颈椎矢状面曲度的研究进展

翟吉良, 胡建华

翟吉良, 胡建华. 颈椎矢状面曲度的研究进展[J]. 协和医学杂志, 2019, 10(6): 647-653. DOI: 10.3969/j.issn.1674-9081.2019.06.017
引用本文: 翟吉良, 胡建华. 颈椎矢状面曲度的研究进展[J]. 协和医学杂志, 2019, 10(6): 647-653. DOI: 10.3969/j.issn.1674-9081.2019.06.017
Ji-liang ZHAI, Jian-hua HU. The Study of Sagittal Curvature of Cervical Spine[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 647-653. DOI: 10.3969/j.issn.1674-9081.2019.06.017
Citation: Ji-liang ZHAI, Jian-hua HU. The Study of Sagittal Curvature of Cervical Spine[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 647-653. DOI: 10.3969/j.issn.1674-9081.2019.06.017

颈椎矢状面曲度的研究进展

详细信息
    通讯作者:

    胡建华 电话:010-69152800, E-mail:jianhuahu@163.com

  • 中图分类号: R68

The Study of Sagittal Curvature of Cervical Spine

More Information
    Corresponding author:

    Jian-hua HU: HU Jian-hua Tel: 86-10-69152800, E-mail: jianhuahu@163.com

  • 摘要: 深入认识颈椎矢状面曲度对进一步研究颈椎病、邻椎病的发病机制以及提高手术疗效具有重要作用。但既往文献中, 关于胸腰椎曲度与患者生活质量或功能状态关系的研究较多, 而有关颈椎曲度的研究相对较少, 有必要进行大宗病例的前瞻性研究。本文对颈椎曲度的测量方法、颈椎正常曲度、颈椎曲度对颈椎病及邻椎病的影响、颈椎曲度与临床疗效的关系等进行综述, 以期为脊柱外科医生了解和治疗颈椎疾病提供参考。
    Abstract: Further understanding of the sagittal curvature of the cervical spine plays an important role in the study of the pathogenesis of cervical spondylosis and adjacent spondylosis, as well as in improving the surgical effect. In the past literature, there have been many studies on the relationship between the thoracolumbar curvature and patients' quality of life or functional status, while there are few studies related to cervical curvature, So it is necessary to carry out prospective studies with a large number of cases. This article reviews the measurement method of cervical curvature, the normal curvature of the cervical spine, the relationship of cervical curvature with cervical spondylosis and clinical effects, etc., so as to provide a reference for spine surgeons to understand and treat cervical spondylosis.
  • 颈椎位于头颅与胸椎之间,决定头颅位置和水平视线的方向,包括前方的椎间盘与后方的关节突关节。头颅的重量(平均为4.5 kg)由枕骨髁传递至C1侧块、C1~C2关节,并通过C2传递至颈椎后柱(承受头颅重量的64%)和前柱[1-2]。颈椎在脊柱中具有最大的活动度,以便于观察周围环境和完成相应的动作,因此颈椎相对容易发生各种退变。这些退变可引起颈椎曲度异常,从而产生疼痛等不适;颈椎曲度异常也可加重颈椎退变,并引起脊柱其他部位出现代偿性改变。既往文献中,关于胸腰椎曲度与患者生活质量或功能状态关系的研究较多,但有关颈椎曲度的研究相对较少。颈椎曲度的测量方法、颈椎正常曲度、颈椎曲度对颈椎病及邻椎病的影响、颈椎曲度与临床功能的关系等均未明确,本文将针对以上问题进行综述。

    颈椎前凸角有3种测量方法(图 1)[3],包括:(1)Cobb角法[4]:常用C2-7 Cobb角,方法是作C2和C7下终板平行线,两线垂线相交的角度即为颈椎前凸角,也可测量C1-7 Cobb角,方法同C2-7 Cobb角,但以C1前结节和棘突后缘的连线代替C2下终板平行线;(2)Jackson应力切线法[5]:作C2和C7椎体后缘平行线,两线相交的角度即为颈椎前凸角;(3)Harrison后缘切线法[4]:自C2至C7作各个椎体后缘的平行线,相邻平行线夹角之和即为颈椎前凸角。相较而言,C1-7 Cobb角较颈椎前凸角大,C2-7 Cobb角较颈椎前凸角小,而Harrison后缘切线法所测量角度最接近颈椎前凸角[4]。不过,由于Cobb角法相对容易,且可靠性高,因此是目前最常用的方法。

