Effect of Exercise on Blood Glucose Metabolism of Type 2 Diabetes Patients in East Asian Population: A Meta-Analysis
-
摘要:目的
探究不同运动处方在东亚人群2型糖尿病患者血糖代谢中的作用,并比较人群特征和运动要素对血糖代谢影响的差异。
方法系统检索PubMed、Cochrane Library、EmBase、Web of Science、中国知网、万方数据知识服务平台,获取从建库至2024年6月15日东亚人群中运动对2型糖尿病患者血糖代谢影响的相关文献。文献类型限定为随机对照研究,其中试验组进行运动干预,对照组不进行运动干预。由2名研究人员按照纳入与排除标准对文献进行筛选,并提取相关数据。采用Stata 17.0软件的Egger检验及RevMan 5.3软件的漏斗图评估发表偏倚,采用RevMan 5.3软件进行Meta分析。
结果共纳入21篇随机对照研究,包含1289例研究对象。其中试验组675例、对照组614例。经发表偏倚风险评估,文献质量整体良好。随机效应模型显示,试验组患者经运动干预后空腹血糖(MD=-1.31 mg/L, 95% CI:-1.55~-1.07, P<0.001)、糖化血红蛋白(MD=-0.34, 95% CI:-0.45~-0.22, P<0.001)、胰岛素抵抗指数(MD=-0.39, 95% CI:-0.54~-0.23, P<0.001)、空腹胰岛素(MD=-0.71 μIU/mL, 95% CI:-1.18~-0.24, P=0.003)均显著降低。不同运动方式改善血糖代谢的作用存有异质性,其中有氧运动(MD=-1.49 mg/L, 95% CI:-2.53~-0.44, P=0.005)和联合运动(MD=-1.41 mg/L, 95% CI:-1.87~-0.95, P<0.001)降低空腹血糖的效果优于抗阻运动;联合运动(MD=-0.47, 95% CI:-0.81~-0.31, P=0.007)降低糖化血红蛋白的效果优于有氧运动和抗阻运动;仅有氧运动(MD=-0.48,95% CI:-0.89~-0.07,P=0.020)和联合运动(MD=-0.35,95% CI:-0.69~-0.01,P=0.040)降低胰岛素抵抗指数的作用具有统计学意义,且有氧运动的效应优于联合运动。按照年龄组、运动周期、运动时间、运动频率、运动强度进行亚组分析显示,每周进行小于5次、每次不超过1 h的有氧运动对于改善东亚人群2型糖尿病患者空腹血糖有显著效果。
结论运动干预可降低东亚人群2型糖尿病患者血糖,减轻胰岛素抵抗,其中有氧运动和联合运动是更适合东亚人群2型糖尿病患者降糖的运动处方。
Abstract:ObjectiveTo explore the effects of different exercise prescriptions on glycemic metabolism in East Asian patients with type 2 diabetes mellitus (T2DM) and to compare the differences in the impact of population characteristics and exercise components on glycemic metabolism.
MethodsA systematic search was conducted in PubMed, Cochrane Library, EmBase, Web of Science, CNKI, and Wanfang Data Knowledge Service Platform to identify relevant studies published from database inception to June 15, 2024, on the effects of exercise on glycemic metabolism in East Asian patients with T2DM. The study type was limited to randomized controlled trials (RCTs), where the intervention group received exercise interventions and the control group did not. Two researchers independently screened the literature based on inclusion and exclusion criteria and extracted relevant data. Publication bias was assessed using Egger's test in Stata 17.0 and funnel plots in RevMan 5.3. Meta-analysis was performed using RevMan 5.3.
