-
摘要:
皮瓣手术是一种复杂的外科手术,可用于诸多疾病和创伤的治疗。皮瓣存活与细胞自噬、氧化应激、炎症反应、间充质干细胞功能以及血管再生等多种因素密切相关。其中,细胞自噬可维持细胞内稳态,在减轻氧化应激和炎症反应、促进损伤修复等方面发挥关键作用,过度氧化应激和炎症反应会对皮瓣构成威胁,影响其存活和成功移植;内皮细胞通过增殖、迁移和产生血管生成因子参与血管再生,而血管内皮生长因子则可直接促进血管形成和维持内皮细胞功能;间充质干细胞具有独特的生物学特性和多种作用机制,在促进皮瓣存活和组织修复中发挥重要作用。本文阐述细胞自噬、氧化应激、炎症反应、间充质干细胞功能以及血管再生影响术后皮瓣存活的作用机制,以期为提高术后皮瓣存活率提供依据。
Abstract:Flap surgery is a complex surgical procedure that has become an effective method for the treatment of many diseases and traumas. Flap survival is closely related to a variety of factors including cellular autophagy, oxidative stress, inflammatory response, mesenchymal stem cells (MSCs) function, and vascular regeneration. Cellular autophagy maintains intracellular homeostasis and plays a key role in reducing oxidative stress and inflammation and promoting injury repair. Excessive oxidative stress and inflammatory responses pose a threat to flaps, affecting their survival and successful transplantation. Endothelial cells are involved in vascular regeneration through proliferation, migration, and production of angiogenic factors, and vascular endothelial growth factor directly promotes blood vessel formation and maintains endothelial cell function.MSCs play an important role in promoting flap survival and tissue repair due to their unique biological properties and multiple mechanisms of action. The multiple roles played by cellular autophagy, oxidative stress, inflammatory response, MSCs function, and vascular regeneration in influencing postoperative flap survival are hereby elaborated. The aim is to provide a basis for the clinical application of regulating the above factors to improve postoperative flap survival, improve the success rate of flap surgery, reduce complications, and bring more hope for the recovery and quality of life of patients.
-
