临床实践指南信息化平台发展现状

张雪芹, 赵芸, 刘杰, 葛龙, 邢颖, 任似梦, 王怡菲, 张文政, 张迪, 王世华, 孙瑶, 吴敏, 冯林, 文天才

张雪芹, 赵芸, 刘杰, 葛龙, 邢颖, 任似梦, 王怡菲, 张文政, 张迪, 王世华, 孙瑶, 吴敏, 冯林, 文天才. 临床实践指南信息化平台发展现状[J]. 协和医学杂志, 2025, 16(2): 462-471. DOI: 10.12290/xhyxzz.2024-0496
引用本文: 张雪芹, 赵芸, 刘杰, 葛龙, 邢颖, 任似梦, 王怡菲, 张文政, 张迪, 王世华, 孙瑶, 吴敏, 冯林, 文天才. 临床实践指南信息化平台发展现状[J]. 协和医学杂志, 2025, 16(2): 462-471. DOI: 10.12290/xhyxzz.2024-0496
ZHANG Xueqin, ZHAO Yun, LIU Jie, GE Long, XING Ying, REN Simeng, WANG Yifei, ZHANG Wenzheng, ZHANG Di, WANG Shihua, SUN Yao, WU Min, FENG Lin, WEN Tiancai. Status of Clinical Practice Guideline Information Platforms[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 462-471. DOI: 10.12290/xhyxzz.2024-0496
Citation: ZHANG Xueqin, ZHAO Yun, LIU Jie, GE Long, XING Ying, REN Simeng, WANG Yifei, ZHANG Wenzheng, ZHANG Di, WANG Shihua, SUN Yao, WU Min, FENG Lin, WEN Tiancai. Status of Clinical Practice Guideline Information Platforms[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 462-471. DOI: 10.12290/xhyxzz.2024-0496

临床实践指南信息化平台发展现状

基金项目: 

国家自然科学基金 82374624

中国中医科学院科技创新工程重大攻关项目 CI2021A05502

北京市自然科学基金 7232306

中国中医科学院课题 ZZ16-XRZ-107-SJ

中国中医科学院中央级公益性科研院所基本科研业务费项目 ZZ15-WT-05

详细信息
    通讯作者:

    文天才,E-mail:wentiancai@ndctcm.cn

  • 中图分类号: R181.2; TP

Status of Clinical Practice Guideline Information Platforms

Funds: 

National Natural Science Foundation of China 82374624

China Academy of Chinese Medical Sciences Science and Technology Innovation Project CI2021A05502

Beijing Natural Science Foundation 7232306

China Academy of Chinese Medical Sciences Project ZZ16-XRZ-107-SJ

China Academy of Chinese Medical Sciences Central Public Welfare Research Institute Basic Research Business Expenses Project ZZ15-WT-05

More Information
  • 摘要:

    临床实践指南是通过系统评价当前可得的临床证据和平衡不同干预措施的利弊,从而为患者提供最佳推荐意见。然而,临床实践指南从制订/修订到临床推广应用,需经过较长的转化周期,且存在分布分散、重复率高、实际利用度低等问题。临床实践指南信息化平台可直接或间接解决指南制订/修订周期长、发布不集中及应用不足等相关问题。因此,本文对不同类型的临床实践指南信息化平台进行整理和分析,探讨其在平台设计、数据整合和应用方面的挑战及趋势,以了解该领域发展现状,并为未来临床实践指南信息化平台的建设和研究提供参考。

    Abstract:

    Clinical practice guidelines represent the best recommendations for patient care. They are developed through systematically reviewing currently available clinical evidence and weighing the relative benefits and risks of various interventions. However, clinical practice guidelines have to go through a long translation cycle from development and revision to clinical promotion and application, facing problems such as scattered distribution, high duplication rate, and low actual utilization. At present, the clinical practice guideline information platform can directly or indirectly solve the problems related to the lengthy revision cycles, decentralized dissemination and limited application of clinical practice guidelines. Therefore, this paper systematically examines different types of clinical practice guideline information platforms and investigates their corresponding challenges and emerging trends in platform design, data integration, and practical implementation, with the aim of clarifying the current status of this field and providing valuable reference for future research on clinical practice guideline information platforms.

  • 为深入推进健康中国建设,提升医学人文关怀,改善医患沟通,构建和谐医患关系,助力卫生健康事业高质量发展,特制定本方案。

    以习近平新时代中国特色社会主义思想为指导,深刻领会习近平文化思想和习近平法治思想内涵,坚持“两个结合”,全面贯彻党的二十大和二十届二中、三中全会精神,聚焦人民群众日益增长的高质量医疗服务需求,以提升患者就医获得感和满意度为目标,以“相互尊重、保护隐私、严守法规、加强沟通”为核心原则,坚持“以患者为中心”,大力开展医学人文教育,加强医学人文关怀,增进医患交流互信,构建和谐医患关系。

    医学人文精神是人文精神在医疗领域的具体体现,以对患者的关怀、尊重为目标,体现着医学对生命的态度。医学人文关怀培养应当贯穿医学生培养全过程和医务人员职业全周期,本行动方案从医学生人文素养培育、医疗卫生机构人文关怀建设、崇高职业精神弘扬等3个方面同向发力、协同推进。

