Expert Consensus on Anesthesia Management of Enhanced Recovery after Adult Ambulatory Surgery
-
摘要: 中国日间手术合作联盟定义的日间手术是指患者在一日(24 h)内完成入、出院的手术或操作(不含门诊手术), 对于特殊病例由于病情需要延期住院的患者, 住院最长时间不超过48 h。加速康复外科是以循证医学证据为基础的围手术期优化措施, 有助于减少手术应激与炎症反应, 促进患者快速康复, 提高患者围手术期安全性和舒适性。基于日间手术住院时间短、床位周转率高的特点, 加速康复外科理念下的麻醉管理为日间手术安全、舒适和高效发展奠定了基础。Abstract: The definition of ambulatory surgery by the China Ambulatory Surgery Alliance refers to an operation (excluding outpatient surgery) completed within one day (24 h). For the patients with special conditions who have to prolong hospital stays, the length of hospital stays should not exceed 48 h.Enhanced recovery after surgery (ERAS) is a series of optimized perioperative treatments with evidence-based medicine that can reduce perioperative stress and inflammatory responses, promote rapid recovery, and improve patients' perioperative safety and comfort. Ambulatory surgery has the advantages of short hospital stay and high rate of bed rotation. Based on these characteristics, optimized anesthesia management under the concept of ERAS can enhance the safety, comfort, and efficacy of ambulatory surgery.
-
在阿尔茨海默病(Alzheimer's disease,AD)临床诊断中,人们越来越多地发现患者的结构影像未显示海马萎缩,且海马萎缩可见于额颞叶痴呆。笔者曾观察过有认知功能进行性减退临床可能AD患者的影像学资料,结果病初及随访MRI均无海马萎缩,但有顶叶低代谢和萎缩。众所周知,淀粉样蛋白沉积形成的老年斑多数分布在新皮层,高度磷酸化的TUA蛋白沉积形成的神经原纤维缠结也不仅存在于内侧颞叶[1-2]。为此,笔者建立了系列研究:有病理基础的不同类型内侧颞叶萎缩与认知功能变化的相关性,不同脑叶与AD疾病进展的相关性,本文报告AD患者的顶叶变化。
对象和方法
对象
按照美国国立神经病及语言交流障碍和卒中研究所-阿尔茨海默病及相关疾病学会(National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association,NINCDSADRDA)诊断标准,选取2007年1月至2010年12月北京协和医院神经科门诊拟诊变性病性痴呆患者123例,经过详细的临床病史、疾病过程询问及神经系统检查后进行规范的梯度递进认知功能评价。
认知功能评价
选用简易精神状态量表(mini-mental state examination,MMSE)、蒙特利尔认知评估量表(Montreal cognitive assessment,MoCA)进行认知功能筛查,日常生活能力量表(activities of daily living,ADL)评价生活适应能力,医院焦虑抑郁量表(hospital anxiety and depression scale,HADS)评价情绪,再应用北京协和医院认知功能评价系统进行综合认知功能评价; 若患者有某项突出的认知功能障碍再进行专项评价,如汉语失语症、视空间功能评价等[3]。同时进行详细的鉴别诊断,除血常规、肝肾功能外特别注意感染如梅毒,代谢异常如甲状腺功能低下或亢进,营养障碍如维生素缺乏,中毒如酒精中毒、有机溶剂中毒、一氧化碳中毒等,还特别注意除外副肿瘤综合征等。将应用同样诊断程序临床诊断额颞叶痴呆作为不同类型痴呆的对照。
脱氧葡萄糖正电子发射体层摄影术检测
脱氧葡萄糖正电子发射体层摄影术(fluorodeoxy glucose-positron emission tomography,FDG-PET)检测由专人完成,然后由2位以上观察者进行低代谢区评价,并测SUV值,设桥脑基底部SUV值为全脑SUV值的参照。再由专门的操作者单盲(不知道患者诊断)进行专项分析(NeuroQ)。在分析脑区时将通常观察中归为后部颞顶的区域进一步细分为顶叶和剪除顶叶后的单纯后部颞顶区。
