水蛭素对糖尿病大鼠肾脏的保护作用及其分子机制

何怡芊, 谢骏, 赵炳佳, 梁晓春, 屈岭

何怡芊, 谢骏, 赵炳佳, 梁晓春, 屈岭. 水蛭素对糖尿病大鼠肾脏的保护作用及其分子机制[J]. 协和医学杂志, 2024, 15(6): 1372-1381. DOI: 10.12290/xhyxzz.2024-0366
引用本文: 何怡芊, 谢骏, 赵炳佳, 梁晓春, 屈岭. 水蛭素对糖尿病大鼠肾脏的保护作用及其分子机制[J]. 协和医学杂志, 2024, 15(6): 1372-1381. DOI: 10.12290/xhyxzz.2024-0366
HE Yiqian, XIE Jun, ZHAO Bingjia, LIANG Xiaochun, QU Ling. Protective Effect and Molecular Mechanism of Hirudin on Kidney of Diabetic Rats[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1372-1381. DOI: 10.12290/xhyxzz.2024-0366
Citation: HE Yiqian, XIE Jun, ZHAO Bingjia, LIANG Xiaochun, QU Ling. Protective Effect and Molecular Mechanism of Hirudin on Kidney of Diabetic Rats[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1372-1381. DOI: 10.12290/xhyxzz.2024-0366

水蛭素对糖尿病大鼠肾脏的保护作用及其分子机制

基金项目: 

国家自然科学基金 82104669

详细信息
    通讯作者:

    梁晓春,E-mail:Xiaochun_Liang@yeah.net

    屈岭,E-mail:quling@pumch.cn

  • 中图分类号: R25;R736

Protective Effect and Molecular Mechanism of Hirudin on Kidney of Diabetic Rats

Funds: 

National Natural Science Foundation of China 82104669

More Information
  • 摘要:
    目的 

    探究水蛭素对糖尿病大鼠肾脏的保护作用及其分子机制。

    方法 

    18只SD大鼠随机分为对照组(n=5)和造模组(n=13)。造模组予以腹腔注射链脲佐菌素制备糖尿病大鼠模型。8周后,取造模成功的糖尿病大鼠(n=11)随机分为糖尿病模型组(n=6,后因血糖过高死亡1只)和水蛭素组(n=5)。水蛭素组皮下注射水蛭素5 U/只,连续6周;对照组和糖尿病模型组皮下注射等体积磷酸盐缓冲液。实验期间每2周记录1次大鼠的随机血糖和体质量。给药6周后,测定3组大鼠肾功能指标,肾脏组织肿瘤坏死因子α(tumor necrosis factor α,TNF-α)、转化生长因子β1(transforming growth factor β1,TGF-β1)、白细胞介素-6(interleukin 6,IL-6)、纤连蛋白(fibronectin,FN)、nephrin、Ⅳ型胶原纤维(collagen type Ⅳ,COL-Ⅳ)及酪氨酸激酶2(Janus kinase 2,JAK2)/信号转导与转录激活因子3(signal transduction and transcriptional activator 3,STAT3)信号通路相关蛋白表达水平,并观察肾脏病理改变。

    结果 

    与对照组比较,糖尿病模型组实验期间随机血糖及给药6周内肾功能指标均升高(P均<0.05),体质量明显降低(P均<0.05),且肾脏出现病理损伤。与糖尿病模型组比较,水蛭素组肾功能指标降低(P<0.05),肾脏病理损伤减轻。与对照组比较,糖尿病模型组肾脏组织FN、COL-Ⅳ、TNF-α、TGF-β1、IL-6、p-JAK2、p-STAT3表达水平均明显升高(P均<0.05),nephrin表达水平降低(P<0.05)。与糖尿病模型组比较,水蛭素组肾脏组织FN、COL-Ⅳ、TNF-α、TGF-β1、IL-6、p-JAK2、p-STAT3表达水平均降低(P均<0.05),nephrin表达水平升高(P<0.05)。

    结论 

    水蛭素可减轻糖尿病大鼠肾脏病理损伤,其作用机制可能与降低纤维化相关因子水平、抑制JAK2/STAT3通路活化相关。

    Abstract:
    Objective 

    To investigate the protective effect of hirudin on kidneys of diabetic rats and its molecular mechanism.

    Methods 

    Eighteen Sprague-Dawley rats were randomly divided into control group (n=5) and model group (n=13). The model group was injected intraperitoneally with streptozotocin(STZ) to establish a diabetic rat model. Eight weeks after STZ injection, successfully modeled diabetic rats were randomly divided into diabetic model group (n=6, with 1 rat dead due to hyperglycemia) and hirudin treatment group (n=5). The hirudin treatment group was administered 5 U hirudin while the control group and diabetic model group were injected subcutaneously with equal volume of phosphate buffered saline once daily for six weeks. During the experiment, the rats' body weight and random blood glucose levels were monitored every two weeks. After 6 weeks of treatment, renal function parameters were measured, and the levels of tumor necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), interleukin 6 (IL-6), fibronectin (FN), nephrin, collagen-Ⅳ (COL-Ⅳ), and proteins related to the Janus kinase 2 (JAK2)/signal transduction and transcriptional activator 3 (STAT3) signaling pathway were assessed. Renal histopathological changes were also observed.