    要把理想信念教育、思想政治教育和医德培养贯穿医学人才培养全过程,着力培养医学生珍爱生命、大医精诚、救死扶伤的精神。强化医学人文教育,优化医学人文课程体系,建强医学人文师资队伍,鼓励支持名医名家为医学生讲授医学人文课程,讲述从医经验感受,叙述医患良性互动故事,打造一批医学人文精品课程和教材。

    鼓励医学院校建立人文教育实践基地、生命科学馆等,结合医学史、校史、院史等讲好医学大家感人故事,把好医生、好护士的先进事迹作为医学人文教育的重要素材,提升医学生的人文情怀。同时,医学院校要加强对医学生的人文关怀,关注心理健康,强化职业发展教育,帮助树牢专业思想,夯实职业素养基础。

    医学院校要在临床见习、毕业实习和临床实践训练过程中,加强医学生与患者及家属沟通交流能力的培养。组织开展医学生走进社区乡村送医送药、宣传健康教育知识等多种形式的医学人文相关社会实践活动,安排医学生早期进入临床科室、医疗卫生机构投诉管理部门等进行教学实践,让医学生在实践中提升医学人文素养,重视医患沟通,熟悉交流技巧。

    医疗卫生机构主要负责人是本单位人文建设管理的第一责任人,要将人文精神融入医疗卫生机构管理和服务各环节。医疗卫生机构应当将人文精神培育与医疗业务工作同步推进,制订、落实切合本医疗卫生机构的人文关怀制度,提升患者就医体验。

    医疗卫生机构应当进一步加强文化建设,挖掘医疗卫生机构发展沿革、文化特色、名医大家先进事迹、经典病例救治等,引导医疗卫生机构工作人员树立人文情怀,培育心中有爱、医德高尚的“大医”“良医”。中医医疗机构、非中医医疗机构的中医临床科室应当在价值观念、行为规范、环境形象等方面充分体现中医药文化本色,进一步增强中医药文化底蕴。

    各地要结合本地区实际情况,组织开展医学人文系列培训活动。要将临床一线医务人员作为主要培训对象,将新入职员工、医疗纠纷高发科室人员等作为培训重点;组织投诉管理人员、分诊台、导医咨询人员及热线电话接听人员等窗口人员参加培训,提高培训内容针对性。

    通过科学管理分诊、优化安排上下午、周末出诊时间、错峰排诊等,保证医患有较充分的沟通交流时间。医务人员诊疗过程中要耐心倾听患者陈述,合理运用医患沟通技巧,建立良好的沟通渠道和相互尊重的医患关系,拉近与患者的心理距离。医务人员要与患者及家属主动沟通病情状况、治疗方案,回应患者的疑问和关切,开展有针对性的健康教育和指导,改善改进治疗效果。

    医疗卫生机构要为患者营造安全、便利、温馨、舒适的就医环境,要配备方便患者生活、活动且功能完好的各种设施和设备,为老人、孕产妇、儿童及残疾人等特殊人群提供就医便利。要充分考虑重症监护室、抢救室、手术室等特殊单元的人文关怀工作。医疗卫生机构标识标牌要醒目、便识、简明、易懂,充分运用互联网、人工智能等技术为患者提供快捷便利的就医体验,特别注重为老幼残孕等重点人群做好关爱服务。

    医疗卫生机构应当丰富医务社工服务内容,协助开展医患沟通,提供诊疗、生活、法务、援助等患者支持服务;要通过多途径、多渠道,鼓励医务人员、医学生及社会爱心人士等,通过系统专业的培训后为患者提供志愿服务,充分发挥医务社工和志愿者在医患和谐中的桥梁和纽带作用。

    推动把“敬佑生命、救死扶伤、甘于奉献、大爱无疆”的崇高职业精神作为行业教育的重点内容,塑造医术精湛、医德高尚、医风严谨的行业风范,不断深化对职业精神的认知认同,积极开展“传帮带”人才培养,坚持以老带新、育德传技,引导青年医务人员成长为职业精神优良、业务本领高强的优秀医务工作者。

    各地卫生健康行政部门(含中医药主管部门、疾控主管部门,下同)和医疗卫生机构应当选树践行职业精神的先进集体和个人,弘扬他们的先进事迹,褒奖有突出业绩和良好服务口碑的医务人员;鼓励医务人员和患者讲述“暖心服务、人文关怀、耐心沟通”的医患故事,组织开展名医大家讲述从业心得、医患感人事件分享,要以医者视角记录生命故事,以生动叙事展现医学本质,以身边榜样传递人文力量,引导医务人员将对患者关心关爱成为自觉,增加患者对医务人员的职业尊重,提升医患理解与信任度。

    加强对中医药文化内涵精髓的挖掘研究,梳理阐释古代名医名家的治学精神、高尚情操及关于医德医风医道之论。大力宣传和践行“大医精诚”“仁心仁术”,通过推动中医药文化建设、典型宣传等方式,启迪医务人员修医德、行仁术,传承精华,守正创新,不断提升思想道德水平与价值追求。

