Application of Magnetic Resonance-guided Focused Ultrasound Therapy in Central Nervous System Diseases
-
摘要: 磁共振引导聚焦超声是一种先进的无创治疗技术, 在通过靶向热消融及开放血脑屏障治疗中枢神经系统疾病方面具有较大潜力, 目前已被应用于特发性震颤、帕金森病、颅内肿瘤、阿尔兹海默病、强迫症、神经病理性疼痛等疾病的研究与治疗中。磁共振引导聚焦超声因其精准、无电离辐射、实时监测靶点温度等优势可能成为诸多疾病的潜在替代疗法, 为患者提供一种新的治疗选择。本文就目前磁共振引导聚焦超声在中枢神经系统疾病方面的临床应用及科学研究予以综述。Abstract: Magnetic resonance-guided focused ultrasound is an advanced non-invasive therapeutic technique, which has great potential in targeted thermal ablation and blood-brain barrier opening treatment of central nervous system diseases. It has been used in the research and treatment of essential tremor, Parkinson's disease, intracranial tumors, Alzheimer's disease, obsessive-compulsive disorder, neuropathic pain, and other diseases now. Magnetic resonance-guided focused ultrasound therapy may be a potential alternative therapy for many diseases due to its advantages such as precision, non-ionizing radiation, and real-time monitoring of target temperature. In this article, we reviewed the progress of magnetic resonance-guided focused ultrasound therapy in clinical applications and scientific researches.
-
腹主动脉瘤的定义是动脉管壁永久性局限性扩张超过正常血管直径的50%或主动脉直径>3 cm[1],该病在50岁以上男性发病率(4%~8%)高于同龄女性(1%~1.3%)[2]。1991年Parodi等[3]首次报道了腹主动脉瘤腔内修补术(endovascular aneurysm repair,EVAR),即在血管腔内置入人工覆膜支架,重建血流通道,避免瘤体受到腹主动脉高压血流冲击发生破裂。与传统开放手术相比,EVAR微创、安全,可显著降低围手术期死亡率[4-6],内漏是其常见并发症,发生率达16%~33%[7-9],但发生内漏的动脉瘤,其破裂风险不一定增加[10-11],故以内漏评估EVAR的疗效并不准确。
动脉瘤体积增大是动脉瘤破裂最重要的预测指标[12-13],但传统动脉瘤体积测量过程繁琐、耗时,而CT纹理分析是近年广泛应用的一种图像后处理技术,通过量化分析图像像素灰度值的局部特征、变化规律及分布模式,定量鉴别特定区域的异质性[14],已广泛应用于淋巴瘤、食管癌和结直肠癌等肿瘤的分型分析、治疗前评估及疗效预测[15-19]。EVAR术后CT信号的异质性提示血管壁发生结构改变[20-21],可能与动脉瘤体积增大直接相关。
目前鲜有将CT纹理分析应用于动脉瘤预后监测的报道,本研究通过对EVAR术后动脉瘤进行CT纹理分析,探究其与动脉瘤体积变化的关系,以期为临床提供一种更准确、简便的风险分层方法。
1. 资料与方法
1.1 研究对象
回顾性收集2014年7月至2019年6月于北京协和医院放射科行腹盆部增强CT血管造影(computed tomography angiography,CTA)随访的EVAR术后患者的临床及影像学资料。
纳入标准:(1)肾下型腹主动脉瘤EVAR术后;(2)术后第3和12个月在本院规律随访,并完成两次腹盆CTA者。
排除标准:(1)合并其他腹盆腔脏器严重疾病,影响腹主动脉瘤轮廓准确识别者;(2)合并主动脉夹层或大动脉炎等其他血管疾病者。
本研究通过中国医学科学院北京协和医院伦理审查委员会审查(审批号:S-K1016)。
1.2 CT血管造影响
采用高压注射器由患者右肘正中静脉注射造影剂碘普罗胺(370 mg/ml,上海博莱科信谊药业有限责任公司)90 ml,流速4.0 ml/s。患者取仰卧位,双手上举过头,扫描范围自膈肌水平至耻骨联合水平。采用第一代双源CT(德国西门子)智能触发扫描,触发层面为腹腔干水平腹主动脉,触发阈值100 HU,触发后立刻扫描动脉期图像,25 s后采集门脉期图像。扫描参数:管电压120 kV,管电流200 mA,机架旋转时间330 ms,准直器2.0 mm×32.0 mm×0.6 mm,螺距0.8 mm。
1.3 传统动脉瘤体积测量及分组