    Results 

    Compared with the control group, the diabetic model group showed significantly elevated random blood glucose and renal function parameters during the 6-week treatment (both P < 0.05), along with a significant decrease in body weight(P < 0.05) and renal pathological damage. Compared with the diabetic model group, the renal function parameters of hirudin treatment group were significantly decreased (P < 0.05), the renal pathological damage was ameliorated. Compared with the control group, the expression levels of FN, COL-Ⅳ, TNF-α, TGF-β1, IL-6, p-JAK2, and p-STAT3 in the kidneys of diabetic model group were significantly increased (all P < 0.05), while the expression of nephrin was reduced (P < 0.05). Compared with the diabetic group, the expression level of FN, COL-Ⅳ, TNF-α, TGF-β1, IL-6, p-JAK2, and p-STAT3 in hirudin treatment group were significantly reduced (all P < 0.05), while the nephrin expression increased (P < 0.05).

    Conclusion 

    Hirudin improved renal pathological changes in diabetic rats, and its mechanism may be related to the decrease of fibrosis-related factors and inhibition of the activation of the JAK2/STAT3 pathway.

  • 系统性红斑狼疮(systemic lupus erythematosus, SLE)是一种多器官、多系统受累的慢性、炎症性、自身免疫性疾病[1]。随着诊疗技术的不断提高以及生物制剂的使用,目前SLE患者的10年生存率已超过90%[2]。但与此同时,慢性肾功能不全、心脑血管疾病以及肌肉骨骼等慢性并发症的发病率也逐年升高。股骨头缺血性坏死(avascular necrosis of femoral head, AVNF)是SLE肌肉骨骼病变中最值得关注的并发症之一[3],研究显示,4%~40%(平均约10%)的SLE患者可出现AVNF[1, 4-7]。发展至终末期时,药物治疗、髓芯减压术往往难以取得满意的疗效,严重影响患者的生存质量,最终约6% 的SLE-AVNF患者符合全髋关节置换术(total hip arthroplasty, THA)指征并进行手术治疗[8]

    THA是SLE并发终末期AVNF的重要治疗手段,其在缓解疼痛、改善功能及患者生活质量方面已得到大量研究证实[5-6, 9-11],预计到2030年,行THA的SLE-AVNF患者将比2005年增长174%[12]。然而,由于SLE患者通常多系统受累并长期使用免疫抑制剂,THA术后具有全身感染、切口愈合不良、SLE病情活动等潜在风险[2-5, 11, 13-14],且发生率高于一般患者[2, 5-6]。既往研究发现,术后早期是下肢关节置换术后发生严重并发症的主要阶段[5, 10, 15-16],因此,对THA合并SLE的早期安全性研究具有重要意义。本研究旨在通过回顾性分析,探究SLE患者行THA术后30 d内的并发症发生情况,以期为临床诊疗提供参考和借鉴。

    本研究为回顾性队列研究,连续纳入2012年6月—2024年4月于北京协和医院骨科行THA患者的资料,根据手术患者是否伴有SLE分为SLE组和对照组。SLE组纳入标准:(1)根据1997年美国风湿病学会制定的分类标准确诊为SLE;(2)因AVNF接受THA治疗;(3)术后30 d随访资料完整。排除标准:(1)有恶性肿瘤疾病史;(2)术前30 d接受其他骨科手术;(3)急诊入院; (4)患有类风湿性关节炎、强直性脊柱炎、银屑病性关节炎等累及关节的风湿性疾病。对照组纳入标准:因创伤、发育性髋关节发育不良、酒精性股骨头坏死等原因接受THA手术。排除标准:(1)有恶性肿瘤疾病史;(2)术前30 d接受其他骨科手术;(3)急诊入院;(4)患有类风湿性关节炎、强直性脊柱炎、银屑病性关节炎等累及关节的风湿性疾病。

    本研究已通过北京协和医院伦理审查委员会审批(审批号:K24C4121),并豁免患者知情同意。

    所有患者入院后完善血常规、肝/肾功能、血糖、电解质、凝血功能、红细胞沉降率、C反应蛋白、补体、抗双链DNA抗体、抗核抗体、尿常规、24 h尿蛋白等实验室检测以及髋关节X线等影像学检查。对于SLE患者,术前由风湿免疫科医生会诊,通过SLE疾病活动度评分(SLE disease activity index, SLEDAI)评估SLE活动情况。根据美国风湿病学会(American College of Rheumatology, ACR)/美国髋关节和膝关节外科协会指南[9],停用硫唑嘌呤、托法替布、环孢素、吗替麦考酚酯等免疫抑制剂及生物制剂,视病情保留或停用甲氨蝶呤、羟氯喹、他克莫司、来氟米特等免疫抑制剂,有激素使用史者将口服激素(如甲泼尼龙或泼尼松)调整为静脉滴注氢化可的松。对于合并其他疾病的患者积极作相应处理,例如,合并心脏病的患者完善心电图和超声心动图检查,合并脑血管疾病的患者完善磁共振血管成像检查。术前由麻醉科医生根据美国麻醉医师协会(American society of Anesthesiologists,ASA)分级评估患者状态,确保患者可耐受手术。

    在确认患者信息无误后,通过静脉滴注给予头孢呋辛。全身麻醉后,患者取侧卧位并固定骨盆。对术区进行常规消毒、铺巾和皮肤保护。采用髋部后外侧切口,依次切开、分离皮肤、皮下组织及髂肌后群,显露关节囊后予以切开,进行手法脱位。测量后截断股骨颈并取出股骨头。切除病变滑膜、增生的关节囊、髋臼盂唇、臼缘骨赘及纤维组织,使用两枚克氏针辅助固定,充分显露卵圆窝、髋臼底及骨性臼缘。依次锉磨髋臼,将金属髋臼杯以适当的前倾角和外展角植入髋臼进行试模。确保髋臼杯固定牢固后,安装陶瓷内衬并固定牢靠。屈曲、内收并内旋髋关节,充分显露股骨颈截骨面,在偏后外侧开髓。通髓腔后,依次使用近端髓腔锉扩髓,安放股骨颈试模并测量颈长。复位后测试髋关节的张力、活动度、稳定性和下肢长度。结果满意后,植入同型号股骨柄假体并打牢,随后安装同型号股骨头假体,复位髋关节,再次测试髋关节的活动度、稳定性、张力及下肢长度。结果满意后,用大量生理盐水冲洗伤口,并用含阿米卡星的生理盐水冲洗关节腔后吸净液体,彻底止血,再用氨甲环酸盐水浸泡创面。缝合重建髂肌后群,逐层缝合关闭切口。术中持续进行自体血回输,手术结束时不常规放置引流管。