    图  1  颈椎前凸角测量方法
    A.Cobb角法;B.Jackson应力切线法;C.Harrison后缘切线法

    颈椎矢状面偏移主要通过矢状面垂直轴(sagittal vertical axis,SVA)进行评估,常用参数包括C2 SVA、C7 SVA、C2-7 SVA以及COG SVA(center of the gravity SVA)。C2 SVA为骶骨后上缘与经过C2椎体中央的铅垂线之间的距离,C7 SVA为骶骨后上缘与经过C7椎体中央的铅垂线之间的距离,C2 SVA和C7 SVA代表颈椎在整个脊柱矢状面上的偏移;C2-7 SVA为C7椎体后上缘与经过C2椎体中央或齿突的铅垂线之间的距离,代表颈椎局部矢状面偏移;COG SVA为头颅重力线的偏移,在颈椎侧位X线片上,经过外耳道前缘的铅垂线代表重力线;COG-C7 SVA为C7椎体后上缘与头颅重力线之间的垂直距离,代表头颅重力线在颈椎局部的偏移(图 2)[6]。在以上反映颈椎矢状面偏移的参数中,C2 SVA与临床功能(如颈椎功能障碍指数、生活质量调查表SF-36等)直接相关,因此,C2 SVA越大,临床功能越差[7]

    图  2  C2-7 SVA为C7椎体后上缘与经过C2椎体中央或齿突的铅垂线之间的距离,COG-C7 SVA为C7椎体后上缘与头颅重力线之间的垂直距离
    SVA:矢状面垂直轴;COG:重力线

    颏-眉角(chin-brow vertical angle,CBVA)为下颌-眉骨连线与铅垂线之间的夹角。测量CBVA时要求下肢直立,颈椎存在僵硬性后凸畸形时必须测量CBVA,其决定了水平视线的方向,屈曲和后伸时CBVA范围与矫形角度密切相关[8]

    除以上参数外,Lee等[9]提出颈部倾斜(neck tilt,NT)和胸廓入口角(thoracic inlet angle,TIA)的概念(图 3)。NT为经过胸骨上缘的两条线之间的夹角,其中一条为经胸骨上缘的铅垂线,另一条为胸骨上缘与T1上终板中点的连线。TIA为T1上终板平行线的中垂线与T1上终板与胸骨上缘连线的夹角。T1倾斜角(T1 slope,T1S)为T1上终板平行线与水平线的夹角。TIA=NT+T1S,这与腰椎矢状面的参数关系类似。不过,由于肩部的遮挡,很多时候颈椎侧位X线片难以显示T1,因此难以在颈椎侧位X线片上测量TIA。因此,有研究者提出在磁共振成像(magnetic resonance imaging,MRI)上测量TIA,与X线片相比,MRI上测量的颈椎前凸、T1S明显减小,但TIA与NT无明显差异[10]

    图  3  颈部倾斜、胸廓入口角及下倾斜角测量方法

    颈椎是脊柱活动范围最大的部分,因此矢状面曲度的变化范围也较大。Abelin-Genevois等[11]统计分析了150例未成年志愿者的X线数据,不同年龄的颈椎曲度存在差异(表 1)。Yukawa等[12]对1230例无症状成人志愿者(男性616例,女性614例,年龄20~80岁)的X线进行研究,发现20~29岁成人颈椎前凸角平均为(8.0±11.8)°,70~79岁成人颈椎前凸角平均为(19.7±11.3)°,而成年男性和女性颈椎总体前凸角无明显差异,随着年龄增加,颈椎前凸角逐渐增大(表 2)。在无症状的成人志愿者中测得的数据显示,颈椎总体前凸角平均为40°,其中75%~80%位于C1~C2,可达32°左右,15%位于C4~C7,仅为6°左右,而枕骨~C1间为后凸,2°左右[13]。需要说明的是,约有2%~35%无症状的成人志愿者颈椎为后凸[14]。在Yu等[15]的研究中,120例无症状志愿者颈椎前凸的比例仅为28.3%,而121例颈椎病患者颈椎前凸的比例为36.4%。成人C2-7 SVA为(15.6±11.2)mm,而C2 SVA为(13.2±29.5)mm。关于CBVA的正常值目前尚无报道,但一般认为,CBVA为-10°~10°是可以接受的范围[16-20]