皮瓣手术是一种用于修复组织缺损或改善组织血液供应的外科技术[1],在修复组织缺损、改善外观、促进损伤愈合和组织再生中具有不可替代的作用[2]。然而,临床上皮瓣存活率相对较低,为皮瓣技术的应用造成了障碍[3]。皮瓣手术涉及重建外科、整形外科、创伤修复等多个领域,其成功与否直接关系患者生活质量和康复效果[4]。为解决这一难题,临床医师不断探索和改进技术与方法,积极采用新的外科技术,优化手术规划,旨在加强皮瓣的血液供应,降低感染风险,并减少手术创伤[5]。既往研究指出,通过降低炎症因子表达、减轻氧化应激反应、调节细胞自噬、调控间充质干细胞(mesenchymal stem cells, MSCs)功能、促进内皮细胞介导的皮瓣血管重建以及调控血管内皮生长因子(vascular endothelial growth factor, VEGF)表达以促进皮瓣血管形成等方式,可显著提高皮瓣存活率[6-7]。本文通过文献复习,总结提高皮瓣存活率的主要机制,包括降低炎症因子表达、减轻氧化应激反应、调节细胞自噬、促进血管再生、调控MSCs功能等,旨在为皮瓣存活的机制研究和临床实践提供方向与指导。
1. 炎症反应
既往研究显示,炎症反应的性质和程度对皮瓣存活具有重要影响,慢性或过度炎症反应可导致皮瓣坏死和移植失败[8]。炎症反应可导致血管扩张和血管通透性增加,适度的炎症反应是机体对伤口愈合的自然反应[9-10],有助于招募免疫细胞和生长因子至损伤处,促进伤口愈合[11-12]。然而,过度的炎症反应可导致微血管痉挛、血栓形成或缺血[13],从而危及皮瓣存活,尤其是手术创面周围组织更易发生坏死[14]。研究显示,免疫系统的活性增加通常与炎症反应相关,过度的炎症反应可导致免疫细胞攻击皮瓣组织,加重移植排斥反应[15]。此外,炎症反应还会增加感染风险,从而导致更严重的炎症反应和组织坏死,最终导致皮瓣移植失败[16]。鉴于炎症反应的性质和程度对皮瓣存活至关重要,降低炎症因子表达以提高皮瓣存活率一直备受关注。目前,与皮瓣存活相关的炎症因子包括肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、白细胞介素(interleukin, IL)-1、IL-6、IL-8、C反应蛋白(C-reactive protein,CRP)等[17]。其中,TNF-α是一种重要的炎症因子,在炎症反应和免疫反应中发挥关键作用[18]。高水平的TNF-α可导致组织细胞坏死和炎症反应,对皮瓣存活产生不利影响[19]。王飞等[20]研究发现,中药提取物黄芪甲苷通过降低血清中TNF-α、IL-6和IL-1β的表达,可减轻皮瓣移植术后的炎症反应和氧化损伤,对提高皮瓣存活率和促进皮瓣愈合具有积极作用。IL-1是一类促炎因子,可引发局部和系统性炎症反应,阻碍皮瓣存活[21];IL-6是一种调节炎症反应的细胞因子,高水平的IL-6与过度炎症反应相关,可能影响皮瓣愈合和存活[22]。研究表明,调节IL-1介导的相关信号通路可降低皮瓣修复术后早期感染程度和风险[23]。Huang等[24]研究发现,降低TNF-α和IL-1β、IL-6表达水平可提高缺血性皮瓣的存活率,是皮瓣存活的有效保护方式。IL-8属于趋化因子,可促进白细胞聚集于炎症部位,导致过度炎症反应,影响皮瓣存活[25]。临床研究发现,真空辅助闭合术可通过降低TNF-α、IL-8的表达水平缓解炎症反应,进而提高皮瓣存活率[26]。CRP是一种急性时相反应蛋白,其表达水平升高通常提示机体存在炎症反应,可能为皮瓣存活的不利因素[27]。研究表明,血清CRP水平与术后皮瓣存活率存在密切联系,术后持续监测血清CRP水平是预测皮瓣存活状态的有效手段[28]。
总之,过度或慢性炎症反应可导致皮瓣坏死和移植失败,而适度炎症反应则有助于伤口愈合。鉴于炎症反应与皮瓣存活存在复杂关系,围术期管理中,控制和调节炎症因子的表达水平对确保皮瓣移植成功和存活至关重要,通过降低炎症因子(如TNF-α、IL-1、IL-6、IL-8、CRP)表达、减轻炎症反应程度等手段,可降低皮瓣移植术后并发症的发生率,提高皮瓣存活率。
2. 氧化应激
既往研究指出,氧化应激与皮瓣存活存在密切联系,减轻氧化应激反应程度有利于移植皮瓣的存活,提高手术成功率[29-30]。氧化应激是指细胞或组织中氧自由基(reactive oxygen species, ROS)或氮自由基(reactive nitrogen species, RNS)产生过量且超过细胞抗氧化防御能力的情况[31]。高水平的氧化应激反应会引起蛋白质、脂质和DNA等细胞内分子和结构损伤,导致细胞死亡和组织坏死,对皮瓣的存活构成威胁[32-33]。研究表明,加强氧化应激反应可增强牛乳腺上皮细胞的炎症反应程度,提高细胞凋亡率,对细胞增殖及迁移产生不良影响[34]。
氧化应激可触发促炎症反应,导致炎症细胞浸润和炎症因子释放,进而提高皮瓣受损的风险[35]。氧化应激还可引起血管内皮细胞受损,进而导致缺血和再灌注损伤等微循环问题,对皮瓣血供产生不利影响[36]。机体的抗氧化防御机制可中和氧化应激反应。在皮瓣移植中,增强机体抗氧化防御能力将有助于减轻氧化应激引起的损伤程度[37]。皮瓣移植术后,皮瓣细胞仍需要适度的氧化应激刺激来启动愈合过程,但要避免过度的氧化应激对皮瓣存活产生不利影响[38]。