    术后第1、3、5天常规行血常规、红细胞沉降率、C反应蛋白、肝/肾功能、凝血等实验室检测并观察切口愈合情况,血红蛋白低于70 g/L的患者行同种异体红细胞输注治疗。术后常规预防性使用抗生素3 d,口服抗凝药利伐沙班、镇痛药塞来昔布/艾瑞昔布2周。对于SLE患者,遵风湿免疫科会诊意见,术后1~3 d将静脉滴注氢化可的松调整为术前口服激素方案,术后1~2周视SLE活动程度、有无感染征象、切口愈合程度等情况恢复免疫抑制剂。术后第1天即鼓励患者拄拐下床活动,嘱咐患者站立、行走时注意肢体位置,谨防脱位和跌倒。

    以主要并发症(局部并发症和系统并发症)以及同种异体红细胞输注情况作为结局指标。局部并发症包括切口不良事件、假体周围感染、假体松动、假体周围骨折等。系统并发症包括深静脉血栓形成、肺血栓栓塞症、急性心血管事件、脑血管事件、肺炎、肾功能损伤、肝功能损伤、泌尿系统感染、SLE病情活动等。

    本研究在研究设计、数据处理过程中采取以下方法控制偏倚:首先,依据明确的纳入和排除标准筛选研究对象;其次,通过倾向性评分匹配研究对象,以最小化混杂因素的影响;最后,数值型数据由一名研究者独立录入,并由另一名研究者校对,影像学资料则由两名研究者共同评估并达成一致意见,确保所有指标的准确性和可靠性。

    根据既往国内一项单中心研究[5],该研究具有良好的匹配度,SLE组术后主要并发症发生率为23%,而对照组为7%。采用PASS 2021软件进行样本量估算,设定显著性水平α=0.05,检验效能1-β=0.9,计算得出每组所需最低样本量为103例。

    采用SPSS 26.0软件进行统计学分析。计量资料采用Shapiro-Wilk检验评估数据是否符合正态分布,年龄、体质量指数(body mass index,BMI)等符合正态分布的计量资料以均数±标准差表示,组间比较采用独立样本t检验;SLEDAI评分、C反应蛋白、D-二聚体等符合偏态分布的计量资料以中位数(四分位数)表示,组间比较采用非参数检验。计数资料以频数(百分数)表示,组间比较采用卡方检验或Fisher确切概率法。采用倾向性评分法对SLE组和对照组患者进行性别、年龄、手术侧别1∶1匹配,匹配容差设为0.02,比较两组主要并发症以及同种异体红细胞输注情况。双侧检验,以P<0.05为差异具有统计学意义。

    根据纳入和排除标准,研究组共入选270例SLE患者,平均年龄(37.8±12.1)岁,SLE病程为8.7(4.0, 12.0)年,SLEDAI评分为0.16(0, 0)。围术期糖皮质激素使用率为77.04%(表 1)。18例(6.67%)患者在术后30 d内出现主要急性并发症,其中2例(0.74%)患者发生上呼吸道感染;2例(0.74%,其中1例发生感染性休克)患者发生肺部感染;3例(1.11%)患者出现泌尿系感染;2例(0.74%)患者出现其他系统感染;1例(0.37%) 患者应激性溃疡伴出血;5例(1.85%)患者发生切口愈合不良;1例(0.37%)患者发生切口感染;1例(0.37%)患者输注血小板后出现休克;1例(0.37%) 患者出现SLE病情活动。所有患者经积极保守治疗后均好转出院。61例(22.59%)患者接受了同种异体红细胞输注。

    表  1  270例行THA术的SLE患者基本特征
    Table  1.  Fundamental characteristics of 270 cases of patients with SLE who underwent THA surgery
    指标 数值
    年龄(x±s,岁) 37.8±12.1
    性别[n(%)]
      男性 41(15.19)
      女性 229(84.81)
    BMI(x±s,kg/m2) 22.9±3.8
    ASA分级[n(%)]
      ≤Ⅱ级 239(88.52)
      >Ⅱ级 31(11.48)
    手术侧别[n(%)]
      单侧 194(71.85)
      双侧 76(28.15)
    手术时间[M(P25, P75), min] 126.3(85.0, 170.0)
    术中出血[M(P25, P75), mL] 333.6(200.0, 400.0)
    合并症[n(%)]
      骨质疏松 64(23.70)
      高血压 37(13.70)
      冠心病 3(1.11)
      糖尿病 5(1.85)
      脑血管疾病 3(1.11)
      呼吸系统疾病 16(5.93)
      消化系统疾病 11(4.07)
      泌尿系统疾病 41(15.19)
      血液系统疾病 4(1.48)
      继发或伴发其他风湿性疾病 17(6.30)
    SLE病程[M(P25, P75),年] 8.7(4.0, 12.0)
    SLEDAI评分[M(P25, P75),分] 0.16(0, 0)
    SLE围术期用药[n(%)]
      羟氯喹 193(71.48)
      来氟米特 21(7.78)
      他克莫司 16(5.93)
      甲氨蝶呤 18(6.67)
      氢化可的松 208(77.04)
    THA(total hip arthroplasty):全髋关节置换术;SLE(systemic lupus erythematosus):系统性红斑狼疮;BMI(body mass index):体质量指数;ASA(American Society of Anesthesiologists):美国麻醉医师协会;SLEDAI (SLE disease activity index):SLE疾病活动度评分
    下载: 导出CSV 
    | 显示表格