将增强动脉期图像导入飞利浦重建工作站,利用后处理软件测量数据。使用画笔工具,以逐节方式手动勾勒主动脉外轮廓,体积测量范围从较低一侧肾动脉水平到两侧髂总动脉分叉水平[10, 22-25],包括给定解剖区域内的正常主动脉及瘤体边缘的任何钙化和附壁血栓,排除所有瘤体分支血管。勾勒完成后计算机自动计算体积大小。
术后两次随访的动脉瘤体积差大于2%定义为瘤体体积增大,反之定义为瘤体未增大[10, 26]。根据动脉瘤体积变化情况,将入组患者分为动脉瘤体积增大组和体积未增大组。
1.4 纹理分析
取术后第1次随访时动脉期图像中动脉瘤囊轴位最大层面,使用分割软件MATLAB手动勾勒动脉瘤的轴位最大截面,将勾勒好的图像交第三方公司进行纹理分析。采用灰度矩阵提取感兴趣区(region of interest,ROI)血栓部分的纹理特征,生成ROI内的纹理特征值后,输入由神经网络生成的分类器中,得到最终分类结果。此过程中第三方公司并不知晓患者体积分组情况。
采用3种灰度矩阵提取纹理特征,分别为灰度共生矩阵(grey level co-occurrence matrix,GLCM)、灰度游程矩阵(grey level run length matrix,GLRLM)和灰度差分矩阵(grey level difference matrix,GLDM)。这3种矩阵可获得像素对或像素组间灰度值的二阶或更高阶统计关系,描述图像内容的纹理特征。GLCM描述像素距离和角度的二阶联合条件概率密度函数,体现像素灰度值的空间关系;GLRLM提取高阶纹理信息的二维矩阵,为与GLCM可比,计算4个方向的GLRLM矩阵,并将灰色级数保持在16;GLDM基于两个具有特殊关系像素点的出现概率,特殊关系指这两个像素点间的位移差和灰度值差固定,同GLCM一样,计算动脉瘤内4个方向的平均分布。
1.5 统计学处理
采用SPSS22.0软件进行统计分析。符合正态分布的计量资料以均数±标准差表示,组间比较采用配对样本t检验;不符合正态分布的计量资料以中位数(四分位数)表示,采用Wilcoxon秩和检验。受试者工作特征曲线(receiver operation characteristic curve,ROC)下面积(area under curve,AUC)用于评估纹理分析效果。P<0.05为差异具有统计学意义。
2. 结果
2.1 一般临床资料
共70例符合纳入和排除标准的腹主动脉瘤患者入选本研究(图 1),男性62例,女性8例,平均年龄(68.8±8.6)岁,60岁以上患者61例(87.1%,61/70),既往史中有高血压、冠状动脉粥样硬化性心脏病、吸烟、2型糖尿病者分别为44例(62.9%,44/70)、38例(54.3%,38/70)、35例(50.0%,35/70)、14例(20.0%,14/70)。
2.2 腹主动脉瘤体积变化情况
70例患者中,29例(41.4%,29/70)出现EVAR术后腹主动脉瘤体积增大,41例(58.6%,41/70)瘤体未增大(表 1)。
表 1 腹主动脉瘤腔内修补术后动脉瘤体积的变化[M(P25, P75), cm3]分组 术后3个月 术后12个月 Z值 P值 体积增大组(n=29) 114.6(88.7,226.2) 123.4(91.8,241.5) -4.703 <0.01 体积未增大组(n=41) 127.0(97.4,196.9) 114.2(78.7,183.5) -5.417 <0.01 2.3 纹理特征分析结果
三种灰度矩阵纹理分析技术对EVAR术后动脉瘤体积增大的诊断效能各有侧重(表 2),其中GLCM的AUC最大(0.892),其准确度与GLRLM相当(0.859),灵敏度与GLDM相当(0.862),但特异度略低于GLRLM。GLDM的AUC最小(0.800),准确度(0.788)和特异度(0.683)也最低。
表 2 3种灰度矩阵纹理分析技术对腹主动脉瘤腔内修补术后动脉瘤体积变化的诊断效能纹理分析技术 曲线下面积 准确度 灵敏度 特异度 GLCM 0.892 0.859 0.862 0.854 GLDM 0.800 0.788 0.862 0.683 GLRLM 0.888 0.859 0.828 0.902 GLCM:灰度共生矩阵;GLRLM:灰度游程矩阵;GLDM:灰度差分矩阵 3. 讨论
图像纹理特征分析是对图像像素灰度值的局部特征分析法,包括统计分析、结构分析、模型分析和频谱分析4种,其中统计分析最常用[14],通过分析纹理的统计属性来描述纹理,提供纹理的平滑、稀疏等分布特性。本研究正是基于此种纹理分析方法,观察GLCM、GLDM和GLRLM对评估EVAR术后动脉瘤体积变化的预测价值,发现GLCM的诊断效能最优(AUC=0.892)。
纹理分析的有效性已在诸多领域得到证实,如鉴别病变性质、治疗前评估、预测疗效等,研究多集中在肿瘤学方面,如通过乳腺X线纹理分析鉴别肿瘤良恶性[27],通过正电子发射断层显像/计算机体层成像(positron emission tomography/computed tomography, PET/CT)纹理分析将纹理参数与PET/CT最大标准摄取值结合,提高诊断肺癌的灵敏度[28],原发性结肠癌CT纹理特征与患者5年总体生存率相关[29],采用GLCM法预测宫颈癌疗效的准确度可达75%[30]。