D MRI检测
检查GRE T1和T2-FLARE基于体素的形态(voxel-based morphometric,VBM)、扩散张量成像(diffusion tensor imaging,DTI)和静息态功能,由专人分析结果,VBM同年龄组正常对照由核磁共振室提供。MRI显示顶叶萎缩通过轴位和矢状位图像确定。
结果
123例拟诊变性病性痴呆患者经检测41例符合可能AD,43例符合有可能AD。
FDG-PET显示,84例(100%)可能AD和有可能AD患者均出现顶叶低代谢,67例(79. 8%)后扣带回低代谢,60例(71. 4%)后颞顶低代谢,52例(61. 9%)内侧颞叶低代谢。2例动态随访患者顶叶低代谢先于后扣带回(图 1),且患者随着随访期延长逐渐出现外部颞叶继而内部颞叶低代谢(图 2)。
MRI显示矢状位自中线向两侧分别有超过4个层面萎缩,轴位自顶向下顶叶2个层面以上萎缩,内侧顶叶萎缩更重要。84例可能AD和有可能AD患者MRI图像显示,顶叶萎缩为67. 9% (57例双侧) ~ 84. 5% (71例单侧) (图 3); 而内侧颞叶萎缩(常规观察的萎缩)仅为26. 2% (22例双侧) ~ 35. 7% (30例单侧)。24例可用VBM分析患者的MRI显示顶叶萎缩明显重于对照组(图 4),且至少不轻于内侧颞叶萎缩。临床可能的12例额颞叶痴呆起病初期既没有顶叶萎缩也没有顶叶低代谢。额叶和外侧颞叶,后部颞顶区及内侧颞叶低代谢可见于AD和额颞叶痴呆。
讨论
在AD临床诊断和病理诊断中,海马及内侧颞叶变化具有重要的价值,且已得到广泛应用。代谢影像在10年前就证实了顶叶和后扣带回等部位代谢改变对AD诊断的重要价值。病理研究亦早已显示AD相关的变化不仅仅在内侧颞叶,β淀粉样蛋白沉积形成的老年斑多数分布在新皮层。随着临床研究手段的进展,在AD诊断中不同脑区的作用会越来越多地被认识到。本研究结果显示可能和有可能AD患者顶叶糖代谢减低出现率最高,且是最早出现的低代谢脑区之一,同时有明确的顶叶和/或内侧颞叶萎缩; 而额颞叶痴呆患者既没有突出的顶叶低代谢,也没有顶叶及内侧颞叶萎缩,提示顶叶影像学变化是AD的重要变化之一,可用于痴呆的鉴别诊断。笔者这一观点于2011年3月在加拿大召开的AD国际会议上通过大会发言报告。2011年5月AD协会发表的AD新诊断标准,除了指出MRI颞叶萎缩对AD的诊断价值外,也阐明了顶叶萎缩对提高诊断级别的价值[2, 4-6]。
2011年Womack等[7]曾提出内侧颞叶不是AD患者脑代谢异常的起源,并认为由后扣带回首发而后扩散至内侧颞叶。本研究也显示顶叶和后部颞顶区及外侧颞叶低代谢均早于内侧颞叶,只是本研究结果显示顶叶更早于后扣带回。本组患者均显示内侧颞叶低代谢发生率低于顶叶、额叶、外侧颞叶、后扣带回,动态随访患者也证实低代谢由顶叶/后扣带回/后部颞顶叶/外侧颞叶向内侧颞叶发展的过程。越来越多的研究证实了其低代谢的迟发性。
以往研究在分析不同脑区的糖代谢时,将顶叶与颞叶划为颞顶一个区域分析,敏感性为93. 6%,本研究在应用NeuroQ分析时,将颞顶分为顶叶与后部颞顶区,顶叶在AD患者的低代谢发生率近100%,顶叶低代谢在AD更敏感且与其更相关。
MRI示顶叶萎缩偶可见于非痴呆患者,但笔者目前有限地应用MRI VBM与同龄正常人进行组间对照的皮层结构评价资料(24例)证实,可能AD患者具有更突出的顶叶萎缩。2011年有关老年随访研究报道,顶叶萎缩患者部分发展为AD痴呆[8]。为此,本研究尚需进行以下两方面的扩展研究:更多的AD及其他类型变性病性痴呆患者的VBM研究; 有顶叶萎缩但尚无痴呆患者的长期随访研究。
利益冲突 无 -
首字母 名称 描述 S 打鼾 是否鼾声响亮(响度超过说话或在紧闭房门外可闻及) T 疲倦 是否经常觉得疲惫、乏力或白天觉得困倦 O 呼吸暂停 是否有任何人发现在睡眠时呼吸停止 P 血压 是否接受过/正在接受降压治疗 B 体质量指数 >35 kg/m2 A 年龄 >50岁 N 颈围 >40 cm G 性别 男性 表 2 术后恶心呕吐危险因素评分(Apfel简易风险评分)[55]
危险因素 得分 女性 1 非吸烟者 1 恶心呕吐或晕动病史 1 术后使用阿片类药物 1 总分 4 表 3 常用预防术后恶心呕吐药物的使用剂量和时间
药物 成人剂量 给药时间 昂丹司琼 4 mg(静脉滴注)/8 mg(口服) 手术结束时 多拉司琼 12.5 mg(静脉滴注) 手术结束时 格拉司琼 0.35~3 mg(静脉滴注) 手术结束时 托烷司琼 2 mg(静脉滴注) 手术结束时 帕洛诺司琼 0.075 mg(静脉滴注) 诱导时 阿瑞匹坦 40 mg(口服) 诱导时 地塞米松 4~5 mg(静脉滴注) 诱导时 氟哌利多 0.625~1.25 mg(静脉滴注) 手术结束时 氟哌啶醇 0.5~<2 mg(肌肉注射/静脉滴注) 手术结束时 东莨菪碱 皮肤药贴 术前1 d晚上/术前2 h 茶苯海明 1 mg/kg(静脉滴注) - 甲强龙 40 mg(静脉滴注) - 异丙嗪 6.25~12.5 mg(静脉滴注) - 雷莫司琼 0.3 mg(静脉滴注) 手术结束时 -:未说明 表 4 与风险相关的成人术后恶心呕吐防治策略