    根据纳入和排除标准,对照组共入选862例患者,经倾向性评分进行1∶1匹配后,最终SLE组和对照组各163例患者纳入分析。基本特征方面,SLE组患者病程为9.8(4.0, 14.0)年,SLEDAI评分为0.19(0, 0),围术期糖皮质激素使用率为92.64%,BMI指标显著低于对照组(P<0.001)。在内科合并症方面,SLE组骨质疏松、呼吸系统、消化系统、泌尿系统、血液系统和继发或伴发其他风湿性疾病伴发率明显高于对照组(P均<0.05),其中呼吸系统受累主要为间质性肺病、肺动脉高压、肺血栓栓塞症,泌尿系统受累主要为狼疮性肾炎,风湿性疾病主要包括干燥综合征和抗磷脂抗体综合征。实验室检测显示,SLE组的术前血小板计数、淋巴细胞计数、血红蛋白水平、红细胞压积、白蛋白水平、血糖水平和活化部分凝血活酶时间均显著低于对照组,而C反应蛋白、红细胞沉降率和D-二聚体水平显著高于对照组(P均<0.05)。在手术相关指标方面,SLE组的ASA分级较高,手术时间较短,术中出血量较少(P均<0.05),详见表 2

    表  2  倾向性评分匹配后SLE组和对照组基线特征比较
    Table  2.  Baseline data of the SLE group and the control group after propensity score matching
    指标 SLE组(n=163) 对照组(n=163) P
    BMI(x±s, kg/m2) 22.9±3.4 24.8±3.7 <0.001
    ASA分级[n(%)] <0.001
      ≤Ⅱ级 137(84.05) 158(96.93)
      >Ⅱ级 26(15.95) 5(3.07)
    手术时间[M(P25, P75), min] 125.2(85.0, 175.0) 137.4(95.0, 175.0) 0.042
    术中出血[M(P25, P75), mL] 324.7(200.0, 500.0) 421.8(200.0, 500.0) 0.005
    合并症[n(%)]
      骨质疏松 42(25.77) 15(9.20) <0.001
      高血压 29(17.79) 26(15.95) 0.657
      冠心病 3(1.84) 0 0.248
      糖尿病 2(1.23) 3(1.84) >0.999
      脑血管疾病 1(0.61) 1(0.61) >0.999
      呼吸系统疾病 16(9.82) 2(1.23) 0.002
      消化系统疾病 11(6.75) 1(0.61) 0.008
      泌尿系统疾病 41(25.15) 0 <0.001
      血液系统疾病 4(2.45) 0 0.018
      继发或伴发其他风湿性疾病 17(10.43) 0 <0.001
    术前实验室检测
      血小板(x±s, ×109/L) 211.4±71.9 242.4±60.1 <0.001
      淋巴细胞计数[M(P25, P75), ×109/L] 2.2(1.0, 1.8) 2.1(1.6, 2.3) <0.001
      中性粒细胞计数[M(P25, P75), ×109/L] 4.6(2.7, 4.1) 3.7(2.6, 4.2) 0.843
      血红蛋白(x±s, g/L) 124.3±13.6 132.8±13.3 <0.001
      红细胞压积(x±s) 37.8±7.9 39.4±5.8 0.042
      白蛋白(x±s, g/L) 39.6±4.0 42.1±3.5 <0.001
      谷丙转氨酶[M(P25, P75), U/L] 20.1(11.0, 23.0) 20.6(12.0, 21.8) 0.907
      肌酐[M(P25, P75), μmol/L] 69.7(51.0, 71.0) 61.1(49.3, 69.0) 0.340
      血糖[M(P25, P75), mmol/L] 4.6(4.1, 4.7) 5.2(4.5, 5.6) <0.001
      C反应蛋白[M(P25, P75), mg/L] 7.7(1.2, 6.2) 4.5(0.5, 2.3) <0.001
      红细胞沉降率[M(P25, P75), mm/h] 25.1(13.0, 29.0) 12.5(8.0, 15.0) <0.001
      活化部分凝血活酶时间[M(P25, P75), s] 27.8(25.0, 29.2) 28.6(26.5, 30.5) 0.004
      D-二聚体[M(P25, P75), mg/L] 0.8(0.2, 0.7) 0.7(0.2, 0.5) <0.001
    SLE、BMI、ASA: 同表 1
    下载: 导出CSV 
    | 显示表格

    术后并发症方面,SLE组术后30 d内主要急性并发症发生率显著高于对照组(8.59%比1.23%,P=0.005),相对危险度为1.081(95% CI: 1.028~1.136)。SLE组中,14例(8.59%)患者在术后30 d内出现主要急性并发症,包括1例(0.61%)上呼吸道感染;2例(1.23%)肺部感染,其中1例(0.61%)伴感染性休克;2例(1.23%)泌尿系感染;2例(1.23%)其他系统感染;1例(0.61%)应激性溃疡伴出血;2例(1.23%)切口愈合不良;1例(0.61%)切口感染;1例(0.61%)因输注血小板出现过敏性休克;1例(0.61%) SLE病情活动。相比之下,对照组中仅2例(1.23%)患者出现主要并发症,包括1例(0.61%)泌尿系感染和1例(0.61%)假体脱位。所有患者经积极保守治疗后均好转出院。此外,SLE组同种异体红细胞输注率与对照组差异无统计学意义(25.77%比17.18%,P=0.059)。详见表 3