CT纹理分析技术对血管疾病的辅助诊断亦具备可行性。研究显示,标准灰阶中位数技术较斑块纹理分析技术能更有效预测动脉内膜切除术后微栓塞的程度[31]。Kotze等[32]曾提出腹主动脉瘤CT信号异质性与瘤体扩张相关,联合PET/CT评估腹主动脉瘤的代谢活性,发现中等纹理的峰度与动脉瘤扩展显著相关,该研究是基于一阶统计的CT纹理参数,本研究则以二阶统计量为出发点,通过分析比较GLCM、GLRLM和GLDM的纹理特征,发现GLCM对EVAR术后动脉瘤体积增长的预测效能最佳,其次为GLRLM,最差为GLDM,此结果与García等[33]的结果一致,不同的是本研究是采用体积变化评价动脉瘤预后,García等则以动脉瘤轴位最大径作为预后分类指标。实际上,体积测量在反映动脉瘤真实增长方面优于直径测量[34],因为体积从三维角度评估瘤体形态变化,而直径仅反应瘤体某一截面的变化。
EVAR术后随访中,放射科医师阅片时往往关注有无内漏及瘤体轴位最大径,易受主观影响,且评估不够全面。本研究中4例患者在第1次随访时出现内漏,但第2次随访时内漏消失,因此随访中发现内漏不一定需要立即干预。相较而言,纹理分析技术能更客观准确地描绘生物组织微观结构改变,获取肉眼无法辨识的细微信息,对预测动脉瘤体增大的最优灵敏度可达86.2%,特异度达85.4%。
本研究存在部分局限性:(1)为回顾性研究,入组例数较少,术后随访时间较短,存在一定的选择偏倚;(2)由于软件技术限制,在分析动脉瘤纹理特征时仅提取了瘤体最大截面的二维纹理信息,未能从三维角度全面评估;(3)GLCM、GLRLM及GLDM纹理特征参数的整合过程由人工神经网络算法完成,由于该资料为内部封存,提取困难,致使结果部分的阐述尚欠明确。
综上,CT纹理分析能有效预测EVAR术后动脉瘤的体积变化。目前该技术的研究尚处初级阶段,未来还需开展大样本、多中心、前瞻性研究进一步验证本文结论,推动纹理分析成为常规工具,为临床诊疗提供更精准的参考。
利益冲突 无 -
[1] Kobus T, McDannold N. Update on Clinical Magnetic Resonance-Guided Focused Ultrasound Applications[J]. Magn Reson Imaging Clin N Am, 2015, 23:657-667. DOI: 10.1016/j.mric.2015.05.013
[2] 金征宇, 苏佰燕, 薛华丹.磁共振引导下聚焦超声新技术进展及其临床应用[J].磁共振成像, 2014, 5:26-30. http://www.cnki.com.cn/Article/CJFDTotal-CGZC2014S1008.htm [3] 苏佰燕, 薛华丹, 金征宇.子宫肌瘤的影像诊断及与影像医学相关的治疗[J].协和医学杂志, 2011, 2:273-276. http://d.wanfangdata.com.cn/Periodical/xhyx201103017 [4] Meng Y, Suppiah S, Mithani K, et al. Current and emerging brain applications of MR-guided focused ultrasound[J]. J Ther Ultrasound, 2017, 5:26. DOI: 10.1186/s40349-017-0105-z
[5] Louis ED, Ferreira JJ. How common is the most common adult movement disorder:update on the worldwide prevalence of essential tremor[J]. Mov Disord, 2010, 25:534-541. DOI: 10.1002/mds.22838
[6] Chandran V, Pal PK, Reddy JYC, et al. Non-motor features in essential tremor[J]. Acta Neurol Scand, 2012, 125:332-337. DOI: 10.1111/j.1600-0404.2011.01573.x
[7] Lundervold DA, Ament PA, Holt P. Social anxiety, tremor severity, and tremor disability:a search for clinically relevant measures[J]. Psychiatry J, 2013, 2013:257459. DOI: 10.1155/2013/257459
[8] Lorenz D, Poremba C, Papengut F, et al. The psychosocial burden of essential tremor in an outpatient-and a community-based cohort[J]. Eur J Neurol, 2011, 18:972-979. DOI: 10.1111/j.1468-1331.2010.03295.x
[9] 毛成洁, 陈菊萍, 胡伟东, 等.运动障碍疾病伴发抑郁的临床观察[J].中华医学杂志, 2013, 93:26-29. http://www.cqvip.com/QK/93850X/201301/44534208.html [10] Haubenberger D, Hallett M. Essential Tremor[J]. N Engl J Med, 2018, 378:1802-1810. DOI: 10.1056/NEJMcp1707928
[11] Elias WJ, Shah BB. Tremor[J]. JAMA, 2014, 311:948-954. DOI: 10.1001/jama.2014.1397