    各级卫生健康行政部门要发挥官网官微及新媒体平台作用,进一步唱响崇高职业精神主旋律。通过系列专题、专栏报道等多种形式,宣介人文关怀先进事迹;挖掘人民卫生健康事业传承发展的红色基因,弘扬伟大抗疫精神和抗击非典精神,讲好新时代传承白求恩精神等感人故事;发挥先进典型作用,塑造“新时代最可爱的人”群像。积极挖掘行业内外资源,推动因地制宜建设健康类陈列馆、教育馆等,打造医学人文传承推广载体。

    国家卫生健康委、教育部、国家中医药局、国家疾控局制定印发行动方案,各省级卫生健康行政部门会同教育行政部门进行工作部署和宣贯动员。各医疗卫生机构、医学院校制定本单位具体工作措施,并启动实施。

    各地结合实际进行工作部署,逐步健全和优化医学人文建设管理组织架构,促进医患沟通,持续改进服务质量。各省级卫生健康行政部门、教育行政部门于每年12月31日前将本年度行动总结分别报送国家卫生健康委医疗应急司、教育部高等教育司。

    各级卫生健康行政部门,各医疗卫生机构、医学院校对专项行动工作进行全面总结评估,多渠道、多形式对工作成效和先进典型进行宣传,将工作中形成的具有推广价值的好经验、好做法转化为制度性安排。

    各级卫生健康行政部门、教育行政部门要充分认识加强医学人文关怀、改善医患沟通的重要意义,要充分发挥统筹指导作用,协调相关部门提供必要的政策支撑。各级各类医疗卫生机构要优化服务方式,既要重视服务效率,更要重视服务效果和群众感受,要明确工作责任,细化工作措施,创新服务理念,将人文关怀融入患者诊治全流程。各地要加强工作成效的宣传,弘扬新时代医疗卫生职业精神,通过社会评价检验工作成效,营造良好的舆论氛围。各地要根据医务人员、人民群众评价结果,不断调整和完善有关措施,提高医疗服务水平,形成可复制、可推广的经验,持续推进医学人文关怀工作。

    作者贡献:张雪芹、文天才负责论文设计与构思,资料搜集、整理及分析,撰写论文初稿;邢颖、张迪负责设计表格、论文初稿修订;赵芸、刘杰、葛龙、任似梦、王怡菲、张文政、王世华、孙瑶、吴敏、冯林负责资料搜集和论文初稿修订;文天才负责论文选题、团队组建、质量控制及审校。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1   临床实践指南信息化平台系统三层架构

    注:Internet代表网络端;Server代表服务端;Data代表数据端

    Figure  1.   Three-layer structure of the clinical practice guideline information platform system

    表  1   CPG注册平台结构化方法

    Table  1   Structured approach to CPG registration platform

    注册平台 研究内容 备注
    设计方法 需求分析 了解CPG制订者、使用者和科研人员等用户需求
    功能设计 注册新CPG、搜索已注册CPG、定位CPG、更新CPG状态等
    数据字段设计 CPG标题、版本、分类(循证指南、快速指南、专家共识、中医药指南等)、研究领域(诊断、诊疗、预防、预后、管理等)、制订者信息、制订者单位、制订进度、更新记录等
    结构 用户界面 提供用户交互界面,包括输入新CPG信息表单,查找CPG的检索工具和信息排序、过滤筛选功能等
    数据库 存储、查询和管理CPG和相关元数据,确保数据的一致性和安全性
    应用 注册新指南 提交新CPG基本信息并获得唯一注册号
    更新指南信息 定期更新CPG进度和内容,记录每次更新的详细信息
    查找和访问指南 通过检索或访问特定CPG,支持根据CPG版本、类型、领域、标题、制订单位和时间等多种条件进行过滤
    CPG(clinical practice guideline):临床实践指南
    下载: 导出CSV

    表  2   CPG制订平台结构化方法

    Table  2   Structured approach to CPG development platform

    制订平台 研究内容 备注
    设计方法 需求分析 分析领域专家、CPG制订者和使用者的需求
    流程设计 设计CPG制订的关键步骤和流程,如文献回顾、证据评估、CPG草案编写等,确保流程清晰,支持多方协作和输入
    界面设计 支持不同角色用户(如录入员、制订员、审核员、管理员等)进行CPG信息输入、审阅和管理
    结构 文献管理 用于制订、收集和管理CPG文献,支持文献的上传、标注和引用
    证据评估工具 提供证据评价工具,进行推荐意见质量评价、专家共识意见汇总
    CPG编写工具 编辑环境可协作,允许多个作者输入和修改CPG内容
    审阅和批准流程 实现CPG草案的审阅和修订流程,包括公开评论和专家审阅
    发布和更新管理 发布制订完成的CPG,并管理后续更新和修订状态
    应用 启动阶段 明确CPG研究疾病和类型,设置团队成员和权限
    证据合成和评估 搜集(集成或链接医学文献数据库)并分析证据,评估证据质量,形成初步推荐意见,并邀请专家共识意见
    CPG编写和审阅 多个专家协作制订CPG,汇总意见并提交审阅
    发布和监测 发布最终CPG,并持续监测其应用和更新情况
    CPG:同表 1
    下载: 导出CSV