措施 低危 中危 高危 预防措施 药物A+药物B (或TIVA) 药物A+药物B (或TIVA) 药物A+药物B+TIVA,根据个体情况决定用药方案 治疗措施 药物C/药物D(药物C无效时使用) 药物C无效时使用) 药物C无效时使用) A:地塞米松,4 mg;B:昂丹司琼,4 mg;C:氟哌利多,1 mg;D:茶苯海明,1 mg/kg;TIVA:全静脉麻醉 表 5 改良Aldrete评分表
项目 得分 入室 30 min 60 min 90 min 出室 活动 自主或遵嘱活动四肢 2 自主或遵嘱活动二肢和有限制地抬头 1 不能活动肢体或抬头 0 呼吸 能深呼吸和有效咳嗽,呼吸频率和幅度正常 2 呼吸困难或受限,但有浅而慢的自主呼吸,可能用口咽通气道 1 呼吸暂停或微弱呼吸,需呼吸器治疗或辅助呼吸 0 血压 麻醉前±20%以内 2 麻醉前±(20%~49%) 1 麻醉前±50%以上 0 意识 完全清醒 2 可唤醒,嗜睡 1 无反应 0 血氧饱和度 呼吸空气≥92% 2 呼吸氧气≥92% 1 呼吸氧气<92% 0 总分 -
[1] Kehlet H. Enhanced Recovery After Surgery (ERAS):good for now, but what about the future?[J]. Can J Anaesth, 2015, 62:99-104. DOI: 10.1007/s12630-014-0261-3
[2] Carli F. Physiologic considerations of Enhanced Recovery After Surgery (ERAS) programs:implications of the stress response[J]. Can J Anaesth, 2015, 62:110-119. DOI: 10.1007/s12630-014-0264-0
[3] Cakir H, van Stijn MF, Lopes Cardozo AM, et al. Adherence to Enhanced Recovery After Surgery and length of stay after colonic resection[J]. Colorectal Dis, 2013, 15:1019-1025. DOI: 10.1111/codi.12200
[4] Grant MC, Yang D, Wu CL, et al. Impact of Enhanced Recovery After Surgery and Fast Track Surgery Pathways on Healthcare-associated Infections:Results From a Systematic Review and Meta-analysis[J]. Ann Surg, 2017, 265:68-79. DOI: 10.1097/SLA.0000000000001703
[5] 欧阳文, 李天佐, 周星光.日间手术麻醉专家共识[J].临床麻醉学杂志, 2016, 32:1017-1022. http://www.cnki.com.cn/Article/CJFDTotal-LCMZ201610030.htm [6] Andrews JC, Schünemann HJ, Oxman AD, et al. GRADE guidelines:15. Going from evidence to recommendation-determinants of a recommendation's direction and strength[J]. J Clin Epidemiol, 2013, 66:726-735. DOI: 10.1016/j.jclinepi.2013.02.003
[7] Kesänen J, Leino-Kilpi H, Lund T, et al. Increased preoperative knowledge reduces surgery-related anxiety:a randomised clinical trial in 100 spinal stenosis patients[J]. Eur Spine J, 2017, 26:2520-2528. DOI: 10.1007/s00586-017-4963-4
[8] Chung F, Yegneswaran B, Liao P, et al. Validation of the Berlin Questionnaire and American Society of Anesthesio-logists Checklist as Screening Tools for Obstructive Sleep Apnea in Surgical Patients[J]. Anesthesiology, 2008, 108:822-830. DOI: 10.1097/ALN.0b013e31816d91b5