ResultsA total of 21 RCTs involving 1289 participants (675 in the intervention group and 614 in the control group) were included. Publication bias assessment indicated overall good quality of the included studies. The random-effects model showed that exercise interventions significantly reduced fasting blood glucose (MD=-1.31 mg/L, 95% CI: -1.55 to -1.07, P < 0.001), glycated hemoglobin A1c (HbA1c) (MD=-0.34, 95% CI: -0.45 to -0.22, P < 0.001), homeostatic model assessment of insulin resistance (HOMA-IR) (MD=-0.39, 95% CI: -0.54 to -0.23, P < 0.001), and fasting insulin (MD=-0.71 μIU/mL, 95% CI: -1.18 to -0.24, P=0.003) in the intervention group. Heterogeneity was observed in the effects of different exercise modalities on glycemic metabolism. Aerobic training (MD=-1.49 mg/L, 95% CI: -2.53 to -0.44, P=0.005) and combined training (MD=-1.41 mg/L, 95% CI: -1.87 to -0.95, P < 0.001) were more effective than resistance training in reducing fasting blood glucose. Combined training (MD=-0.47, 95% CI: -0.81 to -0.31, P=0.007) was superior to aerobic and resistance training in reducing HbA1c. Only aerobic training (MD=-0.48, 95% CI: -0.89 to -0.07, P=0.020) and combined training (MD=-0.35, 95% CI: -0.69 to -0.01, P=0.040) significantly reduced HOMA-IR, with aerobic training showing a greater effect than combined training. Subgroup analyses based on age group, exercise duration, session length, frequency, and intensity revealed that aerobic training performed less than 5 times per week for no more than 1 hour per session significantly improved fasting blood glucose in East Asian patients with T2DM.
ConclusionsExercise interventions can improve glycemic control and reduce insulin resistance in East Asian patients with T2DM. Aerobic exercise and combined exercise are more effective exercise prescriptions for glycemic management in this population.
-
作者贡献:孙宇欣、韩炳泰负责文献检索和论文初稿撰写;郭晓湲、郑雪晴负责文献检索和论文修改;陈适、阳洪波负责对论文内容进行指导、审核;潘慧负责论文选题、设计及写作指导。利益冲突:所有作者均声明不存在利益冲突
-
图 2 试验组与对照组FBG水平比较的森林图
FBG:同表 1
Figure 2. Forest plot of FBG in the experimental group versus the control group
图 3 试验组与对照组HbA1c水平比较的森林图
HbA1c:同表 1
Figure 3. Forest plot of HbA1c in the experimental group versus the control group
图 4 试验组与对照组HOMA-IR水平比较的森林图
HOMA-IR:同表 1
Figure 4. Forest plot of HOMA-IR in the experimental group versus the control group
图 5 试验组与对照组FINS水平比较的森林图
FINS:同表 1
Figure 5. Forest plot of FINS in the experimental group versus the control group
图 6 血糖代谢的合并结果漏斗图
A.FBG;B.HbA1c;C.HOMA-IR;D.FINS
FBG、HbA1c、HOMA-IR、FINS: 同表 1Figure 6. Funnel plot for the combined results of blood glucose metabolism
表 1 纳入研究的基本特征
Table 1 Basic characteristics of included studies