    表  1  150例未成年人不同节段颈椎正常曲度(°)[11]
    年龄(岁) O~C2 C1~C2 C2~C7 C1~C7 C7
    3.6~10.9 -15.2±6.7 -26.0±6.2 -6.5±11.7 -32.7±11.3 21.7±6.9
    11~18 -18.3±6.1 -30.3±6.0 -0.7±11.0 -30.5±10.1 17.4±6.6
    下载: 导出CSV 
    | 显示表格
    表  2  1230例成人颈椎正常曲度(°)[12]
    年龄(岁) 男性 女性
    20~29 10.8±11.6 5.2±11.4
    30~39 10.7±10.9 7.0±11.2
    40~49 14.1±10.4 9.9±11.2
    50~59 18.4±12.8 15.7±12.2
    60~69 18.4±11.6 16.9±10.8
    70~79 20.7±12.0 18.7±10.6
    下载: 导出CSV 
    | 显示表格

    颈椎为前凸、活动范围大,胸椎后凸、活动范围小,而颈胸交界区位于两者之间、承受巨大的应力,结构包括C7和T1椎体及其之间的椎间盘和韧带、胸廓入口、双侧第一肋和胸骨上缘,截骨时甚至包括T2和T3[21]。颈椎矢状面曲度与颈胸交界区解剖也有关系。Lee等[9]发现,NT一般维持在44°左右以便于降低颈部肌肉的能量消耗。TIA较小时,T1S和颈椎前凸角也较小,从而使NT维持在生理角度,反之亦然。因此,TIA和T1S可用于评估颈椎矢状面平衡、预测颈椎生理曲度以及指导颈椎畸形矫正。T1S可决定下颈椎前凸大小以维持头颅重力线的平衡,与整个脊柱的曲度以及胸椎后凸有关[22]

    颈椎曲度还与胸椎和腰椎曲度相关,其之间相互影响,从而维持脊柱平衡[15]。腰椎前凸加大时,胸椎后凸随之增大,颈椎前凸也会增加。SVA为正值时,颈椎前凸增加以维持视线水平。当颈椎存在畸形时,胸椎后凸和腰椎前凸也会发生相应的改变[23]

    既往认为,颈椎病病因为椎间盘退变致骨赘形成、韧带和关节增生,从而导致椎管狭窄、脊髓受压。很少有研究注意到颈椎后凸也可导致颈椎病,其机制是颈椎后凸可导致椎体压迫脊髓以及脊髓张力增加[24-25]。随着后凸增加,脊髓前后缘受压加重并向侧方扩张。脊髓牵拉和张力增加使髓内张力增加,导致神经元缺失和脱髓鞘改变[26]。此外,脊髓受压后脊髓血管也会产生压迫,从而导致脊髓血供减少,动物模型血管造影证实了这一点。后凸增加后,神经元缺失、脊髓前角细胞萎缩以及脊髓前束脱髓鞘的范围会进一步扩大,甚至会出现脊髓侧束和后束脱髓鞘[26]。在颈椎后凸的颈椎病患者中,MRI信号强度以及颈椎病严重程度与C2-7 SVA相关,但在颈椎前凸的患者中未发现这种现象[15]

    与胸腰椎不同,颈椎后柱承担头颅重力的64%[2],后方韧带-关节复合体维持颈椎前凸并使重力作用于后柱。后路椎板切除术后颈椎后方结构破坏、重力前移,导致椎间盘和椎体逐渐出现楔形变和颈椎矢状面曲度异常。Kim等[27]建议术前应测量T1S,T1S较大时(>26.5°)术后出现颈椎后凸的风险增加。Sakai等[28]回顾性分析174例颈椎后路双开门椎板成形术患者的影像学资料,所有患者术前均无后凸,术后9例(5.2%)出现后凸,其危险因素为COG-C7 SVA≥42 mm和年龄≥75岁。因此,颈椎手术选择手术方式时应考虑颈椎矢状位曲度。

    邻椎病(adjacent-segment disease,ASD)是指脊柱融合术后邻近活动节段出现神经根型或脊髓型病变。ASD为临床诊断,常与邻近节段退变这一影像学诊断相混淆。文献报道,颈椎前路椎间盘切除、椎间融合术后ASD发生率为9%~17%,年发生率为1.5%~4%[29]。ASD的病因仍然存在争议,但融合术后临近活动节段应力和活动增加会导致椎间盘退变[30-33]。应力增加会导致椎间盘血供及营养供给减少[34],且会改变胞外基质的组成[35]