    表  3   MAGICapp与GRADE pro GDT特点比较[16, 28]

    Table  3   Comparison of features between MAGICapp and GRADE pro GDT

    项目 MAGICapp GRADE pro GDT
    构建时间 2013年 2013年
    概念 证据生态系统:(1)电子化、结构化数据;(2)可信证据;(3)方法上共识;(4)分享文化和氛围;(5)工具和平台 GRADE证据评价系统:(1)界定证据质量和推荐强度;(2)明确证据升降级的标准;(3)患者价值观和意愿;(4)临床医生、患者、政策制定者等不同角度;(5)制作系统评价、卫生技术评估及指南
    发布内容 CPG、推荐意见和证据,使用GRADE方法、新技术和新开发的框架 CPG,使用GRADE方法和EtD证据表
    推荐强度 强推荐(绿色)/弱推荐(黄色),或A/B/C/D(NHMRC自定分级标准) 强推荐/弱推荐/仅在研究中使用干预措施的建议/不建议
    EtD框架 收益/危害、证据质量、患者价值偏好及医疗资源使用 问题优先级、期望结果、不良反应,对证据体的信心、患者价值偏好、利弊平衡、用户的可接受性及推荐的可行性
    输出格式 JSON、PDF、Word等 结果总结表、证据概要表、PDF、Word和链接等
    其他功能 参考文献管理器,结构化PICO问题,多团体在线协同工作,项目管理(监控进度、发布分配任务和质量控制),基于PICO证据摘要生成决策辅助工具,集成电子医疗记录、Epistemonikos数据库 评分量表,评估证据质量(包括偏倚风险、一致性、间接性、不精确性、效应量、剂量反应梯度等影响因素),链接GRADE工作组证据概要数据库和手机终端
    语言 英语、西班牙语、葡萄牙语、荷兰语、德语、法语、芬兰语、挪威语、阿拉伯语、丹麦语和瑞典语 英语、西班牙语、葡萄牙语、荷兰语、德语、法语、意大利语、汉语、日语、爱沙尼亚语、泰语、捷克语
    CPG:同表 1;GRADE(Grading of Recommendations, Assessment, Development and Evaluation):证据推荐分级评估、制定和评价系统;NHMRC(National Health and Medical Research Council):澳大利亚国家健康与医学研究理事会;JSON(Java Script Object Notation):JavaScript对象表示法;PICO(Population,Intervention,Comparison,Outcome):人群、干预、对照、结局
    下载: 导出CSV

    表  4   基于CPG的不同CDSS特点比较

    Table  4   Basic characteristics of different CDSS based on CPG

    功能 名称 数据来源 数据类型 研究群体 应用
    辅助预防 VTE-CDSS[47] CPG 结构化数据 住院成年患者 静脉血栓栓塞症风险评估和预防实践
    辅助诊断 PERMANENS[48] CPG/电子健康记录数据/死亡率数据/管理数据 OMOP通用数据模型 有自残或自杀风险的个人 个性化检测,风险评分和可视化,管理风险
    辅助治疗 IDE 4 ICDS[49] CPG 结构化数据 2型糖尿病患者 提供治疗建议
    CDT study[50] CPG 结构化数据 乳腺癌、结直肠癌和前列腺癌患者 提供无条件临床决策树建议
    PedN-CDSS-Hyperthermia[51] CPG/系统评价/证据总结/最佳实践建议 文本格式 儿科高温患者 个性化护理干预
    Case study in thyroid nodules[52] CPG 思维导图和迭代决策树 甲状腺结节患者 提供治疗建议
    辅助用药 PITeS-TIiSS[53] CPG/LESS-CHRON标准/PROFUND指数/STOPP/START标准 本体模型 慢性病和合并症患者 提供个性化开药建议
    RecosDoc-MTeV[54] CPG 文本格式 静脉血栓栓塞症患者 管理直接口服抗凝剂处方的给药方式、剂量、治疗持续时间等
    CPG:同表 1;OMOP(Observational Medical Outcomes Partnership):美国观察性医疗结果合作组织;STOPP(Screening Tool of Older Person's Prescriptions):老年人潜在不适当处方筛查工具;START(Screening Tool to Alert to Right Treatment):处方遗漏筛查工具
    下载: 导出CSV
  • [1]

    Sullivan J M, Mann R J. Clinical practice guidelines: implications for use[J]. Dermatol Nurs, 1994, 6(6): 413-416.