作者 发表年份 国家/ 地区 平均年龄(试验组/ 对照组,岁) 总样本(n) 各组样本(试验组/ 对照组, n) 运动措施 运动周期 单次运动量 运动频率(次/周) 运动强度 纳入指标 Choi等[5] 2012 韩国 55.0/53.8 75 37/38 有氧运动 12周 60 min 5 3.6~6.0 MET& FBG、HbA1c、HOMA-IR Lee等[6] 2015 中国台湾 54.5/56.1 80 40/40 有氧运动 3个月 30 min 5 60%~80% HRmax▲ FBG、HbA1c Kim等[7] 2004 韩国 53.8/52.8 45 22/23 有氧运动 3个月 30 min 3~5 40%~75% VO2max# FBG、HbA1c Koo等[8] 2010 韩国 57/53 31 13/18 有氧运动 12周 120 min 7 500 kcal/d FBG、HbA1c Matsushita等[9] 2022 日本 62/61 36 18/18 有氧运动 8周 30 min 3 40%~60% VO2max FBG、HbA1c Tan等[10] 2018 中国 63.0/62.9 31 16/15 有氧运动 12周 20~40 min 3 个体化FATmax HR* FBG、HOMA-IR、FINS 包勤文等[11] 2016 中国 70.4/68 107 58/49 有氧运动 6个月 120 min 12 50%~70% HRmax FBG、HbA1c 黄为均等[12] 2018 中国 49.2/52.2 58 29/29 有氧运动 12周 30 min 3 / FBG 谢丽娜等[13] 2021 中国 46.4/44.3 60 30/30 有氧运动 12周 60 min 5 50%~70% HRmax FBG、HbA1c、HOMA-IR、FINS 黄葵等[14] 2021 中国 67.8 (整体人群) 47 24/23 有氧运动 10周 40 min 3 80% VO2max、50%VO2max交替 FBG、HbA1c 张燕等[15] 2012 中国 51.2/50.8 99 49/50 有氧运动 8周 30 min 5 120~150步/min、80~100步/min交替 FBG 晁敏等[16] 2015 中国 54/53 30 15/15 有氧运动 12周 55 min 3 50% VO2max FBG、HbA1c 杨晓荣等[17] 2020 中国 59.3/59 100 50/50 抗阻运动 3个月 4组 1 50%~60% HRmax FBG、HbA1c、FINS 魏钦[18] 2018 中国 56.6/52 36 19/17 抗阻运动 12周 10组 3 50%~60% 1RM至60%~70% 1RM△ FBG、HOMA-IR Terauchi等[19] 2022 日本 54.6/55 224 110/114 有氧运动+ 抗阻运动 12周 30 min 3 40%~60% VO2max FBG、HOMA-IR、FINS Sung等[20] 2012 韩国 70.2/70.1 40 22/18 有氧运动+ 抗阻运动 24周 30~40 min 3 55%~64% HRmax至65%~75% HRmax FBG、HbA1c Park等[21] 2015 韩国 71.2/69 37 24/13 有氧运动+ 抗阻运动 12周 40 min 3 45%~55% 1RM进阶至65%~75% 1RM HbA1c Jeon等[22] 2020 韩国 62.1/61 35 21/14 有氧运动+ 抗阻运动 12周 50 min 3 70% 1RM HbA1c、HOMA-IR 柯海宝等[23] 2016 中国 61.4/62.3 38 20/18 有氧运动+ 抗阻运动 12周 50 min 3 60%HRmax FBG、HbA1c 常凤[24] 2018 中国 53.3/54.3 38 18/20 有氧运动+ 抗阻运动 24周 60 min 3 50% VO2max FBG、HbA1c、FINS 孟晴等[25] 2018 中国 61.4/63 80 40/40 有氧运动+ 抗阻运动 3个月 30~60 min 3 50%~80% HRmax FBG、HbA1c、HOMA-IR & MET:每千克体质量每小时消耗1千卡能量;▲HRmax:最高心率,计算方法为220-年龄;# VO2max:最大摄氧量;*FATmax HR:运动强度为测量脂肪氧化最高时的心率;△1RM:单次最大负荷重量;FBG(fasting blood glucose):空腹血糖;HbA1c(glycated hemoglobin A1C):糖化血红蛋白;HOMA-IR(homeostasis model of assessment insulin resistance):胰岛素抵抗指数;FINS (fasting insulin):空腹胰岛素 表 2 纳入文献的偏倚风险评估情况
Table 2 Bias risk status of included literature
作者 随机分配 分配隐藏 对研究对象及干预者实施盲法 对结果评价者实施盲法 结局指标数据完整性 选择报告偏倚 其他偏倚 Choi等[5] 不清楚 不清楚 低风险 低风险 低风险 低风险 低风险 Lee等[6] 不清楚 不清楚 低风险 低风险 低风险 低风险 低风险 Kim等[7] 不清楚 不清楚 低风险 低风险 低风险 低风险 低风险 Koo等[8] 高风险 不清楚 低风险 低风险 低风险 低风险 低风险 Matsushita等[9] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 Tan等[10] 不清楚 不清楚 低风险 低风险 低风险 低风险 低风险 包勤文等[11] 不清楚 不清楚 低风险 低风险 低风险 低风险 低风险 黄为均等[12] 不清楚 不清楚 低风险 低风险 低风险 低风险 低风险 谢丽娜等[13] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 黄葵等[14] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 张燕等[15] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 