    表  3  倾向性评分匹配后SLE组和对照组主要并发症及输血情况[n(%)]
    Table  3.  Main complications and blood transfusion circumstances in the SLE group and the control group after propensity score matching [n(%)]
    指标 SLE组(n=163) 对照组(n=163) P
    主要并发症 14(8.59) 2(1.23) 0.005
      上呼吸道感染 1(0.61) 0(0)
      肺部感染 2(1.23) 0(0)
      泌尿系感染 2(1.23) 1(0.61)
      其他系统感染 2(1.23) 0(0)
      消化系统 1(0.61) 0(0)
      休克 2(1.23) 0(0)
      SLE活动 1(0.61) 0(0)
      切口愈合不良 2(1.23) 0(0)
      切口感染 1(0.61) 0(0)
      假体脱位 0(0) 1(0.61)
    异体红细胞输注率 42(25.77) 28(17.18) 0.059
    SLE: 同表 1
    下载: 导出CSV 
    | 显示表格

    本研究分析了270例行THA术的SLE患者临床资料,发现患者术前SLEDAI评分为0.16分,围术期糖皮质激素使用率为77.04%,说明行THA术的SLE患者术前病情相对稳定。采用倾向性评分匹配法,分析SLE患者在THA后30 d内主要急性并发症的发生率及其影响因素,结果显示,在匹配前,SLE组并发症发生率为6.67%,61例(22.59%)接受同种异体红细胞输注。在性别、年龄、手术侧别匹配后,内科合并症方面,与对照组相比,SLE组在骨质疏松、呼吸系统、消化系统、泌尿系统、血液系统和继发或伴发其他风湿性疾病上存在显著差异,这符合SLE多器官受累的特征[16]。术前实验室检测显示,SLE组的血小板计数、淋巴细胞计数、血红蛋白、红细胞压积、白蛋白、血糖和活化部分凝血酶时间指标均低于对照组,而C反应蛋白、红细胞沉降率和D-二聚体水平较高,提示SLE组患者存在血液系统抑制、营养不良、炎症和高凝状态。手术相关指标方面,SLE组的ASA分级较高,但手术时间短,术中出血量少。并发症方面,SLE组术后30 d内主要急性并发症发生率显著高于对照组(8.59%比1.23%,P=0.005),差异具有统计学意义,相对危险度为1.081(95% CI: 1.028~1.136),而同种异体红细胞输注率与对照组无显著差异(25.8%比17.2%,P=0.059)。

    近年大量研究显示,SLE患者由于其独特的病理生理特性,包括免疫功能紊乱、多系统受累以及长期激素和/或免疫抑制剂的使用,THA术后并发症的发生风险显著增加[1-3, 5, 9, 16],如各系统并发症、感染、切口不良事件及同种异体输血等。本研究中,SLE组主要并发症以感染和切口不良事件为主,与既往报道一致。此外,本研究还发现,SLE患者的术前红细胞压积、血红蛋白及白蛋白水平均显著低于对照组,提示其营养状态较差,这可能进一步增加术后感染的风险。切口不良事件在SLE患者中较为常见,包括切口延迟愈合和切口感染,可能与SLE患者长期使用激素导致的皮肤脆性及血管炎症相关[3, 13]。本研究显示,SLE组切口愈合不良发生率为1.85%,低于既往报道的4.30%~8.88%[1, 17]。值得注意的是,SLE病情活动是SLE患者接受THA的特有并发症。手术应激、药物控制不佳、感染等因素可能导致SLE复发,本研究中表现为狼疮性肾炎加重和补体水平降低,但发生率显著低于既往报道的2.27%[18]。这些差异可能得益于严格的围术期管理,如合理调整糖皮质激素用量、停用部分免疫抑制剂[9, 19]以及术中应用第二代头孢菌素预防感染。

    SLE患者因病理性贫血和术中失血导致的输血需求是围术期关注的重点[2-3, 6, 16]。研究认为,SLE贫血主要与狼疮累及血液系统及肾功能不全导致促红细胞生成素生成减少有关[20]。此外,SLE患者可能由于血小板功能下降及抗凝血因子抗体的存在,因在围术期出血而引发贫血[1, 21]。然而,本研究结果显示,尽管SLE组术前血红蛋白水平显著低于对照组,但两组术后输血率差异并无统计学意义。这可能与术中总体出血量较少,以及合理使用氨甲环酸和血液回收系统等有效措施有关。

    本研究存在一定的局限性。首先,本研究为回顾性研究,样本量相对较小,可能存在选择偏倚。其次,未对SLE及其他合并症的活动情况及疾病分期情况作分层分析,影响了结果的全面性和准确性。最后,本研究匹配的SLE病例中,SLEDAI最高仅为4分,无法代表病情控制不佳的SLE患者,可能低估了SLE病情活动患者的术后风险。

    综上,本研究显示SLE患者行THA术后30 d内并发症发生率为8.59%,显著高于非SLE患者,而同种异体红细胞输注率相当。为保证SLE患者THA手术安全性,应尽可能在术前将患者病情控制稳定,并遵循指南进行严格的围术期管理。

    作者贡献:何怡芊负责研究实施及论文撰写;谢骏、赵炳佳、屈岭负责研究设计数据分析;梁晓春负责指导论文修订。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1   实验期间三组大鼠血糖(A)和体质量(B)变化

    与对照组比较,* P<0.05

    Figure  1.   Changes in blood glucose levels(A) and body weight(B) in the 3 groups during the experiment

    compared with the control group, * P < 0.05

    图  2   三组大鼠肾功能指标比较

    与对照组比较,* P<0.05;与糖尿病模型组比较,# P<0.05

    Figure  2.   Comparison of renal function indexes in 3 groups

    compared with the control group, * P < 0.05; compared with the diabetes model group, # P < 0.05
    SCr: (serum creatinine): 血肌酐; BUN(blood urea nitrogen): 血尿素氮