[9] Madhusudan P, Wong J, Prasad A, et al. An update on preoperative assessment and preparation of surgical patients with obstructive sleep apnea[J]. Curr Opin Anaesthesiol, 2018, 31:89-95. DOI: 10.1097/ACO.0000000000000539
[10] Kristensen SD, Knuuti J, Saraste A, et al. 2014 ESC/ESA Guidelines on non-cardiac surgery:cardiovascular assessment and management:The Joint Task Force on non-cardiac surgery:cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA)[J]. Eur Heart J, 2014, 35:2383-2431. DOI: 10.1093/eurheartj/ehu282
[11] Ro YS, Shin SD, Song KJ, et al. Association of Exercise and Metabolic Equivalent of Task (MET) Score with Survival Outcomes after Out-of-Hospital Cardiac Arrest of Young and Middle Age[J]. Resuscitation, 2017, 115:44-51. DOI: 10.1016/j.resuscitation.2017.03.041
[12] 中华医学会麻醉学分会"麻醉门诊建设专家指导意见"工作小组.麻醉科门诊建设专家指导意见[J].中华麻醉学杂志, 2019, 39:7-13. http://rs.yiigle.com/CN131073201901/1130596.htm [13] Holte K, Nielsen KG, Madsen JL, et al. Physiologic Effects of Bowel Preparation[J]. Dis Colon Rectum, 2004, 47:1397-1402. DOI: 10.1007/s10350-004-0592-1
[14] Slim K, Vicaut E, Launay-Savary MV, et al. Updated systematic review and meta-analysis of randomized clinical trials on the role of mechanical bowel preparation before colorectal surgery[J]. Ann Surg, 2009, 249:203-209. DOI: 10.1097/SLA.0b013e318193425a
[15] Nygren J, Thorell A, Ljungqvist O. Preoperative oral carbohydrate therapy[J]. Curr Opin Anaesthesiol, 2015, 28:364-369. DOI: 10.1097/ACO.0000000000000192
[16] Practice Guidelines for Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration: Application to Healthy Patients Undergoing Elective Procedures: An Updated Report by the American Society of Anesthesiologists TaskForce on Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration[J]. Anesthesiology, 2017, 126: 376-393.
[17] Amer MA, Smith MD, Herbison GP, et al. Network meta-analysis of the effect of preoperative carbohydrate loading on recovery after elective surgery[J]. Br J Surg, 2017, 104:187-197. DOI: 10.1002/bjs.10408
[18] Fawcett WJ, Thomas M. Pre-operative fasting in adults and children:clinical practice and guidelines[J]. Anaesthesia, 2019, 74:83-88. DOI: 10.1111/anae.14500
[19] Walker KJ, Smith AF. Premedication for anxiety in adult day surgery[J]. Cochrane Database Syst Rev, 2009, (4):CD002192.