晁敏等[16] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 杨晓荣等[17] 不清楚 不清楚 低风险 低风险 低风险 低风险 低风险 魏钦[18] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 Terauchi等[19] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 Sung等[20] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 Park等[21] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 Jeon等[22] 不清楚 不清楚 低风险 低风险 低风险 低风险 低风险 柯海宝等[23] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 常凤[24] 不清楚 不清楚 低风险 低风险 低风险 低风险 低风险 孟晴等[25] 低风险 低风险 低风险 低风险 低风险 低风险 低风险 表 3 试验组与对照组FBG水平亚组分析
Table 3 Subgroup analysis of FBG levels between the experiment group and the control group
亚组 文献数量(篇) 异质性检验 合并效果值 I2 P值 MD(95% CI) P值 年龄 45~<60岁 12 87% <0.001 -1.39(-2.22~-0.57) <0.001 ≥60岁 6 61% 0.020 -1.34(-2.10~-0.58) <0.001 组间差异 0.920 运动周期 ≤12周 12 86% <0.001 -1.35(-2.20~-0.48) 0.002 >12周 6 70% 0.005 -1.61(-2.57~-0.64) 0.001 组间差异 0.700 运动时间 <1 h 11 87% <0.001 -1.59(-1.92~-1.25) <0.001 ≥1 h 5 73% 0.005 -1.38(-1.87~-0.89) <0.001 组间差异 0.030 运动频率 <5次/周 12 86% <0.001 -1.39(-1.67~-1.10) <0.001 ≥5次/周 6 75% 0.001 -1.13(-1.57~-0.70) <0.001 组间差异 0.070 运动强度 <60% VO2max 4 0 0.70 -1.28(-1.96~-0.61) <0.001 ≥60% VO2max 2 17% 0.27 -0.08(-1.15~0.99) 0.880 组间差异 0.160 FBG、VO2max:同表 1;MD(mean deviation):均数差 表 4 试验组与对照组HbA1c水平亚组分析
Table 4 Subgroup analysis of HbA1c levels between the experiment group and the control group
亚组 文献数量(篇) 异质性检验 合并效果值 I2 P值 MD(95% CI) P值 年龄 45~<60岁 7 42% 0.11 -0.23 (-0.40~-0.07) 0.005 ≥60岁 6 57% 0.04 -0.44 (-0.61~-0.28) <0.001 组间差异 0.330 运动周期 ≤12周 7 26% 0.23 -0.26 (-0.42~-0.11) <0.001 >12周 6 66% 0.01 -0.44 (-0.63~-0.26) <0.001 组间差异 0.230 运动时间 <1 h 8 53% 0.04 -0.44 (-0.60~-0.29) <0.001 ≥1 h 3 0% 0.40 -0.08 (-0.36~ 0.20) 0.580 组间差异 0.700 运动频率 <5次/周 10 53% 0.02 -0.40 (-0.54~-0.27) <0.001 ≥5次/周 3 0% 0.66 -0.08 (-0.33~0.18) 0.540 组间差异 0.390 运动强度 <60% VO2max 3 0% 0.53 -0.26 (-0.42~-0.10) 0.002 ≥60% VO2max 3 0% 0.42 -0.19(-0.58~0.19) 0.320 组间差异 0.760 HbA1c、VO2max:同表 1;MD:同表 3 -
[1] 中国营养学会肥胖防控分会, 中国营养学会临床营养分会, 中华预防医学会行为健康分会, 等. 中国居民肥胖防治专家共识[J]. 中华流行病学杂志, 2022, 43(5): 609-626. DOI: 10.3760/cma.j.cn112338-20220402-00253 Chinese Nutrition Society Obesity Prevention and Control Section, Chinese Nutrition Society Clinical Nutrition Section, Chinese Preventive Medicine Association Behavioral Health Section, et al. Expert consensus on obesity prevention and treatment in China[J]. Chin J Epidemiol, 2022, 43(5): 609-626. DOI: 10.3760/cma.j.cn112338-20220402-00253
[2] Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. DOI: 10.1016/j.diabres.2021.109119
[3] Kanaley J A, Colberg S R, Corcoran M H, et al. Exercise/physical activity in individuals with type 2 diabetes: a consensus statement from the American College of Sports Medicine[J]. Med Sci Sports Exerc, 2022, 54(2): 353-368. DOI: 10.1249/MSS.0000000000002800