    [2]

    Sessa C, Colombo N, Creutzberg C L, et al. Implementing clinical practice guidelines: time to assess it[J]. ESMO Open, 2020, 5(6): e001130. DOI: 10.1136/esmoopen-2020-001130

    [3] 史乾灵, 刘辉, 王子君, 等. 正确理解和应用低质量证据形成指南推荐意见[J]. 协和医学杂志, 2024, 15(3): 676-685. DOI: 10.12290/xhyxzz.2024-0278

    Shi Q L, Liu H, Wang Z J, et al. How to correctly understand and use the low-quality evidence to formulate recommendations in guidelines[J]. Med J PUMCH, 2024, 15(3): 676-685. DOI: 10.12290/xhyxzz.2024-0278

    [4]

    Schlegel D R, Gordon K, Gaudioso C, et al. Clinical tractor: a framework for automatic natural language understanding of clinical practice guidelines[J]. AMIA Annu Symp Proc, 2020, 2019: 784-793.

    [5]

    Taboada M, Meizoso M, Martínez D, et al. Combining open-source natural language processing tools to parse clinical practice guidelines[J]. Expert Syst, 2013, 30(1): 3-11. DOI: 10.1111/j.1468-0394.2010.00575.x

    [6] 琚沅红. 诊疗规范知识可计算化模式研究[D]. 长春: 吉林大学, 2023.

    Ju Y H. Research on computable model of diagnosis and therapeutic norms knowledge[D]. Changchun: Jilin University, 2023.

    [7]

    Lyng K M. From clinical practice guidelines, to clinical guidance in practice-impacts for computerization[J]. Int J Med Inform, 2013, 82(12): e358-e363. DOI: 10.1016/j.ijmedinf.2012.10.004

    [8]

    Georg G, Séroussi B, Bouaud J. Extending the GEM model to support knowledge extraction from textual guidelines[J]. Int J Med Inform, 2005, 74(2/4): 79-87.

    [9]

    Aguirre-Junco A R, Colombet I, Zunino S, et al. Computerization of guidelines: a knowledge specification method to convert text to detailed decision tree for electronic implementation[J]. Stud Health Technol Inform, 2004, 107(Pt 1): 115-119.

    [10]

    Hu D Q, Zhang H Y, Li S L, et al. Automatic extraction of lung cancer staging information from computed tomography reports: deep learning approach[J]. JMIR Med Inform, 2021, 9(7): e27955. DOI: 10.2196/27955

    [11]

    Chew S Y, Koh M S, Loo C M, et al. Making clinical practice guidelines pragmatic: how big data and real world evidence can close the gap[J]. Ann Acad Med Singapore, 2018, 47(12): 523-527. DOI: 10.47102/annals-acadmedsg.V47N12p523

    [12]

    Leu M G, Weinberg S T, Monsen C, et al. Web services and cloud computing in pediatric care[J]. Pediatrics, 2021, 148(1): e2021052048. DOI: 10.1542/peds.2021-052048

    [13]

    Oliveira T, Novais P, Neves J. Development and implementation of clinical guidelines: an artificial intelligence perspective[J]. Artif Intell Rev, 2014, 42(4): 999-1027. DOI: 10.1007/s10462-013-9402-2

    [14]

    Shoja M M, Van De Ridder J M M, Rajput V. The emerging role of generative artificial intelligence in medical education, research, and practice[J]. Cureus, 2023, 15(6): e40883.

    [15] 世界卫生组织指南实施与知识转化合作中心.

    Prepare[EB/OL ]. [2024-01-08]. http://www.guidelines-registry.org.

    [16]

    McMaster University, Evidence Prime Inc. GRADE pro GDT[EB/OL ]. [2024-01-08]. http://gradepro.org.

    [17]

    Guidelines International Network. GIN[EB/OL ]. [2024-01-08]. https://g-i-n.net.

    [18]

    Guideline Central. Guidelines[EB/OL ]. [2024-01-08]. https://www.guidelinecentral.com/guidelines/.

    [19]

    Park T, Gu P, Kim C H, et al. Artificial intelligence in urologic oncology: the actual clinical practice results of IBM Watson for Oncology in South Korea[J]. Prostate Int, 2023, 11(4): 218-221. DOI: 10.1016/j.prnil.2023.09.001

    [20]

    Liu Y B, Huo X F, Li Q, et al. Watson for oncology decision system for treatment consistency study in breast cancer[J]. Clin Exp Med, 2023, 23(5): 1649-1657.

    [21]

    Kazemi A, Boyd M, Choi F, et al. Architecture and development framework for a web-based risk assessment and management platform developed on WordPress to address opioid overdose[J]. JMIR Form Res, 2024, 8: e49759. DOI: 10.2196/49759

    [22] 王永博, 刘郝弦, 高旷, 等. 临床实践指南实施性促进研究之六: 临床实践指南知识图谱构建中关于基本信息、背景和方法的建模表征研究[J]. 医学新知, 2022, 32(6): 401-416.

    Wang Y B, Liu H X, Gao K, et al. Research on the promotion of clinical practice guidelines implementation (Ⅵ): a modeling representation of basic information, context, and methodology in the clinical practice guideline knowledge graph[J]. New Med, 2022, 32(6): 401-416.