[20] Kassie GM, Nguyen TA, Kalisch Ellett LM, et al. Preoperative medication use and postoperative delirium:a systematic review[J]. BMC Geriatr, 2017, 17:298-307. DOI: 10.1186/s12877-017-0695-x
[21] Naja Z, Ziade MF, Lönnqvist PA. Nerve stimulator guided pudendal nerve block decreases posthemorrhoidectomy pain[J].Can J Anaesth, 2005, 52:62-68. DOI: 10.1007/BF03018582
[22] Wiegel M, Moriggl B, Schwarzkopf P, et al. Anterior suprascapular nerve block versus interscalene brachial plexus block for shoulder surgery in the outpatient Setting:A randomized controlled patient-and assessor-blinded trial[J].Reg Anesth Pain Med, 2017, 42:310-318. DOI: 10.1097/AAP.0000000000000573
[23] Löser S, Herminghaus A, Hüppe T, et al. General anesthesia for ambulatory surgery:Clinical pharmacological considerations on the practical approach[J]. Anaesthesist, 2014, 63:865-870. DOI: 10.1007/s00101-014-2364-1
[24] Kumar G, Stendall C, Mistry R, et al. A comparison of total intravenous anaesthesia using propofol with sevoflurane or desflurane in ambulatory surgery:systematic review and meta-analysis[J]. Anaesthesia, 2014, 69:1138-1150. DOI: 10.1111/anae.12713
[25] Ladha K, Vidal Melo MF, Mclean DJ, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications:hospital based registry study[J]. BMJ, 2015, 351:h3646.
[26] Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications[J]. Br J Anaesth, 2017, 119:140-149. DOI: 10.1093/bja/aex128
[27] Mccracken GC, Montgomery J. Postoperative nausea and vomiting after unrestricted clear fluids before day surgery[J]. Eur J Anaesthesiol, 2018, 35:337-342. DOI: 10.1097/EJA.0000000000000760
[28] Holte K, Klarskov B, Christensen DS, et al. Liberal Versus Restrictive Fluid Administration to Improve Recovery After Laparoscopic Cholecystectomy[J]. Ann Surg, 2004, 240:892-899. DOI: 10.1097/01.sla.0000143269.96649.3b
[29] Miller TE, Roche AM, Mythen M. Fluid management and goal-directed therapy as an adjunct to Enhanced Recovery After Surgery (ERAS)[J]. Can J Anaesth, 2015, 62:158-168. DOI: 10.1007/s12630-014-0266-y
[30] Pearse RM, Harrison DA, Macdonald N, et al. Effect of a Perioperative, Cardiac OutputGuided Hemodynamic Therapy Algorithm on Outcomes Following Major Gastrointestinal Surgery:A Randomized Clinical Trial and Systematic Review[J]. JAMA, 2014, 311:2181-2190. DOI: 10.1001/jama.2014.5305
[31] Meng LZ, Yu WF, Wang TL et al. Blood Pressure Targets in Perioperative Care[J]. Hypertension, 2018, 72:806-817. DOI: 10.1161/HYPERTENSIONAHA.118.11688
[32] Poterman M, Vos JJ, Vereecke HE, et al. Differential effects of phenylephrine and norepinephrine on peripheral tissue oxygenation during general anaesthesia:A randomised controlled trial[J]. Eur J Anaesthesiol, 2015, 32:571-580. DOI: 10.1097/EJA.0000000000000247
[33] Joosten A, Delaporte A, Mortier J, et al. Long-term Impact of Crystalloid versus Colloid Solutions on Renal Function and Disability-free Survival after Major Abdominal Surgery[J]. Anesthesiology, 2019, 130:227-236. DOI: 10.1097/ALN.0000000000002501
[34] Simomons JW, Dobyns JB, Psiste J. Enhanced Recovery After Surgery:Intraoperative Fluid Management Strategies[J]. Surg Clin North Am, 2018, 98:1185-1200. DOI: 10.1016/j.suc.2018.07.006
[35] Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation:impact on patient outcomes[J]. Ann Intensive Care, 2014, 4:38-50. DOI: 10.1186/s13613-014-0038-4
[36] Scott AV, Stonemetz JL, Wasey JO, et al. Compliance with Surgical Care Improvement Project for body temperature management (SCIP Inf-10) is associated with improved clinical outcomes[J]. Anesthesiology, 2015, 123:116-125. DOI: 10.1097/ALN.0000000000000681
[37] NICE. Hypothermia: prevention and management in adults having surgery[EB/OL]. http://www.nice.org.uk/guidance/cg65,2016.