[4] Igarashi Y, Akazawa N, Maeda S. Effects of aerobic exercise alone on lipids in healthy east Asians: a systematic review and meta-analysis[J]. J Atheroscler Thromb, 2019, 26(5): 488-503. DOI: 10.5551/jat.45864
[5] Choi K M, Han K A, Ahn H J, et al. Effects of exercise on sRAGE levels and cardiometabolic risk factors in patients with type 2 diabetes: a randomized controlled trial[J]. J Clin Endocrinol Metab, 2012, 97(10): 3751-3758. DOI: 10.1210/jc.2012-1951
[6] Lee S F, Pei D, Chi M J, et al. An investigation and comparison of the effectiveness of different exercise programmes in improving glucose metabolism and pancreatic β cell function of type 2 diabetes patients[J]. Int J Clin Pract, 2015, 69(10): 1159-1170. DOI: 10.1111/ijcp.12679
[7] Kim C J, Hwang A R, Yoo J S. The impact of a stage-matched intervention to promote exercise behavior in participants with type 2 diabetes[J]. Int J Nurs Stud, 2004, 41(8): 833-841. DOI: 10.1016/j.ijnurstu.2004.03.009
[8] Koo B K, Han K A, Ahn H J, et al. The effects of total energy expenditure from all levels of physical activity vs. physical activity energy expenditure from moderate-to-vigorous activity on visceral fat and insulin sensitivity in obese Type 2 diabetic women[J]. Diabet Med, 2010, 27(9): 1088-1092. DOI: 10.1111/j.1464-5491.2010.03045.x
[9] Matsushita J, Okada H, Okada Y, et al. Effect of exercise instructions with ambulatory accelerometer in Japanese patients with type 2 diabetes: a randomized control trial[J]. Front Endocrinol (Lausanne), 2022, 13: 949762. DOI: 10.3389/fendo.2022.949762
[10] Tan S J, Du P, Zhao W T, et al. Exercise training at maximal fat oxidation intensity for older women with type 2 diabetes[J]. Int J Sports Med, 2018, 39(5): 374-381. DOI: 10.1055/a-0573-1509
[11] 包勤文, 龚晨, 申潇竹, 等. 太极运动对老年2型糖尿病患者骨质疏松的预防作用[J]. 中国老年学杂志, 2016, 36(13): 3246-3248. DOI: 10.3969/j.issn.1005-9202.2016.13.074 Bao Q W, Gong C, Shen X Z, et al. Preventive effect of Taiji exercise on osteoporosis in elderly patients with type 2 diabetes[J]. Chin J Gerontol, 2016, 36(13): 3246-3248. DOI: 10.3969/j.issn.1005-9202.2016.13.074
[12] 黄为钧, 程娜, 张莹, 等. 基于生存质量观察"十八段锦" 对2型糖尿病患者干预作用[J]. 现代中医临床, 2018, 25(5): 31-34. Huang W J, Cheng N, Zhang Y, et al. The effect of "Shi Ba Duan Jin" on type 2 diabetes mellitus patients based on quality of life[J]. Mod Chin Clin Med, 2018, 25(5): 31-34.
[13] 谢丽娜, 翁雅婧, 张伟伟, 等. 高强度间歇有氧训练与持续中等强度有氧训练对2型糖尿病患者的疗效观察[J]. 中国康复, 2021, 36(12): 734-738. Xie L N, Weng Y J, Zhang W W, et al. Efficacy of high intensity interval aerobic training and continuous moderate intensity aerobic training in patients with type 2 diabetes mellitus[J]. Chin J Rehabil, 2021, 36(12): 734-738.