总之,过度的氧化应激反应对皮瓣功能造成不可逆损伤,导致细胞内分子和结构发生变化,触发炎症反应,造成皮瓣血管功能损害和缺血再灌注损伤,降低皮瓣存活率。适度的氧化应激反应有助于启动愈合过程。因此,管理和调控氧化应激的触发及程度是确保皮瓣存活的关键。
3. 细胞自噬
细胞自噬是一种重要的细胞生存机制,有助于清除细胞内有害物质、损伤的蛋白和细胞器,以维持细胞内环境稳定[39]。在皮瓣手术中,细胞自噬与皮瓣的存活和成功移植密切相关,有关细胞自噬的调控已成为研究热点。适度的细胞自噬有助于减轻氧化应激和炎症程度,促进损伤修复,维持免疫调节功能,供应细胞内营养,维持细胞内稳态,从而提高皮瓣耐受性,促进皮瓣存活[40]。
细胞自噬有助于细胞清除氧化应激引发的自由基和有害代谢产物[32]。在皮瓣手术中,皮瓣可能受到氧化应激的影响,而细胞自噬可减轻氧化应激反应程度,有助于维持细胞内稳态;细胞自噬有助于清除受损的蛋白质和细胞器,促进细胞结构修复和功能恢复,从而提高皮瓣存活能力[5, 41];细胞自噬具有抗炎作用,并与免疫调节密切相关。适度的细胞自噬可调节免疫系统应答,降低炎症反应程度,从而减轻免疫系统对移植皮瓣的排斥程度[42]。细胞自噬还可通过维持细胞内稳态而减少细胞凋亡的发生,有助于提高皮瓣的存活率[43]。
总之,细胞自噬在皮瓣手术中发挥着重要作用。其有助于清除有害物质,减轻氧化应激和炎症反应,促进受损细胞修复,维持免疫调节和细胞内稳态,从而增强皮瓣耐受性并提高存活率。在皮瓣手术中,调控细胞自噬对于皮瓣的成功移植至关重要。细胞自噬可通过清除受损的线粒体和蛋白质减少ROS的产生,从而减轻氧化应激反应程度。适度的ROS可作为信号分子诱导细胞自噬,从而保护细胞免受过度氧化应激的损伤。然而,过度氧化应激可抑制自噬,导致细胞死亡。细胞自噬通过清除炎症相关的细胞因子和受损的细胞器减少炎症介质的释放,从而抑制炎症反应。TNF-α、IL-6等炎症因子可调节自噬细胞的活性,在某些情况下诱导自噬,以维持细胞存活能力。氧化应激通过激活炎症相关信号通路,诱导炎症因子的表达和释放,加剧炎症反应程度;炎症反应通过激活还原型辅酶Ⅱ(nicotinamide adenine dinucleotide phosphate, NADPH)氧化酶和线粒体呼吸链,促进ROS的生成,进一步加剧氧化应激反应。
4. 血管再生
有关促进血管再生的研究涉及多种因素和机制,对提高皮瓣存活率具有重要意义。促进皮瓣组织血管再生可为皮瓣组织提供充足的氧气和养分,减轻缺血再灌注损伤程度,促进组织修复和皮瓣愈合,调控免疫系统功能,改善缺损皮肤的外观和功能。因此,深入探讨促进血管再生的方法对于提高皮瓣存活率和手术成功术至关重要,有助于改进临床实践技术,减少皮瓣移植相关并发症,提高康复质量。
4.1 内皮细胞促进皮瓣血管重建
内皮细胞是构成血管内膜的一类重要细胞,具有促进皮瓣血管重建和再生的关键作用。研究表明,在皮瓣移植和愈合过程中,内皮细胞可通过增殖和迁移等方式参与新生血管的形成,这也是维持皮瓣血供的关键。同时,皮瓣可能含有内皮细胞的前体细胞,这些前体细胞可分化为功能成熟的内皮细胞以促进皮瓣内血管的重建[29]。此外,内皮细胞还可产生和分泌VEGF和碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF) 等血管生成因子,从而促进血管的增生和再生[44]。研究发现,干细胞特别是内皮祖细胞可促进皮瓣的血管重建,这些干细胞可分化为内皮细胞,有助于改善皮瓣血液供应[45]。总之,内皮细胞在皮瓣血管重建中发挥关键作用,利用内皮细胞以及调控其功能促进皮瓣血管重建具有重要临床研究价值。
4.2 VEGF促进皮瓣血管形成
VEGF是一种重要的生长因子,在皮瓣血管形成中发挥关键作用,对促进血管形成和维持内皮细胞功能至关重要。VEGF可刺激血管内皮细胞的增殖和迁移,促进新生血管形成。在皮瓣移植术中,VEGF可通过刺激周围组织内的内皮细胞来促进皮瓣内的血管生成[46]。同时,VEGF还可增加血管的通透性,使养分和氧气更易渗透至皮瓣组织,从而提高细胞存活能力和愈合速度[36]。在皮瓣手术中,缺血再灌注损伤可对皮瓣存活造成威胁,而VEGF可减轻缺血再灌注损伤,有助于降低氧化应激和炎症反应程度[47]。研究发现,VEGF可与生物材料或载体一起使用,生物材料或植入物可增加VEGF释放途径,从而延长VEGF的作用时间,提高其局部浓度和治疗效果,进而促进血管形成[48]。在皮瓣手术与组织工程交叉研究领域,VEGF仍是一个值得关注的热点,如何高效应用VEGF以提高移植皮瓣存活率值得深入研究。