[38] 国家麻醉专业质量控制中心, 中华医学会麻醉学分会.围手术期患者低体温防治专家共识(2017)[J].协和医学杂志, 2017, 8:352-358. http://www.cnki.com.cn/Article/CJFDTotal-XHYX201706008.htm [39] Nelson R, Edwards S, Tse B. Prophylactic nasogastric decompression after abdominal surgery[J]. Cochrane Database Syst Rev, 2007, (3):CD004929. https://pubmed.ncbi.nlm.nih.gov/17636780/
[40] Okrainec A, Aarts MA, Conn LG, et al. Compliance with Urinary Catheter Removal Guidelines Leads to Improved Outcome in Enhanced Recovery After Surgery Patients[J]. J Gastrointest Surg, 2017, 21:1390-1317. DOI: 10.1007/s11605-017-3434-x
[41] Beverly A, Kaye AD, Ljungqvist O, et al. Essential Elements of Multimodal Analgesia in Enhanced Recovery After Surgery (ERAS) Guidelines[J]. Anesthesiol Clin, 2017, 35:115-143. DOI: 10.1016/j.anclin.2017.01.018
[42] Chou R, Gordon DB, de Leon-Casasola OA, et al. Management of Postoperative Pain:A Clinical Practice Guideline From the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists Committee on Regional Anesthesia, Executive Committee, and Administrative Council[J]. J Pain, 2016, 17:131-157. DOI: 10.1016/j.jpain.2015.12.008
[43] Fornasari D, Allegri M, Gerboni S, et al. A "novel" association to treat pain:tramadol/dexketoprofen. The first drug of a "new pharmacological class"[J]. Acta Biomed, 2017, 88:17-24.
[44] Moskovitz BL, Benson CJ, Patel AA, et al. Analgesic treatment for moderate-to-severe acute pain in the United States:patients' perspectives in the Physicians Partnering Against Pain (P3) survey[J]. J Opioid Manag, 2011, 7:277-286. DOI: 10.5055/jom.2011.0069
[45] Arendt-Nielsen L, Olesen AE, Staahl C, et al. Analgesic efficacy of peripheral kappa-opioid receptor agonist CR665 compared to oxycodone in a multi-modal, multi-tissue experimental human pain model:selective effect on visceral pain[J]. Anesthesiology, 2009, 111:616-624. DOI: 10.1097/ALN.0b013e3181af6356
[46] Hah J, Mackey SC, Schmidt P, et al. Effect of Perioperative Gabapentin on Postoperative Pain Resolution and Opioid Cessation in a Mixed Surgical Cohort:A Randomized Clinical Trial[J]. JAMA Surg, 2018, 153:303-311. DOI: 10.1001/jamasurg.2017.4915
[47] Assouline B, Tramèr MR, Kreienbühl L, et al. Benefit and harm of adding ketamine to an opioid in a patient-controlled analgesia device for the control of postoperative pain:systematic review and meta-analyses of randomized controlled trials with trial sequential analyses[J]. Pain, 2016, 157:2854-2864. DOI: 10.1097/j.pain.0000000000000705
[48] Olesen AE, Staahl C, Arendt-Nielsen L, et al. Different effects of morphine and oxycodone in experimentally evoked hyperalgesia:a human translational study[J]. Br J Clin Pharmacol, 2010, 70:189-200. DOI: 10.1111/j.1365-2125.2010.03700.x
[49] Schnabel A, Reichl SU, Weibel S, et al. Efficacy and safety of dexmedetomidine in peripheral nerve blocks[J]. Eur J Anaesthesiol, 2018, 35:745-758. DOI: 10.1097/EJA.0000000000000870
[50] Vigneault L, Turgeon AF, CôtéD, et al. Perioperative intravenous lidocaine infusion for postoperative pain control:a meta-analysis of randomized controlled trials[J]. Can J Anaesth, 2011, 58:22-37. DOI: 10.1007/s12630-010-9407-0