[14] 黄葵, 陈曦, 凃玲, 等. 督导下间歇性高强度运动训练对老年2型糖尿病患者体适能的作用[J]. 中华老年医学杂志, 2021, 40(9): 1112-1116. DOI: 10.3760/cma.j.issn.0254-9026.2021.09.006 Huang K, Chen X, Tu L, et al. The effect of supervised high-intensity interval training on physical fitness of elderly patients with type 2 diabetes mellitus[J]. Chin J Geriatr, 2021, 40(9): 1112-1116. DOI: 10.3760/cma.j.issn.0254-9026.2021.09.006
[15] 张燕, 王祥麟, 裴云, 等. 步行运动对2型糖尿病患者抗氧化能力的影响[J]. 中国全科医学, 2012, 15(29): 3394-3395. DOI: 10.3969/j.issn.1007-9572.2012.28.063 Zhang Y, Wang X L, Pei Y, et al. Effect of walking exercises on antioxidant capacity in T2DM patients[J]. Chin Gen Pract, 2012, 15(29): 3394-3395. DOI: 10.3969/j.issn.1007-9572.2012.28.063
[16] 晁敏, 梁丰, 王尊, 等. 不同强度有氧运动对2型糖尿病患者生理指标的影响[J]. 中国康复医学杂志, 2015, 30(9): 883-887. DOI: 10.3969/j.issn.1001-1242.2015.09.004 Chao M, Liang F, Wang Z, et al. Effects of aerobic exercises in different intensities to the physiological indicators of type 2 diabetes patients[J]. Chin J Rehabil Med, 2015, 30(9): 883-887. DOI: 10.3969/j.issn.1001-1242.2015.09.004
[17] 杨晓荣, 刘连勇, 杨玲, 等. 抗阻力运动对2型糖尿病周围神经病变的影响[J]. 中南大学学报(医学版), 2020, 45(10): 1185-1192. DOI: 10.11817/j.issn.1672-7347.2020.190505 Yang X R, Liu L Y, Yang L, et al. Effect of resistance exercise on peripheral neuropathy in Type 2 diabetes mellitus[J]. J Cent South Univ (Med Sci), 2020, 45(10): 1185-1192. DOI: 10.11817/j.issn.1672-7347.2020.190505
[18] 魏钦. 抗阻力运动对2型糖尿病患者糖耐量试验后自主神经功能紊乱的影响[J]. 中华物理医学与康复杂志, 2018, 40(10): 763-768. DOI: 10.3760/cma.j.issn.0254-1424.2018.10.010 Wei Q. Progressively resistive exercise improves autonomic nervous functioning in patients with type 2 diabetes mellitus[J]. Chin J Phys Med Rehabil, 2018, 40(10): 763-768. DOI: 10.3760/cma.j.issn.0254-1424.2018.10.010
[19] Terauchi Y, Takada T, Yoshida S. A randomized controlled trial of a structured program combining aerobic and resistance exercise for adults with type 2 diabetes in Japan[J]. Diabetol Int, 2022, 13(1): 75-84. DOI: 10.1007/s13340-021-00506-5
[20] Sung K, Bae S. Effects of a regular walking exercise program on behavioral and biochemical aspects in elderly people with type Ⅱ diabetes[J]. Nurs Health Sci, 2012, 14(4): 438-445. DOI: 10.1111/j.1442-2018.2012.00690.x
[21] Park S Y, Lee I H. Effects on training and detraining on physical function, control of diabetes and anthropometrics in type 2 diabetes; a randomized controlled trial[J]. Physiother Theory Pract, 2015, 31(2): 83-88. DOI: 10.3109/09593985.2014.958265
[22] Jeon Y K, Kim S S, Kim J H, et al. Combined aerobic and resistance exercise training reduces circulating apolipoprotein J levels and improves insulin resistance in postmenopausal diabetic women[J]. Diabetes Metab J, 2020, 44(1): 103-112. DOI: 10.4093/dmj.2018.0160
[23] 柯海宝, 谭万寿, 陈松娥, 等. 组合运动训练联合药物治疗对2型糖尿病患者血液生化指标及体质的影响[J]. 中国糖尿病杂志, 2016, 24(3): 259-262. DOI: 10.3969/j.issn.1006-6187.2016.03.018 Ke H B, Tan W S, Chen S E, et al. Effects of exercise training in combination with medication on blood biochemical indexes and body constitution in T2DM patients[J]. Chin J Diabetes, 2016, 24(3): 259-262. DOI: 10.3969/j.issn.1006-6187.2016.03.018
[24] 常凤. 中年2型糖尿病患者有氧运动结合原地深蹲抗阻训练方案及其干预效果研究[J]. 中国全科医学, 2018, 21(24): 2980-2986. DOI: 10.12114/j.issn.1007-9572.2018.00.135 Chang F. Intervention effect of aerobic exercise combined with situ squats resistance training program on middle-aged patients with type 2 diabetes[J]. Chin Gen Pract, 2018, 21(24): 2980-2986. DOI: 10.12114/j.issn.1007-9572.2018.00.135
[25] 孟晴, 陈伟, 张明, 等. 有氧联合抗阻运动对2型糖尿病患者的效果[J]. 中国康复理论与实践, 2018, 24(12): 1465-1470. Meng Q, Chen W, Zhang M, et al. Effect of aerobic and resistance exercise for patients with type 2 diabetes mellitus[J]. Chin J Rehabil Theory Pract, 2018, 24(12): 1465-1470.