    图  3   三组大鼠肾脏组织病理改变(×400)

    Figure  3.   Histopathological changes in the kidney of rats in 3 groups(×400)

    图  4   三组大鼠肾脏组织COL-Ⅳ、FN、nephrin表达水平比较

    A.COL-Ⅳ表达Western blot图和定量比较;B.FN和nephrin表达免疫组化图(×400);C.FN和nephrin免疫染色阳性面积比例的定量比较
    与对照组比较,* P<0.05;与糖尿病模型组比较,# P<0.05

    Figure  4.   Comparison of the expression levels of COL-Ⅳ, FN and nephrin in the kidneys of rats in 3 groups

    A.Western blot images and quantitative comparison of COL-Ⅳ expression; B.immunohistochemistry images of FN and nephrin expression(×400); C.quantitative comparison of the proportion of FN and nephrin immunostaining-positive areas compared with the control group, * P < 0.05; compared with the diabetes model group, # P < 0.05
    COL-Ⅳ(collagen-Ⅳ): Ⅳ型胶原纤维; FN(fibronectin): 纤连蛋白

    图  5   三组大鼠肾脏组织IL-6(A)、TNF-α(B)和TGF-β1(C)和血清TGF-β1(D)表达水平比较

    与对照组比较,* P<0.05;与糖尿病模型组比较,# P<0.05

    Figure  5.   Comparison of IL-6(A), TNF-α(B) and TGF-β1(C) expression levels in kidneys and TGF-β1 level in serum(D)of rats in 3 groups

    compared with the control group, * P < 0.05; compared with the diabetes model group, # P < 0.05
    IL-6(interleukin 6): 白细胞介素-6;TGF-β1(transforming growth factor β1): 转化生长因子-β1;TNF-α(tumor necrosis factor α): 肿瘤坏死因子-α

    图  6   三组大鼠JAK2/STAT3信号通路相关蛋白表达水平比较

    A.p-JAK2和JAK2蛋白Western blot图及定量比较;B.p-STAT3和STAT3 Western blot图及定量比较
    与对照组比较,* P<0.05;与糖尿病模型组比较,# P<0.05

    Figure  6.   Comparison of JAK2/STAT3 signaling pathway-related protein expression levels in 3 groups

    compared with the control group, * P < 0.05; compared with the diabetes model group, # P < 0.05
    JAK2(Janus kinase 2): 酪氨酸激酶2;STAT3(signal transduction and transcriptional activator 3): 信号转导与转录激活因子3

    图  7   水蛭素对糖尿病大鼠肾损伤保护作用的可能机制

    FN:同图 4;IL-6、TGF-β1、TNF-α:同图 5;JAK2、STAT3:同图 6

    Figure  7.   The possible protective mechanism of hirudin on renal injury in diabetic rat model

  • [1]

    International Diabetes Federation. IDF 1040 Atlas Diabetes and Kidney Disease Report V4[EB/OL]. [2023-10-01]. https://diabetesatlas.org/.

    [2]

    Umanath K, Lewis J B. Update on diabetic nephropathy: core curriculum 2018[J]. Am J Kidney Dis, 2018, 71(6): 884-895. DOI: 10.1053/j.ajkd.2017.10.026

    [3]

    Alicic R Z, Rooney M T, Tuttle K R. Diabetic kidney disease: challenges, progress, and possibilities[J]. Clin J Am Soc Nephrol, 2017, 12(12): 2032-2045. DOI: 10.2215/CJN.11491116

    [4]

    Selby N M, Taal M W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22(S1): 3-15. DOI: 10.1111/dom.14007

    [5]

    Feng L X, Chen C, Xiong X, et al. PS-MPs promotes the progression of inflammation and fibrosis in diabetic nephropathy through NLRP3/Caspase-1 and TGF-β1/Smad2/3 signaling pathways[J]. Ecotoxicol Environ Saf, 2024, 273: 116102. DOI: 10.1016/j.ecoenv.2024.116102

    [6]

    Bhattacharjee N, Barma S, Konwar N, et al. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update[J]. Eur J Pharmacol, 2016, 791: 8-24. DOI: 10.1016/j.ejphar.2016.08.022

    [7]

    Brosius F C, Tuttle K R, Kretzler M. JAK inhibition in the treatment of diabetic kidney disease[J]. Diabetologia, 2016, 59(8): 1624-1627. DOI: 10.1007/s00125-016-4021-5

    [8]

    Chen Y, Chen L, Yang T W. Silymarin nanoliposomes attenuate renal injury on diabetic nephropathy rats via co-suppressing TGF-β/Smad and JAK2/STAT3/SOCS1 pathway[J]. Life Sci, 2021, 271: 119197. DOI: 10.1016/j.lfs.2021.119197

    [9]

    Gao C, Fei X, Wang M, et al. Cardamomin protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats[J]. Int Immunopharmacol, 2022, 107: 108610. DOI: 10.1016/j.intimp.2022.108610

    [10]

    Huang J S, Lee Y H, Chuang L Y, et al. Cinnamaldehyde and nitric oxide attenuate advanced glycation end products-induced the Jak/STAT signaling in human renal tubular cells[J]. J Cell Biochem, 2015, 116(6): 1028-1038. DOI: 10.1002/jcb.25058

    [11]

    Zaghloul R A, Abdelghany A M, Samra Y A. Rutin and selenium nanoparticles protected against STZ-induced diabetic nephropathy in rats through downregulating Jak-2/Stat3 pathway and upregulating Nrf-2/HO-1 pathway[J]. Eur J Pharmacol, 2022, 933: 175289. DOI: 10.1016/j.ejphar.2022.175289