[51] Bruna Esteban M, Vorwald P, Ortega Lucea S, et al. Enhanced recovery after surgery in gastric resections[J]. Cir Esp, 2017, 95:73-82. DOI: 10.1016/j.ciresp.2016.10.013
[52] Sardana V, Burzynski J, Scuderi GR. Adductor Canal Block or Local Infiltrate Analgesia for Pain Control After Total Knee Arthroplasty? A Systematic Review and Meta-Analysis of Randomized Controlled Trials[J]. J Arthroplasty, 2019, 34:183-189. DOI: 10.1016/j.arth.2018.09.083
[53] Richman JM, Liu SS, Courpas G, et al. Does continuous peripheral nerve block provide superior pain control to opioids? A meta-Analysis[J]. Anesth Analg, 2006, 102:248-257. DOI: 10.1213/01.ANE.0000181289.09675.7D
[54] Gan TJ, Diemunsch P, Habib AS, et al. Consensus Guidelines for the Management of Postoperative Nausea and Vomiting[J]. Anesth Analg, 2014, 118:85-113. DOI: 10.1213/ANE.0000000000000002
[55] Apfel CC, Heidrich FM, Jukar-Rao S, et al. Evidence-based analysis of risk factors for postoperative nausea and vomiting[J]. Br J Anaesth, 2012, 109:742-753. DOI: 10.1093/bja/aes276
[56] Castelino T, Fiore JF, Niculiseanu P. The effect of early mobilization protocols on postoperative outcomes following abdominal and thoracic surgery:A systematic review[J]. Surgery, 2016, 159:991-1003. DOI: 10.1016/j.surg.2015.11.029
[57] Todd OM, Gelrich L, Maclullich AM, et al. Sleep Disruption at Home As an Independent Risk Factor for Postoperative Delirium[J]. J Am Geriatr Soc, 2017, 65:949-957. DOI: 10.1111/jgs.14685
[58] Koffel E, Kroenke K, Bair MJ, et al. The bidirectional relationship between sleep complaints and pain:Analysis of data from a randomized trial[J]. Health Psychol, 2016, 35:41-49. DOI: 10.1037/hea0000245
[59] Loke YK, Brown JW, Kwok CS, et al. Association of obstructive sleep apnea with risk of serious cardiovascular events:a systematic review and meta-analysis[J]. Circ Cardiovasc Qual Outcomes, 2012, 5:720-728. DOI: 10.1161/CIRCOUTCOMES.111.964783
[60] Dolan R, Huh J, Tiwari N, et al. A prospective analysis of sleep deprivation and disturbance in surgical patients[J]. Ann Med Surg (Lond), 2016, 6:1-5. DOI: 10.1016/j.amsu.2015.12.046
[61] Scarpa M, Pinto E, Saraceni E, et al. Randomized clinical trial of psychological support and sleep adjuvant measures for postoperative sleep disturbance in patients undergoing oesophagectomy[J]. Br J Surg, 2017, 104:1307-1314. DOI: 10.1002/bjs.10609
-
期刊类型引用(9)
1. 郭晓睿,李蕾,张蓉,郭丹,谢彧之,付强,周寒梅. 青少年特发性脊柱侧凸病人围术期麻醉管理的最佳证据总结. 循证护理. 2024(02): 210-217 . 百度学术
2. 陶尊晓,朱春爽,尹翠翠,范燕燕. 青少年特发性脊柱侧凸患者围手术期加速康复管理的最佳证据总结. 中华现代护理杂志. 2024(02): 183-190 . 百度学术
3. 李方方,宋葆云,苏豫囡. ERAS理念的围术期护理在脊柱畸形矫形术患者中的应用. 齐鲁护理杂志. 2024(10): 120-123 . 百度学术
4. 李柯蓉,孟繁媛,赵智,陈茉弦,敖丽娟. 特发性脊柱侧凸手术患者功能障碍及康复治疗研究进展. 四川医学. 2024(09): 1027-1032 . 百度学术
5. 杨莹,田雪,陈亚萍,赵钇伟,李子全. Ⅰ型神经纤维瘤病性胸腰椎脊柱侧后凸的围术期临床疗效及护理研究. 罕见病研究. 2023(04): 539-546 . 百度学术
6. 王向阳,刘永辉,石洋,崔宏勋. 加速康复外科理念在脊柱手术围手术期应用进展. 中国疗养医学. 2022(01): 51-53 . 百度学术
7. 佟冰渡,李高洋,田雪,李杨,徐涛,陈亚萍. 青少年特发性脊柱侧凸患者术后首次离床活动直立不耐受的现状及影响因素分析. 中国护理管理. 2022(01): 17-21 . 百度学术
8. 佟冰渡,苏晓静,陈佳丽,黄洁,郑金凤,朱婷,宁宁,鲁雪梅,高远,郭娜,陈亚萍. 青少年特发性脊柱侧凸患者围手术期护理专家共识. 中华骨与关节外科杂志. 2022(11): 822-830 . 百度学术
9. 王薇,李颂,赵慧,王琪. 加速康复外科理念在青少年特发性脊柱侧凸围术期的应用. 骨科. 2021(05): 462-466 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 1298
- HTML全文浏览量: 268
- PDF下载量: 662
- 被引次数: 10