    颈椎后凸时,头颅重力转移至颈椎前柱,从而增加融合术后临近节段机械负荷、导致ASD的发生。Katsuura等[36]回顾性分析42例颈椎前路椎间融合术后患者的影像学资料,发现21例(50%)患者术后影像学上出现ASD的表现,其中仅有9例(42.8%)患者存在前凸;而未出现ASD的21例患者中,18例(85.7%)患者颈椎为前凸,因此,颈椎术后后凸可导致ASD。Park等[37]比较了颈椎前路术后不需要再手术(61例)以及因邻近节段退变需要再手术的病例(61例),结果发现再手术组C2-7 SVA和T1S均较小。

    颈椎影像学参数与生活质量相关性研究较少,颈椎影像学参数对术后疗效的影响也不如骨盆参数的研究深入[38-41]。目前文献多集中于颈椎局部后凸方面,即后凸越大,颈痛越明显。Naderi等[42]认为,颈椎曲度异常提示术后神经功能改善较差。Villavicencio等[43]在一项颈椎前路融合术的随机双盲对照研究中,分别采用前凸和正常形状的植骨块,两组术前颈椎矢状位前凸角(C2-7 Cobb角)均值分别为16°(-8°~34°)和17°(-10°~34°),节段性颈椎前凸角均值分别为1°(-10°~12°)和2°(-13°~25°),术后两组颈椎矢状位前凸角较术前分别增加3°和1°,节段性颈椎前凸角均值均增加5°,故增加颈椎总体或局部前凸角与临床效果并无明显关联;此组122例患者中,22例因出现ASD行翻修手术,但文中未进行深入分析,这些病例与颈椎曲度是否有关不得而知,该文作者认为,术后颈椎局部曲度均值或改善的具体数值与临床功能关系不大,重要的是,患者的颈椎曲度是否改善,维持或改善颈椎局部曲度后,术后临床功能改善率更高。Guerin等[44]同样发现,颈椎术后功能仅与颈椎局部曲度有关,而与总体曲度无明显关系。Sakai等[28]回顾性分析174例颈椎后路双开门椎板成形术患者,所有患者术前均无后凸,术后9例(5.2%)后凸患者较无后凸者功能评分较低。

    以上研究主要探讨术后功能与颈椎前凸角的关系,均未讨论与SVA的关系。Lee等[45]对50例行颈椎单开门椎板成形术的后纵韧带骨化症患者平均随访18个月,发现颈椎影像学参数(C2-7 Cobb角、C2-7 SVA和C2-7 Cobb角-T1S)与术后日本骨科协会评分(Japanese Orthopaedic Association Scores,JOA)、疼痛视觉模拟评分等无明显关系,但比较术前术后影像学变化发现,虽然70%的患者出现后凸改变,但仅有18%的患者出现后凸(4例由直线变为后凸),且术前C2-7 Cobb角[(9.9±9.2)°]和C2-7 SVA[(20.3± 12.1)mm]均在正常范围。Glassman等[46]和Mac-Thiong等[6]认为,成人脊柱畸形患者C7 SVA位于骶骨后上缘前方>50 mm时生活质量评分较低。Tang等[47]研究颈椎SVA与生活质量评分的关系后发现,C2-7 SVA>40 mm时生活质量评分较低,其他研究也支持了这一结论[48-50]。Oshima等[51]对92例颈椎后路双开门椎板成形的颈椎病患者平均随访27个月,其中C7 SVA>5 cm的患者28例,C7 SVA≤5 cm的患者64例,比较两组术前术后生活质量评分和功能评分发现,C7 SVA>5 cm的患者术前术后JOA功能评分较低,但改善率无明显差异;此外,SVA>5 cm的患者C2-7 SVA也较大,C2~C7并未出现预期的颈椎前凸增加,造成这种现象的原因尚不清楚,可能是由于颈椎病导致肌无力出现的失代偿。因此,笔者建议,对于此类患者应行融合术,不能单纯行椎板成形术。

    目前关于T1S的研究较少[9, 22, 27],但其在颈椎以及整个脊柱的曲度中起重要作用。Knott等[22]发现,T1S是预测C2-7 SVA最好的方法,T1S<13°或T1S>25°时建议行站立位脊柱全长相,且C2 SVA较C7 SVA能更好地评估整体曲度。Kim等[27]研究颈椎后路椎板成形患者术前T1S和术后颈椎曲度的关系,随访2年时发现,术前T1S越大的患者术后出现后凸的可能性越大。