[12] Elias WJ, Khaled M, Hilliard JD, et al. A magnetic resonance imaging, histological, and dose modeling comparison of focused ultrasound radiofrequency, and Gamma Knife radiosurgery lesions in swine thalamus[J]. J Neurosurg, 2013, 119:307-317. DOI: 10.3171/2013.5.JNS122327
[13] Shanker V. Essential tremor:diagnosis and management.[J]. BMJ, 2019, 366:l4485. https://pubmed.ncbi.nlm.nih.gov/31383632/
[14] Elias WJ, Huss D, Voss T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor[J]. N Engl J Med, 2013, 369:640-648. DOI: 10.1056/NEJMoa1300962
[15] Lipsman N, Schwartz ML, Huang Y, et al. MR-guided focused ultrasound thalamotomy for essential tremor:a proof-of-concept study[J]. Lancet Neurol, 2013, 12:462-468. DOI: 10.1016/S1474-4422(13)70048-6
[16] Chang WS, Jung HH, Kweon EJ, et al. Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor:practices and clinicoradiological outcomes[J]. J Neurol Neurosurg Psychiatry, 2015, 86:257-264. DOI: 10.1136/jnnp-2014-307642
[17] Elias WJ, Lipsman N, Ondo WG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor[J]. N Engl J Med, 2016, 375:730-739. DOI: 10.1056/NEJMoa1600159
[18] Fishman PS. Thalamotomy for essential tremor:FDA approval brings brain treatment with FUS to the clinic[J]. J Ther Ultrasound, 2017, 5:19. DOI: 10.1186/s40349-017-0096-9
[19] Iacopino DG, Gagliardo C, Giugno A, et al. Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson's disease[J]. Neurosurg Focus, 2018, 44:E7. http://www.ncbi.nlm.nih.gov/pubmed/29385927
[20] Jung NY, Park CK, Chang WS, et al. Effects on cognition and quality of life with unilateral magnetic resonance-guided focused ultrasound thalamotomy for essential tremor[J]. Neurosurg Focus, 2018, 44:E8. https://pubmed.ncbi.nlm.nih.gov/29385928/
[21] Zaaroor M, Sinai A, Goldsher D, et al. Magnetic resonance-guided focused ultrasound thalamotomy for tremor:a report of 30 Parkinson's disease and essential tremor cases[J]. J Neurosurg, 2018, 128:202-210. DOI: 10.3171/2016.10.JNS16758
[22] 宗睿, 何建风, 张德康, 等.磁共振引导超声聚焦系统("磁波刀")在治疗特发性震颤中的应用[J].解放军医学院学报, 2019, 40:1-6. http://www.cqvip.com/Main/Detail.aspx?id=74897488504849574849484850 [23] Fishman PS, Elias WJ, Ghanouni P, et al. Neurological adverse event profile of magnetic resonance imaging-guided focused ultrasound thalamotomy for essential tremor[J]. Mov Disord, 2018, 33:843-847. DOI: 10.1002/mds.27401