    [23]

    Chen Y L, Guyatt G H, Munn Z, et al. Clinical practice guidelines registry: toward reducing duplication, improving collaboration, and increasing transparency[J]. Ann Intern Med, 2021, 174(5): 705-707. DOI: 10.7326/M20-7884

    [24]

    Liu H, Yang N, Estill J, et al. Enhancing the transparency of clinical practice guidelines by prospective registration: the PREPARE platform[J]. BMJ Evid Based Med, 2025, 30(1): 68-70. DOI: 10.1136/bmjebm-2023-112813

    [25]

    Anon. Improving patient care through evidence-based guidelines[Z/OL ]. [2024-01-08]. https://www.sign.ac.uk/.

    [26] 中华中医药学会. 标准化[EB/OL ]. [2024-01-08]. http://www.cacm.org.cn/category/zyzn/bzh/.

    China Association of Chinese Medicine. Standardization[EB/OL ]. [2024-01-08]. http://www.cacm.org.cn/category/zyzn/bzh/.

    [27]

    Burgers J S, Van Everdingen J J. Evidence-based guideline development in the Netherlands: the EBRO platform[J]. Ned Tijdschr Geneeskd, 2004, 148(42): 2057-2059.

    [28]

    MAGICapp[EB/OL ]. [2024-01-08]. https://www.magicevidence.org/magicapp/.

    [29] 龙囿霖, 张永刚, 李幼平, 等. 全球临床指南数据库运行机制的比较研究[J]. 中国循证医学杂志, 2018, 18(10): 1045-1052. DOI: 10.7507/1672-2531.201805128

    Long Y L, Zhang Y G, Li Y P, et al. A comparative study on operative mechanism of the global clinical guideline databases[J]. Chin J Evid Based Med, 2018, 18(10): 1045-1052. DOI: 10.7507/1672-2531.201805128

    [30] 张雪芹, 邓宏勇. 循证医学数据库: 现状与趋势[J]. 中国循证医学杂志, 2021, 21(6): 621-627.

    Zhang X Q, Deng H Y. The current situation and trends of development of evidence-based medicine database[J]. Chin J Evid Based Med, 2021, 21(6): 621-627.

    [31]

    Agency for Healthcare Research and Quality. NGC and NQMC inclusion criteria[EB/OL ]. [2024-01-08]. https://www.ahrq.gov/gam/summaries/inclusion-criteria/index.html.

    [32]

    National Institute for Health and Care Excellence. Develop-ing NICE guidelines: the manual[EB/OL ]. (2014-10-31)[ 2024-01-08]. https://www.nice.org.uk/Media/Default/About/what-we-do/our-programmes/developing-NICE-guidelines-the-manual.pdf.

    [33] 医脉通指南[Z/OL ]. [2024-01-08]. http://guide.med-live.cn/.
    [34]

    STAR[EB/OL ]. [2024-01-08]. https://www.star-guidelines.cn/.

    [35] 杨楠, 赵巍, 潘旸, 等. 针对临床实践指南科学性、透明性和适用性的评级工具研发[J]. 中华医学杂志, 2022, 102(30): 2329-2337.

    Yang N, Zhao W, Pan Y, et al. Development of rating tools for the scientific, transparent, and applicable nature of clinical practice guidelines[J]. Natl Med J China, 2022, 102(30): 2329-2337.

    [36]

    Association of the Scientific Medical Societies in Germany (AWMF). Guidelines register[Z/OL ]. [2024-01-08]. https://www.awmf.org/.

    [37]

    Anon. BIGG International database of GRADE guidelines[Z/OL ]. [2024-01-08]. https://sites.bvsalud.org/bigg/en/biblio/.

    [38]

    GRADEpro. Database of GRADE EtD's and guidelines[EB/OL ]. [2024-01-08]. https://guidelines.gradepro.org/search.

    [39]

    DynaMed[Z/OL ]. [2024-01-08]. https://www.dynamed.com/about/whatwe-publish/.

    [40]

    Trip[Z/OL ]. [2024-01-08]. https://www.tripdatabase.com/about.

    [41]

    Tu S W, Podchiyska T, Oshiro C, et al. Structural patterns in chronic disease clinical practice guidelines formalized for clinical decision support[J]. AMIA Annu Symp Proc, 2023, 2022: 1081-1090.

    [42]

    García-García J A, Carrero M, Escalona M J, et al. Evaluation of clinical practice guideline-derived clinical decision support systems using a novel quality model[J]. J Biomed Inform, 2024, 149: 104573. DOI: 10.1016/j.jbi.2023.104573

    [43]

    Wang D W, Shortliffe E H. GLEE--a model-driven execution system for computer-based implementation of clinical practice guidelines[J]. Proc AMIA Symp, 2002: 855-859.

    [44]

    Spineth M, Rappelsberger A, Adlassnig K P. Implementing CDS hooks communication in an Arden-Syntax-based clinical decision support platform[J]. Stud Health Technol Inform, 2018, 255: 165-169.

    [45]

    Terenziani P, Montani S, Bottrighi A, et al. Applying artificial intelligence to clinical guidelines: the GLARE approach[J]. Stud Health Technol Inform, 2008, 139: 273-282.