    目前文献报道了颈椎术后前凸或后凸变化,但对术后颈椎前凸应该为多少并无明确结论,一般认为,颈椎后凸应尽量矫正至中立位[52]。C2 SVA和CBVA在评估颈椎矢状面曲度中应用越来越多[8, 13, 47, 53-54]

    虽然越来越多的研究关注影像学参数与术后功能的关系,但这些研究多数为回顾性研究,且术后功能改善与脊髓减压密切相关,因此不应夸大颈椎曲度与术后功能的关系,有必要进行前瞻性研究除外其他混淆因素的影响[23]

    颈椎矢状面曲度的测量包括前凸角、矢状面偏移、CBVA、NT、TIA、T1S等。男性与女性成人颈椎总体前凸角无明显差异,随着年龄增加,颈椎前凸角逐渐增大。20~29岁成人颈椎前凸角平均为(8.0±11.8)°,70~79岁成人颈椎前凸角平均为(19.7±11.3)°,成人C2-7 SVA为(15.6±11.2)mm。颈椎后凸时会加重颈椎病病情,并增加融合术后临近节段机械负荷、导致ASD的发生。颈椎手术疗效与颈椎矢状面曲度存在关联,维持或改善颈椎局部曲度后,术后临床功能改善率更高。目前有关颈椎矢状面曲度的研究仍然较少,随着临床对其重要性认识的增加,相关研究将会越来越多。

    利益冲突  无
  • 图  1   颈椎前凸角测量方法

    A.Cobb角法;B.Jackson应力切线法;C.Harrison后缘切线法

    图  2   C2-7 SVA为C7椎体后上缘与经过C2椎体中央或齿突的铅垂线之间的距离,COG-C7 SVA为C7椎体后上缘与头颅重力线之间的垂直距离

    SVA:矢状面垂直轴;COG:重力线

    图  3   颈部倾斜、胸廓入口角及下倾斜角测量方法

    表  1   150例未成年人不同节段颈椎正常曲度(°)[11]

    年龄(岁) O~C2 C1~C2 C2~C7 C1~C7 C7
    3.6~10.9 -15.2±6.7 -26.0±6.2 -6.5±11.7 -32.7±11.3 21.7±6.9
    11~18 -18.3±6.1 -30.3±6.0 -0.7±11.0 -30.5±10.1 17.4±6.6
    下载: 导出CSV

    表  2   1230例成人颈椎正常曲度(°)[12]

    年龄(岁) 男性 女性
    20~29 10.8±11.6 5.2±11.4
    30~39 10.7±10.9 7.0±11.2
    40~49 14.1±10.4 9.9±11.2
    50~59 18.4±12.8 15.7±12.2
    60~69 18.4±11.6 16.9±10.8
    70~79 20.7±12.0 18.7±10.6
    下载: 导出CSV
  • [1]

    Yoganandan N, Maiman DJ, Guan Y, et al. Importance of physical properties of the human head on head-neck injury metrics[J]. Traffic Inj Prev, 2009, 10:488-496.

    [2]

    Pal GP, Sherk HH. The vertical stability of the cervical spine[J]. Spine (Phila Pa 1976), 1988, 13:447-449.

    [3]

    Scheer JK, Tang JA, Smith JS, et al. Cervical spine alignment, sagittal deformity, and clinical implications:a review[J]. J Neurosurg Spine, 2013, 19:141-159. https://pubmed.ncbi.nlm.nih.gov/23768023/

    [4]

    Harrison DE, Harrison DD, Cailliet R, et al. Cobb method or Harrison posterior tangent method:which to choose for lateral cervical radiographic analysis[J]. Spine (Phila Pa 1976), 2000, 25:2072-2078. https://www.ncbi.nlm.nih.gov/pubmed/10954638

    [5]

    Jackson R. The Cervical Syndrome[M]. 2nd ed. Springfield, IL: Charles C. Thomas, 1958: 4-26.