    [12]

    Zheng C, Huang L, Luo W, et al. Inhibition of STAT3 in tubular epithelial cells prevents kidney fibrosis and nephropathy in STZ-induced diabetic mice[J]. Cell Death Dis, 2019, 10(11): 848. DOI: 10.1038/s41419-019-2085-0

    [13]

    Lu T C, Wang Z H, Feng X B, et al. Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy[J]. Kidney Int, 2009, 76(1): 63-71. DOI: 10.1038/ki.2009.98

    [14]

    Junren C, Xiaofang X, Huiqiong Z, et al. Pharmacological activities and mechanisms of hirudin and its derivatives-a review[J]. Front Pharmacol, 2021, 12: 660757. DOI: 10.3389/fphar.2021.660757

    [15]

    Shi Y, Liang X C, Zhang H, et al. Combination of quercetin, cinnamaldehyde and hirudin protects rat dorsal root ganglion neurons against high glucose-induced injury through Nrf-2/HO-1 activation and NF-κB inhibition[J]. Chin J Integr Med, 2017, 23(9): 663-671. DOI: 10.1007/s11655-017-2405-0

    [16] 刘頔. ERK信号通路在高糖诱导的髓鞘化损伤中的作用及槲皮素、桂皮醛、水蛭素和单体组合对其影响的研究[D]. 北京: 北京协和医学院, 2016.

    Liu D. The mechanism of ERK pathway in high glucose induced myelination impairment and the protective effects of quercetin, hirudin, cinnamaldehyde and the combinations of them[D]. Beijing: Peking Union Medical College, 2016.

    [17]

    Liu D, Liang X C, Sun Y, et al. Combination of quercetin, hirudin and cinnamaldehyde promotes Schwann cell differentiation and myelination against high glucose by inhibiting ERK signaling pathway[J]. Chin J Integr Med, 2020, 26(8): 591-598. DOI: 10.1007/s11655-020-2721-7

    [18]

    Pang X X, Zhang Y G, Peng Z N, et al. Hirudin reduces nephropathy microangiopathy in STZ-induced diabetes rats by inhibiting endothelial cell migration and angiogenesis[J]. Life Sci, 2020, 255: 117779. DOI: 10.1016/j.lfs.2020.117779

    [19]

    Han J R, Pang X X, Zhang Y G, et al. Hirudin protects against kidney damage in streptozotocin-induced diabetic nephropathy rats by inhibiting inflammation via P38 MAPK/NF-κB pathway[J]. Drug Des Devel Ther, 2020, 14: 3223-3234. DOI: 10.2147/DDDT.S257613

    [20]

    Long C L, Lin Q, Mo J L, et al. Hirudin attenuates puromycin aminonucleoside-induced glomerular podocyte injury by inhibiting MAPK-mediated endoplasmic reticulum stress[J]. Drug Dev Res, 2022, 83(4): 1047-1056. DOI: 10.1002/ddr.21932

    [21]

    Noshahr Z S, Salmani H, Khajavi Rad A, et al. Animal models of diabetes-associated renal injury[J]. J Diabetes Res, 2020, 2020: 9416419.

    [22] 中华中医药学会, 北京中医药大学东直门医院, 北京中医药大学. 糖尿病肾脏疾病中西医结合诊疗指南[J]. 北京中医药大学学报, 2024, 47(4): 580-592. DOI: 10.3969/j.issn.1006-2157.2024.04.005

    China Association of Chinese Medicine, Beijing University of Traditional Chinese Medicine Dongzhimen Hospital, Beijing University of Chinese Medicine. Diagnosis and treatment guideline of integrated traditional Chinese and western medicine for diabetic kidney disease[J]. J Beijing Univ Tradit Chin Med, 2024, 47(4): 580-592. DOI: 10.3969/j.issn.1006-2157.2024.04.005

    [23] 柳志诚, 方永晟, 杨国华, 等. 水蛭素的药理作用研究进展[J]. 中国医药科学, 2022, 12(21): 56-59. DOI: 10.3969/j.issn.2095-0616.2022.21.015

    Liu Z C, Fang Y S, Yang G H, et al. Research progress on pharmacological effects of hirudin[J]. China Med Pharm, 2022, 12(21): 56-59. DOI: 10.3969/j.issn.2095-0616.2022.21.015

    [24]

    Fan M L, Lan X T, Wang Q L, et al. Renal function protection and the mechanism of ginsenosides: current progress and future perspectives[J]. Front Pharmacol, 2023, 14: 1070738. DOI: 10.3389/fphar.2023.1070738

    [25]

    Cao Y L, Lin J H, Hammes H P, et al. Cellular phenotypic transitions in diabetic nephropathy: An update[J]. Front Pharmacol, 2022, 13: 1038073. DOI: 10.3389/fphar.2022.1038073

    [26]

    Chen F, Zhu X G, Sun Z Q, et al. Astilbin inhibits high glucose-induced inflammation and extracellular matrix accumulation by suppressing the TLR4/MyD88/NF-κB pathway in rat glomerular mesangial cells[J]. Front Pharmacol, 2018, 9: 1187. DOI: 10.3389/fphar.2018.01187

    [27]

    Zhu X G, Shi J, Li H C. Liquiritigenin attenuates high glucose-induced mesangial matrix accumulation, oxidative stress, and inflammation by suppression of the NF-κB and NLRP3 inflammasome pathways[J]. Biomed Pharmacother, 2018, 106: 976-982. DOI: 10.1016/j.biopha.2018.07.045

    [28]

    Chen Q, Tao J, Li G P, et al. Astaxanthin ameliorates experimental diabetes-induced renal oxidative stress and fibronectin by upregulating connexin43 in glomerular mesangial cells and diabetic mice[J]. Eur J Pharmacol, 2018, 840: 33-43. DOI: 10.1016/j.ejphar.2018.09.028

    [29]

    Lennon R, Randles M J, Humphries M J. The importance of podocyte adhesion for a healthy glomerulus[J]. Front Endocrinol (Lausanne), 2014, 5: 160.