    [46]

    Hatsek A, Young O, Shalom E, et al. DeGeL: a clinical-guidelines library and automated guideline-support tools[J]. Stud Health Technol Inform, 2008, 139: 203-212.

    [47]

    Titi M A, Alotair H A, Fayed A, et al. Effects of computerised clinical decision support on adherence to VTE prophylaxis clinical practice guidelines among hospitalised patients[J]. Int J Qual Health Care, 2021, 33(1): mzab034. DOI: 10.1093/intqhc/mzab034

    [48]

    Mortier P, Amigo F, Bhargav M, et al. Developing a clinical decision support system software prototype that assists in the management of patients with self-harm in the emergency department: protocol of the PERMANENS project[J]. BMC Psychiatry, 2024, 24(1): 220. DOI: 10.1186/s12888-024-05659-6

    [49]

    Parra-Calderón C L, Román-Villarán E, Alvarez-Romero C, et al. A prospective observational concordance study to evaluate computational model-driven clinical practice guidelines for Type 2 diabetes mellitus[J]. Int J Med Inform, 2023, 178: 105208. DOI: 10.1016/j.ijmedinf.2023.105208

    [50]

    Ebben K C W J, Hendriks M P, Markus L, et al. Using guideline-based clinical decision support in oncological multidisciplinary team meetings: a prospective, multicenter concordance study[J]. Int J Qual Health Care, 2022, 34(1): mzac007. DOI: 10.1093/intqhc/mzac007

    [51]

    Zhao Y X, Hu J, Gu Y, et al. Development and implementation of a pediatric nursing-clinical decision support system for hyperthermia: a pre- and post-test[J]. Comput Inform Nurs, 2021, 40(2): 131-137.

    [52]

    Yu H W, Hussain M, Afzal M, et al. Use of mind maps and iterative decision trees to develop a guideline-based clinical decision support system for routine surgical practice: case study in thyroid nodules[J]. J Am Med Inform Assoc, 2019, 26(6): 524-536. DOI: 10.1093/jamia/ocz001

    [53]

    Román-Villarán E, Alvarez-Romero C, Martínez-García A, et al. A personalized ontology-based decision support system for complex chronic patients: retrospective observational study[J]. JMIR Form Res, 2022, 6(8): e27990. DOI: 10.2196/27990

    [54]

    Séroussi B, Ouarrirh H, Elalamy I, et al. Development and assessment of RecosDoc-MTeV to improve the quality of direct oral anticoagulant prescription for venous thromboembolic disease[J]. Stud Health Technol Inform, 2019, 264: 793-797.

    [55] 王叔应. 基于SDA*的医疗决策辅助系统研究与实现[D]. 南京: 东南大学, 2016.

    Wang S Y. Research and implementation of clinical decision support system based on SDA* model[D]. Nanjing: Southeast University, 2016.

    [56]

    Kaplan R S. AI/consult: a prototype directed history system based upon the AI/rheum knowledge base[J]. Proc Annu Symp Comput Appl Med Care, 1991: 639-643.

    [57]

    O'Leary D E. Using AI in knowledge management: know-ledge bases and ontologies[J]. IEEE Intelligent Systems and their Applications, 1998, 13(3): 34-39. DOI: 10.1109/5254.683180

    [58]

    Györödi C A, Dumşe-Burescu D V, Györödi R Ş, et al. Performance impact of optimization methods on MySQL document-based and relational databases[J]. Appl Sci, 2021, 11(15): 6794.

    [59]

    Xiang L G, Huang J T, Shao X T, et al. A MongoDB-based management of planar spatial data with a flattened R-tree[J]. ISPRS Int J Geoinf, 2016, 5(7): 119. DOI: 10.3390/ijgi5070119

    [60]

    Luković V, Cuković S, Milošević D, et al. An ontology-based module of the information system ScolioMedIS for 3D digital diagnosis of adolescent scoliosis[J]. Comput Methods Programs Biomed, 2019, 178: 247-263. DOI: 10.1016/j.cmpb.2019.06.027

    [61]

    Lee J S H, Darcy K M, Hu H, et al. From discovery to practice and survivorship: building a national real-world data learning healthcare framework for military and veteran cancer patients[J]. Clin Pharmacol Ther, 2019, 106(1): 52-57. DOI: 10.1002/cpt.1425

    [62]

    Chu S Y, Min D G. A study on the development of an automated algorithm using natural language toolkit (NLTK) and artificial intelligence (AI) chatbot for primary English vocabulary assessment[J]. The Korea Association of Primary English Education, 2020, 26(2): 55-80. DOI: 10.25231/pee.2020.26.2.55

    [63]

    Eyre H, Chapman A B, Peterson K S, et al. Launching into clinical space with medspaCy: a new clinical text processing toolkit in Python[J]. AMIA Annu Symp Proc, 2021, 2021: 438-447.

    [64]

    Wi C I, Sohn S, Ali M, et al. Natural language processing for asthma ascertainment in different practice settings[J]. J Allergy Clin Immunol Pract, 2018, 6(1): 126-131.

    [65]

    Hellrich J, Matthies F, Faessler E, et al. Sharing models and tools for processing German clinical texts[J]. Stud Health Technol Inform, 2015, 210: 734-738.