    [6]

    Mac-Thiong JM, Transfeldt EE, Mehbod AA, et al. Can c7 plumbline and gravity line predict health related quality of life in adult scoliosis?[J]. Spine (Phila Pa 1976), 2009, 34:E519-E527. https://www.ncbi.nlm.nih.gov/pubmed/19564757/

    [7]

    Tang JA, Scheer JK, Smith JS, et al. The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery[J]. Neurosurgery, 2015, 76 Suppl 1:S14-S21, S21. https://pubmed.ncbi.nlm.nih.gov/25692364/

    [8]

    Suk KS, Kim KT, Lee SH, et al. Significance of chin-brow vertical angle in correction of kyphotic deformity of ankylosing spondylitis patients[J]. Spine (Phila Pa 1976), 2003, 28:2001-2005.

    [9]

    Lee SH, Kim KT, Seo EM, et al. The influence of thoracic inlet alignment on the craniocervical sagittal balance in asymptomatic adults[J]. J Spinal Disord Tech, 2012, 25:E41-E47.

    [10]

    Xing R, Zhou G, Chen Q, et al. MRI to measure cervical sagittal parameters:a comparison with plain radiographs[J]. Arch Orthop Trauma Surg, 2017, 137:451-455. DOI: 10.1007/s00402-017-2639-5

    [11]

    Abelin-Genevois K, Idjerouidene A, Roussouly P, et al. Cervical spine alignment in the pediatric population:a radiographic normative study of 150 asymptomatic patients[J]. Eur Spine J, 2014, 23:1442-1448. DOI: 10.1007/s00586-013-3150-5

    [12]

    Yukawa Y, Kato F, Suda K, et al. Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. Part Ⅰ:Radiographic data from over 1, 200 asymptomatic subjects[J]. Eur Spine J, 2012, 21:1492-1498.

    [13]

    Hardacker JW, Shuford RF, Capicotto PN, et al. Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms[J]. Spine (Phila Pa 1976), 1997, 22:1472-1480, 1480.

    [14]

    Takeshima T, Omokawa S, Takaoka T, et al. Sagittal alignment of cervical flexion and extension:lateral radiographic analysis[J]. Spine (Phila Pa 1976), 2002, 27:E348-E355. https://chiro.org/research/ABSTRACTS/Sagittal_Alignment.shtml

    [15]

    Yu M, Zhao WK, Li M, et al. Analysis of cervical and global spine alignment under Roussouly sagittal classification in Chinese cervical spondylotic patients and asymptomatic subjects[J]. Eur Spine J, 2015, 24:1265-1273. DOI: 10.1007/s00586-015-3832-2

    [16]

    Deviren V, Scheer JK, Ames CP. Technique of cervicothoracic junction pedicle subtraction osteotomy for cervical sagittal imbalance:report of 11 cases[J]. J Neurosurg Spine, 2011, 15:174-181. https://thejns.org/spine/view/journals/j-neurosurg-spine/15/2/article-p174.xml

    [17]

    Kim KT, Lee SH, Son ES, et al. Surgical treatment of "chin-on-pubis" deformity in a patient with ankylosing spondylitis:a case report of consecutive cervical, thoracic, and lumbar corrective osteotomies[J]. Spine (Phila Pa 1976), 2012, 37:E1017-E1021.

    [18]

    Kim KT, Suk KS, Cho YJ, et al. Clinical outcome results of pedicle subtraction osteotomy in ankylosing spondylitis with kyphotic deformity[J]. Spine (Phila Pa 1976), 2002, 27:612-618.

    [19]

    Pigge RR, Scheerder FJ, Smit TH, et al. Effectiveness of preoperative planning in the restoration of balance and view in ankylosing spondylitis[J]. Neurosurg Focus, 2008, 24:E7. https://research.vu.nl/files/3175701/289261.pdf

    [20]

    Wang Y, Zhang Y, Mao K, et al. Transpedicular biverte-brae wedge osteotomy and discectomy in lumbar spine for severe ankylosing spondylitis[J]. J Spinal Disord Tech, 2010, 23:186-191.

    [21]

    Wang VY, Chou D. The cervicothoracic junction[J]. Neurosurg Clin N Am, 2007, 18:365-371.

    [22]

    Knott PT, Mardjetko SM, Techy F. The use of the T1 sagittal angle in predicting overall sagittal balance of the spine[J]. Spine J, 2010, 10:994-998. https://www.sciencedirect.com/science/article/pii/S1529943010011502

    [23]

    Ames CP, Blondel B, Scheer JK, et al. Cervical radiographical alignment:comprehensive assessment techniques and potential importance in cervical myelopathy[J]. Spine (Phila Pa 1976), 2013, 38:S149-S160. https://pubmed.ncbi.nlm.nih.gov/24113358/

    [24]

    Albert TJ, Vacarro A. Postlaminectomy kyphosis[J]. Spine (Phila Pa 1976), 1998, 23:2738-2745.