[26] Garber C E, Blissmer B, Deschenes M R, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise[J]. Med Sci Sports Exerc, 2011, 43(7): 1334-1359.
[27] Taylor R. Type 2 diabetes: etiology and reversibility[J]. Diabetes Care, 2013, 36(4): 1047-1055. DOI: 10.2337/dc12-1805
[28] Richter E A, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake[J]. Physiol Rev, 2013, 93(3): 993-1017.
[29] Nielsen A R, Pedersen B K. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15[J]. Appl Physiol Nutr Metab, 2007, 32(5): 833-839.
[30] Knowler W C, Barrett-Connor E, Fowler S E, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin[J]. N Engl J Med, 2002, 346(6): 393-403.
[31] Pan X R, Li G W, Hu Y H, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study[J]. Diabetes Care, 1997, 20(4): 537-544.
[32] Tuomilehto J, Lindström J, Eriksson J G, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance[J]. N Engl J Med, 2001, 344(18): 1343-1350. http://www.nla.gov.au/nla.arc-46925-20050111-0000-150.101.16.49/pehs/pros/diabetes-news02-vol2-1.pdf
[33] Kosaka K, Noda M, Kuzuya T. Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males[J]. Diabetes Res Clin Pract, 2005, 67(2): 152-162.
[34] Yates T, Edwardson C L, Celis-Morales C, et al. Metabolic effects of breaking prolonged sitting with standing or light walking in older South Asians and white Europeans: a randomized acute study[J]. J Gerontol A Biol Sci Med Sci, 2020, 75(1): 139-146.
[35] Iliodromiti S, Ghouri N, Celis-Morales C A, et al. Should physical activity recommendations for South Asian adults be ethnicity-specific? Evidence from a cross-sectional study of South Asian and white European men and women[J]. PLoS One, 2016, 11(8): e0160024.
[36] Arjunan S P, Bishop N C, Reischak-Oliveira A, et al. Exercise and coronary heart disease risk markers in South Asian and European men[J]. Med Sci Sports Exerc, 2013, 45(7): 1261-1268.
[37] 王明义, 康涛, 杨杰文. 运动联合营养缓解2型糖尿病的专家共识[J]. 中国医学前沿杂志(电子版), 2022, 14(6): 12-21. Wang M Y, Kang T, Yang J W. Expert consensus on sports combined with nutrition therapy on type 2 diabetes mellitus[J]. Chin J Front Med Sci (Electron Version), 2022, 14(6): 12-21.
[38] 张庆飞, 刘合智, 肖强. 关于高强度有氧间歇运动改善糖尿病合并心力衰竭患者心功能机制的研究[J]. 中国糖尿病杂志, 2019, 27(7): 551-553. Zhang Q F, Liu H Z, Xiao Q. Mechanism of high intensity aerobic intermittent exercise in improving heart function in patients with diabetes mellitus complicated with heart failure[J]. Chin J Diabetes, 2019, 27(7): 551-553.
[39] Janus C, Vistisen D, Amadid H, et al. Habitual physical activity is associated with lower fasting and greater glucose-induced GLP-1 response in men[J]. Endocr Connect, 2019, 8(12): 1607-1617.