[24] Chang JW, Park CK, Lipsman N, et al. A prospective trial of magnetic resonance-guided focused ultrasound thalamo-tomy for essential tremor:Results at the 2-year follow-up[J]. Ann Neurol, 2018, 83:107-114. DOI: 10.1002/ana.25126
[25] Sinai A, Nassar M, Eran A, et al. Magnetic resonance-guided focused ultrasound thalamotomy for essential tremor:a 5-year single-center experience[J]. J Neurosurg, 2019, 1:1-8. http://www.researchgate.net/publication/339290667_Erratum_Magnetic_resonance-guided_focused_ultrasound_thalamotomy_for_essential_tremor_a_5-year_single-center_experience
[26] Schlesinger I, Eran A, Sinai A, et al. MRI guided focused ultrasound thalamotomy for moderate-to-severe tremor in Parkinson's disease[J]. Parkinsons Dis, 2015, 2015:219149. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572440/
[27] Bond AE, Shah BB, Huss DS, et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease:a randomized clinical trial[J]. JAMA Neurol, 2017, 74:1412-1418. DOI: 10.1001/jamaneurol.2017.3098
[28] Fasano A, Llinas M, Munhoz RP, et al. MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes[J]. Neurology, 2017, 89:771-775. DOI: 10.1212/WNL.0000000000004268
[29] 史俊庭, 崔冰心.河南完成大陆地区首例帕金森病震颤磁波刀治疗[EB/OL]. http://news.sciencenet.cn/htmlnews/2019/3/423392.shtm. [30] Magara A, Bühler R, Moser D, et al. First experience with MR-guided focused ultrasound in the treatment of Parkinson's disease[J]. J Ther Ultrasound, 2014, 2:11. DOI: 10.1186/2050-5736-2-11
[31] Na YC, Chang WS, Jung HH, et al. Unilateral magnetic resonance-guided focused ultrasound pallidotomy for Parkinson disease[J]. Neurology, 2015, 85:549-551. DOI: 10.1212/WNL.0000000000001826
[32] Jung NY, Park CK, Kim M, et al. The efficacy and limits of magnetic resonance-guided focused ultrasound pallidotomy for Parkinson's disease:a Phase I clinical trial[J]. J Neurosurg, 2018, 1:1-9. https://thejns.org/downloadpdf/journals/j-neurosurg/130/6/article-p1853.xml
[33] Martínez-Fernández R, Rodríguez-Rojas R, del Álamo M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson's disease:a pilot study[J]. Lancet Neurol, 2018, 17:54-63. DOI: 10.1016/S1474-4422(17)30403-9
[34] Yang FY, Horng SC. Ultrasound enhanced delivery of macromolecular agents in brain tumor rat model[C]. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011: 5573-5576.