    [25]

    Deutsch H, Haid RW, Rodts GE, et al. Postlaminectomy cervical deformity[J]. Neurosurg Focus, 2003, 15:E5.

    [26]

    Shimizu K, Nakamura M, Nishikawa Y, et al. Spinal kyphosis causes demyelination and neuronal loss in the spinal cord:a new model of kyphotic deformity using juvenile Japanese small game fowls[J]. Spine (Phila Pa 1976), 2005, 30:2388-2392.

    [27]

    Kim TH, Lee SY, Kim YC, et al. T1 slope as a predictor of kyphotic alignment change after laminoplasty in patients with cervical myelopathy[J]. Spine (Phila Pa 1976), 2013, 38:E992-E997.

    [28]

    Sakai K, Yoshii T, Hirai T, et al. Cervical Sagittal Imbalance is a Predictor of Kyphotic Deformity After Laminoplasty in Cervical Spondylotic Myelopathy Patients Without Preoperative Kyphotic Alignment[J]. Spine (Phila Pa 1976), 2016, 41:299-305. https://pubmed.ncbi.nlm.nih.gov/26579963/

    [29]

    Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease:the consequences of spinal fusion?[J]. Spine J, 2004, 4:190S-194S. https://www.ncbi.nlm.nih.gov/pubmed/15541666

    [30]

    Park DH, Ramakrishnan P, Cho TH, et al. Effect of lower two-level anterior cervical fusion on the superior adjacent level[J]. J Neurosurg Spine, 2007, 7:336-340. https://www.ncbi.nlm.nih.gov/pubmed/17877270

    [31]

    Prasarn ML, Baria D, Milne E, et al. Adjacent-level biomechanics after single versus multilevel cervical spine fusion[J]. J Neurosurg Spine, 2012, 16:172-177.

    [32]

    Ragab AA, Escarcega AJ, Zdeblick TA. A quantitative analysis of strain at adjacent segments after segmental immobilization of the cervical spine[J]. J Spinal Disord Tech, 2006, 19:407-410. https://www.ncbi.nlm.nih.gov/pubmed/16891975

    [33]

    Schwab JS, Diangelo DJ, Foley KT. Motion compensation associated with single-level cervical fusion:where does the lost motion go?[J]. Spine (Phila Pa 1976), 2006, 31:2439-2448.

    [34]

    Rihn JA, Lawrence J, Gates C, et al. Adjacent segment disease after cervical spine fusion[J]. Instr Course Lect, 2009, 58:747-756.

    [35]

    Hutton WC, Toribatake Y, Elmer WA, et al. The effect of compressive force applied to the intervertebral disc in vivo. A study of proteoglycans and collagen[J]. Spine (Phila Pa 1976), 1998, 23:2524-2537.

    [36]

    Katsuura A, Hukuda S, Saruhashi Y, et al. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels[J]. Eur Spine J, 2001, 10:320-324. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611517/

    [37]

    Park MS, Kelly MP, Lee DH, et al. Sagittal alignment as a predictor of clinical adjacent segment pathology requiring surgery after anterior cervical arthrodesis[J]. Spine J, 2014, 14:1228-1234. https://www.sciencedirect.com/science/article/pii/S1529943013015854

    [38]

    Bridwell KH, Baldus C, Berven S, et al. Changes in radiographic and clinical outcomes with primary treatment adult spinal deformity surgeries from two years to three-to five-years follow-up[J]. Spine (Phila Pa 1976), 2010, 35:1849-1854. https://www.ncbi.nlm.nih.gov/pubmed/20802383

    [39]

    Glassman SD, Bridwell K, Dimar JR, et al. The impact of positive sagittal balance in adult spinal deformity[J]. Spine (Phila Pa 1976), 2005, 30:2024-2029.