    [66]

    Tuck D. A cancer graph: a lung cancer property graph database in Neo4j[J]. BMC Res Notes, 2022, 15(1): 45.

    [67]

    Messaoudi C, Fissoune R, Badir H. A performance evaluation of NoSQL databases to manage proteomics data[J]. Int J Data Min Bioinform, 2018, 21(1): 70-89.

    [68]

    Zhang C, Lu J H. Holistic evaluation in multi-model databases benchmarking[J]. Distrib Parallel Databases, 2021, 39(1): 1-33.

    [69]

    National Comprehensive Cancer Network[EB/OL ]. [2024-01-08]. https://www.nccn.org/.

    [70] 中华临床肿瘤学会[EB/OL ]. [2024-01-08]. http://www.csco.org.cn/cn/index.aspx.

    Chinese Society of Clinical Oncology[EB/OL ]. [2024-01-08]. http://www.csco.org.cn/cn/index.aspx.

    [71]

    Zhong R Y. RFID-enabled real-time advanced production planning and scheduling using data mining[D]. Hong Kong: The University of Hong Kong, 2013.

    [72]

    Banihashem S Y, Shishehchi S. Ontology-based decision tree model for prediction of fatty liver diseases[J]. Comput Methods Biomech Biomed Engin, 2023, 26(6): 639-649.

    [73]

    Tshering D, Tejativaddhana P, Siripornpibul T, et al. Motivational factors influencing retention of village health workers in rural communities of Bhutan[J]. Asia Pac J Public Health, 2019, 31(5): 433-442.

    [74]

    Audet C, Caporossi G, Jacquet S. Binary, unrelaxable and hidden constraints in blackbox optimization[J]. Oper Res Lett, 2020, 48(4): 467-471.

    [75] 吴梦佳, 张士靖, 周志超, 等. 我国临床实践指南利用和需求调查[J]. 中华医学图书情报杂志, 2016, 25(1): 37-42.

    Wu M J, Zhang S J, Zhou Z C, et al. Use and demand of clinical practice guidelines in China[J]. Chin J Med Libr Inf Sci, 2016, 25(1): 37-42.

    [76]

    Hu J, Wang J J, Liu L, et al. Analysis of the results of international demand survey on guideline for clinical practice of acupuncture-moxibustion: migraine[J]. Chin Acupunct Moxibustion, 2021, 41(7): 799-804.

    [77]

    Kumar A, Aelgani V, Vohra R, et al. Artificial intelligence bias in medical system designs: a systematic review[J]. Multimed Tools Appl, 2024, 83(6): 18005-18057.

    [78]

    DeCamp M, Lindvall C. Latent bias and the implementation of artificial intelligence in medicine[J]. J Am Med Inform Assoc, 2020, 27(12): 2020-2023.

    [79]

    Weng C H, Payne P R O, Velez M, et al. Towards symbiosis in knowledge representation and natural language processing for structuring clinical practice guidelines[J]. Stud Health Technol Inform, 2014, 201: 461-469.

    [80]

    Hauser R G, Bhargava A, Brandt C A, et al. Graphical analysis of guideline adherence to detect systemwide anomalies in HIV diagnostic testing[J]. PLoS One, 2022, 17(7): e0270394.

    [81]

    Hajizadeh N, Kashyap N, Michel G, et al. GEM at 10: a decade's experience with the Guideline Elements Model[J]. AMIA Annu Symp Proc, 2011, 2011: 520-528.

    [82]

    Hatsek A, Shahar Y, Taieb-Maimon M, et al. A scalable architecture for incremental specification and maintenance of procedural and declarative clinical decision-support knowledge[J]. Open Med Inform J, 2010, 4: 255-277.

    [83]

    Wiwanitkit S, Wiwanitkit V. Re: Large language models (LLMs) in evaluation of emergency radiology reports: performance of ChatGPT-4, Perplexity and Bard[J]. Clin Radiol, 2024, 79(4): e636.

    [84]

    Li Z F, Liu X Q, Zhang Y J, et al. Learning high-order fuzzy cognitive maps via multimodal artificial bee colony algorithm and nearest-better clustering: applications on multivariate time series prediction[J]. Knowl Based Syst, 2024, 295: 111771.

    [85]

    Segundo U, Aldámiz-Echevarría L, López-Cuadrado J, et al. Improvement of newborn screening using a fuzzy inference system[J]. Expert Syst Appl, 2017, 78: 301-318.

    [86]

    Fink N, Yacoub B, Schoepf U J, et al. Artificial intelligence provides accurate quantification of thoracic aortic enlargement and dissection in chest CT[J]. Diagnostics (Basel), 2024, 14(9): 866.

图(1)  /  表(4)
计量
  • 文章访问数:  772
  • HTML全文浏览量:  0
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 录用日期:  2025-01-07
  • 网络出版日期:  2025-02-08
  • 发布日期:  2025-02-07
  • 刊出日期:  2025-03-29

目录

/

返回文章
返回
x 关闭 永久关闭