[35] Burgess A, Hynynen K. Noninvasive and targeted drug delivery to the brain using focused ultrasound[J]. ACS Chem Neurosci, 2013, 4:519-526. DOI: 10.1021/cn300191b
[36] Fan CH, Ting CY, Lin CY, et al. Noninvasive, targeted, and non-viral ultrasound-mediated GDNF-plasmid delivery for treatment of Parkinson's disease[J]. Sci Rep, 2016, 6:19579. DOI: 10.1038/srep19579
[37] Mead BP, Kim N, Miller GW, et al. Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson's disease model[J]. Nano Lett, 2017, 17:3533-3542. DOI: 10.1021/acs.nanolett.7b00616
[38] Meng Y, Voisin MR, Suppiah S, et al. Is there a role for MR-guided focused ultrasound in Parkinson's disease?[J]. Mov Disord, 2018, 33:575-579. DOI: 10.1002/mds.27308
[39] Mainprize T, Lipsman N, Huang Y, et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound:a clinical safety and feasibility study[J]. Sci Rep, 2019, 9:321. DOI: 10.1038/s41598-018-36340-0
[40] Rochet NM, Dronca RS, Kottschade LA, et al. Melanoma brain metastases and vemurafenib:need for further investigation[J]. Mayo Clin Proc, 2012, 87:976-981. DOI: 10.1016/j.mayocp.2012.07.006
[41] Wei KC, Chu PC, Wang HYJ, et al. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment:a preclinical study[J]. PLoS One, 2013, 8:e58995. DOI: 10.1371/journal.pone.0058995
[42] Kobus T, Zervantonakis IK, Zhang Y, et al. Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption[J]. J Control Release, 2016, 238:281-288. DOI: 10.1016/j.jconrel.2016.08.001
[43] Treat LH, McDannold N, Zhang Y, et al. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma[J]. Ultrasound Med Biol, 2012, 38:1716-1725. DOI: 10.1016/j.ultrasmedbio.2012.04.015
[44] Alli S, Figueiredo CA, Golbourn B, et al. Brainstem blood brain barrier disruption using focused ultrasound:A demonstration of feasibility and enhanced doxorubicin delivery[J]. J Control Release, 2018, 281:29-41. DOI: 10.1016/j.jconrel.2018.05.005
[45] Carpentier A, Canney M, Vignot A, et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound[J]. Sci Transl Med, 2016, 8:343re2. DOI: 10.1126/scitranslmed.aaf6086
[46] Idbaih A, Canney M, Belin L, et al. Safety and feasibility of repeated and transient blood-brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma[J]. Clin Cancer Res, 2019, 25:3793-3801. DOI: 10.1158/1078-0432.CCR-18-3643
[47] Meng Y, Suppiah S, Surendrakumar S, et al. Low-intensity MR-guided focused ultrasound mediated disruption of the blood-brain barrier for intracranial metastatic diseases[J]. Front Oncol, 2018, 8:338. DOI: 10.3389/fonc.2018.00338
[48] McDannold N, Clement GT, Black P, et al. Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors:initial findings in 3 patients[J]. Neurosurgery, 2010, 66:323-332. DOI: 10.1227/01.NEU.0000360379.95800.2F
[49] Coluccia D, Fandino J, Schwyzer L, et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound[J]. J Ther Ultrasound, 2014, 2:17. DOI: 10.1186/2050-5736-2-17
[50] Karakatsani ME, Kugelman T, Ji R, et al. Unilateral focused ultrasound-induced blood-brain barrier opening reduces phosphorylated tau from the rTg4510 mouse model[J]. Theranostics, 2019, 9:5396-5411. DOI: 10.7150/thno.28717
[51] Nisbet RM, Van der Jeugd A, Leinenga G, et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model[J]. Brain, 2017, 140:1220-1230. DOI: 10.1093/brain/awx052
[52] Jordão JF, Ayala-Grosso CA, Markham K, et al. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer's disease[J]. PLoS One, 2010, 5:e10549. DOI: 10.1371/journal.pone.0010549
[53] Burgess A, Dubey S, Yeung S, et al. Alzheimer disease in a mouse model:MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior[J]. Radiology, 2014, 273:736-745. DOI: 10.1148/radiol.14140245
[54] Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model[J]. Sci Transl Med, 2015, 7:278ra33. DOI: 10.1126/scitranslmed.aaa2512