    [40]

    Schwab F, Farcy JP, Bridwell K, et al. A clinical impact classification of scoliosis in the adult[J]. Spine (Phila Pa 1976), 2006, 31:2109-2114. https://www.ncbi.nlm.nih.gov/pubmed/16915098

    [41]

    Schwab FJ, Smith VA, Biserni M, et al. Adult scoliosis:a quantitative radiographic and clinical analysis[J]. Spine (Phila Pa 1976), 2002, 27:387-392. http://ci.nii.ac.jp/naid/10016392329

    [42]

    Naderi S, Ozgen S, Pamir MN, et al. Cervical spondylotic myelopathy:surgical results and factors affecting prognosis[J]. Neurosurgery, 1998, 43:43-49, 49-50. https://academic.oup.com/neurosurgery/article-abstract/43/1/43/2856607

    [43]

    Villavicencio AT, Babuska JM, Ashton A, et al. Pro-spective, randomized, double-blind clinical study evaluating the correlation of clinical outcomes and cervical sagittal alignment[J]. Neurosurgery, 2011, 68:1309-1316, 1316.

    [44]

    Guerin P, Obeid I, Gille O, et al. Sagittal alignment after single cervical disc arthroplasty[J]. J Spinal Disord Tech, 2012, 25:10-16. https://www.ncbi.nlm.nih.gov/pubmed/22124426

    [45]

    Lee CK, Shin DA, Yi S, et al. Correlation between cervical spine sagittal alignment and clinical outcome after cervical laminoplasty for ossification of the posterior longitudinal ligament[J]. J Neurosurg Spine, 2016, 24:100-107. https://www.ncbi.nlm.nih.gov/pubmed/26431070

    [46]

    Glassman SD, Berven S, Bridwell K, et al. Correlation of radiographic parameters and clinical symptoms in adult scoliosis[J]. Spine (Phila Pa 1976), 2005, 30:682-688. https://www.ncbi.nlm.nih.gov/pubmed/15770185/

    [47]

    Tang JA, Scheer JK, Smith JS, et al. The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery[J]. Neurosurgery, 2012, 71:662-669, 669. https://pubmed.ncbi.nlm.nih.gov/25692364/

    [48]

    Smith JS, Lafage V, Ryan DJ, et al. Association of myelopathy scores with cervical sagittal balance and normalized spinal cord volume:analysis of 56 preoperative cases from the AOSpine North America Myelopathy study[J]. Spine (Phila Pa 1976), 2013, 38:S161-S170. https://www.researchgate.net/publication/256072026_Association_of_Myelopathy_Scores_With_Cervical_Sagittal_Balance_and_Normalized_Spinal_Cord_Volume_Analysis_of_56_Preoperative_Cases_From_the_AOSpine_North_America_Myelopathy_Study

    [49]

    Roguski M, Benzel EC, Curran JN, et al. Postoperative cervical sagittal imbalance negatively affects outcomes after surgery for cervical spondylotic myelopathy[J]. Spine (Phila Pa 1976), 2014, 39:2070-2077.

    [50]

    Iyer S, Nemani VM, Nguyen J, et al. Impact of Cervical Sagittal Alignment Parameters on Neck Disability[J]. Spine (Phila Pa 1976), 2016, 41:371-377.

    [51]

    Oshima Y, Takeshita K, Taniguchi Y, et al. Effect of Preoperative Sagittal Balance on Cervical Laminoplasty Outcomes[J]. Spine (Phila Pa 1976), 2016, 41:E1265-E1270. https://www.ncbi.nlm.nih.gov/pubmed/27054450

    [52]

    Steinmetz MP, Stewart TJ, Kager CD, et al. Cervical deformity correction[J]. Neurosurgery, 2007, 60:S90-S97.

    [53]

    Hwang SW, Samdani AF, Tantorski M, et al. Cervical sagittal plane decompensation after surgery for adolescent idiopathic scoliosis:an effect imparted by postoperative thoracic hypokyphosis[J]. J Neurosurg Spine, 2011, 15:491-496. https://thejns.org/spine/view/journals/j-neurosurg-spine/15/5/article-p491.xml

    [54]

    Langeloo DD, Journee HL, Pavlov PW, et al. Cervical osteotomy in ankylosing spondylitis:evaluation of new developments[J]. Eur Spine J, 2006, 15:493-500. DOI: 10.1007/s00586-005-0945-z

  • 期刊类型引用(1)

    1. 劳贞贤,覃兴乐. 颈椎生理曲度异常改变研究进展. 右江民族医学院学报. 2021(04): 554-557 . 百度学术

    其他类型引用(4)

图(3)  /  表(2)
计量
  • 文章访问数:  516
  • HTML全文浏览量:  50
  • PDF下载量:  187
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-05-21
  • 刊出日期:  2019-11-29

目录

/

返回文章
返回
x 关闭 永久关闭