    [30]

    Li Y M, Liu J P, Liao G N, et al. Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment[J]. Int J Mol Med, 2018, 41(5): 2629-2639.

    [31]

    El-Kady M M, Naggar R A, Guimei M, et al. Early renoprotective effect of ruxolitinib in a rat model of diabetic nephro-pathy[J]. Pharmaceuticals (Basel), 2021, 14(7): 608. DOI: 10.3390/ph14070608

    [32]

    Wu H M, Xu F, Huang X L, et al. Lupenone improves type 2 diabetic nephropathy by regulating NF-κB pathway-mediated inflammation and TGF-β1/Smad/CTGF-associated fibrosis[J]. Phytomedicine, 2023, 118: 154959. DOI: 10.1016/j.phymed.2023.154959

    [33]

    Shen Y L, Jiang Y P, Li X Q, et al. Corrigendum: ErHuang formula improves renal fibrosis in diabetic nephropathy rats by inhibiting CXCL6/JAK/STAT3 signaling pathway[J]. Front Pharmacol, 2021, 12: 789192. DOI: 10.3389/fphar.2021.789192

    [34]

    Shi Y H, Zhao S, Wang C, et al. Fluvastatin inhibits activation of JAK and STAT proteins in diabetic rat glomeruli and mesangial cells under high glucose conditions[J]. Acta Pharmacol Sin, 2007, 28(12): 1938-1946. DOI: 10.1111/j.1745-7254.2007.00653.x

    [35]

    Li Y X, Zhao J, Yin Y, et al. The role of IL-6 in fibrotic diseases: molecular and cellular mechanisms[J]. Int J Biol Sci, 2022, 18(14): 5405-5414. DOI: 10.7150/ijbs.75876

    [36]

    Ortiz-Muñoz G, Lopez-Parra V, Lopez-Franco O, et al. Suppressors of cytokine signaling abrogate diabetic nephropathy[J]. J Am Soc Nephrol, 2010, 21(5): 763-772. DOI: 10.1681/ASN.2009060625

    [37] 李莹, 崔丽. 水蛭素药物治疗尿微量白蛋白为主要表现的糖尿病肾病和高血压肾病的临床研究[J]. 临床合理用药杂志, 2010, 3(22): 6-7.

    Li Y, Cui L. Clinical study on hirudin in diabetic nephropathy with umalb as the main manifestations and hypertension kidney disease[J]. Chin J Clin Ration Drug Use, 2010, 3(22): 6-7.

    [38] 于丹丹, 章轶立, 谢雁鸣, 等. 基于倾向性评分法的脉血康胶囊治疗肾病的临床用药有效性研究[J]. 辽宁中医杂志, 2019, 46(11): 2265-2269.

    Yu D D, Zhang Y L, Xie Y M, et al. Propensity score-based study on effectiveness of clinical drugs for treating kidney disease with Maixuekang capsule[J]. Liaoning J Tradit Chin Med, 2019, 46(11): 2265-2269.

    [39] 刘蒙蒙, 陈学勋, 秦萍, 等. 脉血康胶囊对特发性膜性肾病患者血栓弹力图影响及其疗效观察[J]. 中成药, 2016, 38(4): 751-755.

    Liu M M, Chen X X, Qin P, et al. Effect of maixuekang capsules on thrombelastography in patients with idiopathic membranous nephropathy and clinical observation[J]. Chin Tradit Pat Med, 2016, 38(4): 751-755.

    [40] 刘吉尧, 徐霜霜, 曾海文, 等. 水蛭对糖尿病肾病的疗效及安全性的Meta分析[J]. 实用中医内科杂志, 2021, 35(5): 137-139.

    Liu J Y, Xu S S, Zeng H W, et al. Meta-analysis of efficacy and safety of leech on diabetic nephropathy[J]. J Pract Tradit Chin Intern Med, 2021, 35(5): 137-139.

    [41]

    van Es N, Bleker S M, Büller H R, et al. New developments in parenteral anticoagulation for arterial and venous thromboembolism[J]. Best Pract Res Clin Haematol, 2013, 26(2): 203-213. DOI: 10.1016/j.beha.2013.07.010

    [42] 王朝, 蒋莉莉, 施莉莉, 等. 水蛭配合西药治疗糖尿病肾病及对尿微量白蛋白和内皮功能的影响[J]. 陕西中医, 2014, 35(10): 1306-1307. DOI: 10.3969/j.issn.1000-7369.2014.10.016

    Wang C, Jiang L L, Shi L L, et al. Effect of hirudo combined with western medicine on diabetes nephropathy and urinary microalbumin and endothelial function[J]. Shaanxi J Tradit Chin Med, 2014, 35(10): 1306-1307. DOI: 10.3969/j.issn.1000-7369.2014.10.016

    [43]

    Dong X N, Meng Z Y, Jin J D, et al. Development, validation, and clinical pharmacokinetic application of ultra-performance liquid chromatography/tandem mass spectrometry method for simultaneously determining a novel recombinant hirudin derivative (Neorudin) and its active metabolite in human serum[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1063: 204-213. DOI: 10.1016/j.jchromb.2017.08.030

图(7)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  52
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-25
  • 录用日期:  2024-07-21
  • 刊出日期:  2024-11-29

目录

/

返回文章
返回
x 关闭 永久关闭