[55] Li L, Xu B, Zhu Y, et al. DHEA prevents Aβ25-35-impaired survival of newborn neurons in the dentate gyrus through a modulation of PI3K-Akt-mTOR signaling[J]. Neuropharmacology, 2010, 59:323-333. DOI: 10.1016/j.neuropharm.2010.02.009
[56] Jalali S, Huang Y, Dumont DJ, et al. Focused ultrasound-mediated bbb disruption is associated with an increase in activation of AKT:experimental study in rats[J]. BMC Neurol, 2010, 10:114. DOI: 10.1186/1471-2377-10-114
[57] Chen KT, Wei KC, Liu HL. Theranostic strategy of focused ultrasound induced blood-brain barrier opening for CNS disease treatment[J]. Front Pharmacol, 2019, 10:86. DOI: 10.3389/fphar.2019.00086
[58] Lipsman N, Meng Y, Bethune AJ, et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound[J]. Nat Commun, 2018, 9:2336. DOI: 10.1038/s41467-018-04529-6
[59] Meng Y, MacIntosh BJ, Shirzadi Z, et al. Resting state functional connectivity changes after MR-guided focused ultrasound mediated blood-brain barrier opening in patients with Alzheimer's disease[J]. Neuroimage, 2019, 200:275-280. DOI: 10.1016/j.neuroimage.2019.06.060
[60] Hawken E, Dilkov D, Kaludiev E, et al. Transcranial magnetic stimulation of the supplementary motor area in the treatment of obsessive-compulsive disorder:a multi-site study[J]. Int J Mol Sci, 2016, 17:420. DOI: 10.3390/ijms17030420
[61] Franklin ME, Foa EB. Treatment of obsessive compulsive disorder[J]. Annu Rev Clin Psychol, 2011, 7:229-243. DOI: 10.1146/annurev-clinpsy-032210-104533
[62] Kumar KK, Bhati MT, Ravikumar VK, et al. MR-guided Focused Ultrasound versus Radiofrequency Capsulotomy for Treatment-Refractory Obsessive Compulsive Disorder:A Cost-Effectiveness Threshold Analysis[J]. Front Neurosci, 2019, 13:66. DOI: 10.3389/fnins.2019.00066
[63] Jung HH, Kim SJ, Roh D, et al. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder:a proof-of-concept study[J]. Mol Psychiatry, 2015, 20:1205-1211. DOI: 10.1038/mp.2014.154
[64] Kim SJ, Roh D, Jung HH, et al. A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive-compulsive disorder:2-year follow-up[J]. J Psychiatry Neurosci, 2018, 43:327-337. DOI: 10.1503/jpn.170188
[65] Kim M, Kim CH, Jung HH, et al. Treatment of major depressive disorder via magnetic resonance-guided focused ultrasound surgery[J]. Biol Psychiatry, 2018, 83:e17-e18. DOI: 10.1016/j.biopsych.2017.05.008
[66] Toth C, Lander J, Wiebe S. The prevalence and impact of chronic pain with neuropathic pain symptoms in the general population[J]. Pain Med, 2009, 10:918-929. DOI: 10.1111/j.1526-4637.2009.00655.x
[67] Jung NY, Chang JW. Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery:Taking Lessons from the Past to Inform the Future[J]. J Korean Med Sci, 2018, 33:e279. DOI: 10.3346/jkms.2018.33.e279
[68] Lee EJ, Fomenko A, Lozano AM. Magnetic resonance-guided focused ultrasound:current status and future perspectives in thermal ablation and blood-brain barrier opening[J]. J Korean Neurosurg Soc, 2019, 62:10-26. DOI: 10.3340/jkns.2018.0180
[69] Jeanmonod D, Werner B, Morel A, et al. Transcranial magnetic resonance imaging-guided focused ultrasound:noninvasive central lateral thalamotomy for chronic neuropathic pain[J]. Neurosurg Focus, 2012, 32:E1.
[70] Parker WE, Weidman EK, Chazen JL, et al. Magnetic resonance-guided focused ultrasound for ablation of mesial temporal epilepsy circuits:modeling and theoretical feasibility of a novel noninvasive approach[J]. J Neurosurg, 2019, 1:1-8. https://www.ncbi.nlm.nih.gov/pubmed/31200385
[71] Ranjan M, Boutet A, Bhatia S, et al. Neuromodulation beyond neurostimulation for epilepsy:scope for focused ultrasound[J]. Expert Rev Neurother, 2019, 19:937-943. DOI: 10.1080/14737175.2019.1635013
[72] Naor O, Krupa S, Shoham S. Ultrasonic neuromodulation[J]. J Neural Eng, 2016, 13:031003. DOI: 10.1088/1741-2560/13/3/031003
-
期刊类型引用(1)
1. 陈震,刘豆. 彩色多普勒超声在腹主动脉瘤诊断中的应用价值. 医药论坛杂志. 2022(17): 111-113 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 659
- HTML全文浏览量: 84
- PDF下载量: 209
- 被引次数: 2