.005

    [45]

    Carpentier A, Canney M, Vignot A, et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound[J]. Sci Transl Med, 2016, 8:343re2. DOI: 10.1126/scitranslmed.aaf6086

    [46]

    Idbaih A, Canney M, Belin L, et al. Safety and feasibility of repeated and transient blood-brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma[J]. Clin Cancer Res, 2019, 25:3793-3801. DOI: 10.1158/1078-0432.CCR-18-3643

    [47]

    Meng Y, Suppiah S, Surendrakumar S, et al. Low-intensity MR-guided focused ultrasound mediated disruption of the blood-brain barrier for intracranial metastatic diseases[J]. Front Oncol, 2018, 8:338. DOI: 10.3389/fonc.2018.00338

    [48]

    McDannold N, Clement GT, Black P, et al. Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors:initial findings in 3 patients[J]. Neurosurgery, 2010, 66:323-332. DOI: 10.1227/01.NEU.0000360379.95800.2F

    [49]

    Coluccia D, Fandino J, Schwyzer L, et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound[J]. J Ther Ultrasound, 2014, 2:17. DOI: 10.1186/2050-5736-2-17

    [50]

    Karakatsani ME, Kugelman T, Ji R, et al. Unilateral focused ultrasound-induced blood-brain barrier opening reduces phosphorylated tau from the rTg4510 mouse model[J]. Theranostics, 2019, 9:5396-5411. DOI: 10.7150/thno.28717

    [51]

    Nisbet RM, Van der Jeugd A, Leinenga G, et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model[J]. Brain, 2017, 140:1220-1230. DOI: 10.1093/brain/awx052

    [52]

    Jordão JF, Ayala-Grosso CA, Markham K, et al. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer's disease[J]. PLoS One, 2010, 5:e10549. DOI: 10.1371/journal.pone.0010549

    [53]

    Burgess A, Dubey S, Yeung S, et al. Alzheimer disease in a mouse model:MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior[J]. Radiology, 2014, 273:736-745. DOI: 10.1148/radiol.14140245

    [54]

    Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model[J]. Sci Transl Med, 2015, 7:278ra33. DOI: 10.1126/scitranslmed.aaa2512

    [55]

    Li L, Xu B, Zhu Y, et al. DHEA prevents Aβ25-35-impaired survival of newborn neurons in the dentate gyrus through a modulation of PI3K-Akt-mTOR signaling[J]. Neuropharmacology, 2010, 59:323-333. DOI: 10.1016/j.neuropharm.2010.02.009

    [56]

    Jalali S, Huang Y, Dumont DJ, et al. Focused ultrasound-mediated bbb disruption is associated with an increase in activation of AKT:experimental study in rats[J]. BMC Neurol, 2010, 10:114. DOI: 10.1186/1471-2377-10-114

    [57]

    Chen KT, Wei KC, Liu HL. Theranostic strategy of focused ultrasound induced blood-brain barrier opening for CNS disease treatment[J]. Front Pharmacol, 2019, 10:86. DOI: 10.3389/fphar.2019.00086

    [58]

    Lipsman N, Meng Y, Bethune AJ, et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound[J]. Nat Commun, 2018, 9:2336. DOI: 10.1038/s41467-018-04529-6

    [59]

    Meng Y, MacIntosh BJ, Shirzadi Z, et al. Resting state functional connectivity changes after MR-guided focused ultrasound mediated blood-brain barrier opening in patients with Alzheimer's disease[J]. Neuroimage, 2019, 200:275-280. DOI: 10.1016/j.neuroimage.2019.06.060

    [60]

    Hawken E, Dilkov D, Kaludiev E, et al. Transcranial magnetic stimulation of the supplementary motor area in the treatment of obsessive-compulsive disorder:a multi-site study[J]. Int J Mol Sci, 2016, 17:420. DOI: 10.3390/ijms17030420

    [61]

    Franklin ME, Foa EB. Treatment of obsessive compulsive disorder[J]. Annu Rev Clin Psychol, 2011, 7:229-243. DOI: 10.1146/annurev-clinpsy-032210-104533

    [62]

    Kumar KK, Bhati MT, Ravikumar VK, et al. MR-guided Focused Ultrasound versus Radiofrequency Capsulotomy for Treatment-Refractory Obsessive Compulsive Disorder:A Cost-Effectiveness Threshold Analysis[J]. Front Neurosci, 2019, 13:66. DOI: 10.3389/fnins.2019.00066

    [63]

    Jung HH, Kim SJ, Roh D, et al. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder:a proof-of-concept study[J]. Mol Psychiatry, 2015, 20:1205-1211. DOI: 10.1038/mp.2014.154

    [64]

    Kim SJ, Roh D, Jung HH, et al. A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive-compulsive disorder:2-year follow-up[J]. J Psychiatry Neurosci, 2018, 43:327-337. DOI: 10.1503/jpn.170188

    [65]

    Kim M, Kim CH, Jung HH, et al. Treatment of major depressive disorder via magnetic resonance-guided focused ultrasound surgery[J]. Biol Psychiatry, 2018, 83:e17-e18. DOI: 10.1016/j.biopsych.2017.05.008

    [66]

    Toth C, Lander J, Wiebe S. The prevalence and impact of chronic pain with neuropathic pain symptoms in the general population[J]. Pain Med, 2009, 10:918-929. DOI: 10.1111/j.1526-4637.2009.00655.x

    [67]

    Jung NY, Chang JW. Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery:Taking Lessons from the Past to Inform the Future[J]. J Korean Med Sci, 2018, 33:e279. DOI: 10.3346/jkms.2018.33.e279

    [68]

    Lee EJ, Fomenko A, Lozano AM. Magnetic resonance-guided focused ultrasound:current status and future perspectives in thermal ablation and blood-brain barrier opening[J]. J Korean Neurosurg Soc, 2019, 62:10-26. DOI: 10.3340/jkns.2018.0180

    [69]

    Jeanmonod D, Werner B, Morel A, et al. Transcranial magnetic resonance imaging-guided focused ultrasound:noninvasive central lateral thalamotomy for chronic neuropathic pain[J]. Neurosurg Focus, 2012, 32:E1.

    [70]

    Parker WE, Weidman EK, Chazen JL, et al. Magnetic resonance-guided focused ultrasound for ablation of mesial temporal epilepsy circuits:modeling and theoretical feasibility of a novel noninvasive approach[J]. J Neurosurg, 2019, 1:1-8. https://www.ncbi.nlm.nih.gov/pubmed/31200385

    [71]

    Ranjan M, Boutet A, Bhatia S, et al. Neuromodulation beyond neurostimulation for epilepsy:scope for focused ultrasound[J]. Expert Rev Neurother, 2019, 19:937-943. DOI: 10.1080/14737175.2019.1635013

    [72]

    Naor O, Krupa S, Shoham S. Ultrasonic neuromodulation[J]. J Neural Eng, 2016, 13:031003. DOI: 10.1088/1741-2560/13/3/031003

计量
  • 文章访问数:  659
  • HTML全文浏览量:  84
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-07
  • 刊出日期:  2020-01-29

目录

/

返回文章
返回
x 关闭 永久关闭