总之,内皮细胞和VEGF在促进血管再生以提高皮瓣存活率的过程中发挥着关键作用,其中内皮细胞通过增殖、迁移和产生血管生成因子参与血管重建;而VEGF作为重要的生长因子,可通过促进血管形成、增加血管通透性、减轻缺血再灌注损伤等影响皮瓣细胞的存活和愈合。
5. MSCs
MSCs是一类多能干细胞,通过细胞分裂可分化为多种细胞类型,并调节免疫反应,具有免疫抑制特性[49]。既往研究显示,MSCs可通过促进皮瓣存活、抗炎、促进组织再生与修复等多种机制发挥治疗作用[50]。MSCs可分泌VEGF、bFGF等促血管生成因子,促进新生血管形成,改善皮瓣血液供应,提高皮瓣存活率[51]。其还可通过细胞间的相互作用调节细胞功能、促进组织修复,如MSCs可通过与内皮细胞相互作用促进内皮细胞增殖和血管生成,改善皮瓣血液循环[52]。此外,MSCs可分泌抗凋亡因子如胰岛素样生长因子-1(insulin-like growth factor 1, IGF-1)、肝细胞生长因子(hepatocyte growth factor, HGF) 等,能够保护皮瓣细胞免受缺血、缺氧引起的损害,从而提高皮瓣存活率[53];MSCs还具有免疫调节作用,可抑制过度炎症反应,减少炎症介质的释放,从而减轻皮瓣移植后的炎症反应程度,促进伤口愈合[54];MSCs可通过分泌转化生长因子(transforming growth factor-β, TGF-β)、IL-10等抗炎因子调节免疫细胞的活性,降低炎症对皮瓣存活的不利影响[55]。更重要的是,MSCs可直接促进皮瓣组织再生与修复,因MSCs具有多向分化潜能,可分化为成骨细胞、成软骨细胞、成脂肪细胞等多种细胞类型,有助于皮瓣及其周围组织的修复和再生[56]。
目前,MSCs在皮瓣手术中的应用研究仍处于临床前和早期临床试验阶段,相信随着技术的发展和研究的深入,MSCs有望在皮瓣手术中得到更广泛的应用,为临床提供新的治疗手段。总之,MSCs通过其独特的生物学特性和多种作用机制,在促进皮瓣存活和组织修复中发挥了重要作用,具有广阔的应用前景。
6. 小结与展望
细胞自噬作为一种细胞内的重要生存机制,在维持皮瓣细胞内稳态、减轻氧化应激和炎症反应方面发挥着关键作用。过度氧化应激和炎症反应可对皮瓣存活构成威胁,影响皮瓣移植成功率。细胞自噬、氧化应激和炎症反应之间关系复杂,三者共同影响细胞和组织的存活及功能。细胞自噬通过清除受损细胞器和蛋白质、维持细胞功能等机制,减轻缺血再灌注损伤对移植皮瓣的不良影响,提高皮瓣存活率。缺血再灌注损伤过程中会产生过量的ROS,导致脂质过氧化、蛋白质氧化和DNA损伤,影响皮瓣细胞的存活。细胞自噬可调节细胞分化和增殖,促进皮瓣组织的再生和修复。适度的氧化应激可诱导自噬,保护皮瓣细胞免受进一步损伤。同时,在皮瓣移植初期,适度炎症反应有助于清除细胞碎片和病原体,促进组织修复。但持续的炎症反应会导致组织损伤和纤维化,影响皮瓣功能和存活。因此,平衡和调控这些生物学过程对于提高皮瓣手术成功率至关重要。研究表明,内皮细胞和VEGF在血管再生过程中发挥至关重要作用。内皮细胞通过增殖、迁移和产生血管生成因子参与血管重建,而VEGF作为重要的生长因子,直接促进血管形成,并维持内皮细胞功能。
未来,研究人员可从如下方面进一步探索如何针对上述影响机制进行调控和优化,从而显著提高皮瓣存活率,为临床应用提供有效策略和方法。首先,可利用药物诱导细胞自噬,清除受损的细胞器和蛋白质,维持细胞功能,促进组织修复;其次,应重视基因编辑技术,通过调控自噬相关基因,增强细胞自噬功能,提高皮瓣存活率;最后,促进血管再生的研究也应受到重视,特别是开展针对内皮细胞和VEGF作用机制的研究,如局部或系统应用VEGF和bFGF可促进新生血管形成,改善皮瓣血供。
综上所述,整合细胞自噬、氧化应激、炎症反应、调节MSCs以及促进血管再生等生物学领域的研究成果,有望为皮瓣手术的临床实践开辟新途径,从而提升手术成功率,减少并发症发生,提升患者康复效果和生活质量。
作者贡献:李金鹏负责论文选题设计及撰写工作;郭婕负责论文选题设计和写作指导;刘涛、魏晓涛、王威威负责文献检索和内容修订;宋渊、何志军负责指导、审核论文。利益冲突:所有作者均声明不存在利益冲突 -
[1] Lee J H, You H J, Lee T Y, et al. Current status of experimental animal skin flap models: ischemic preconditioning and molecular factors[J]. Int J Mol Sci, 2022, 23(9): 5234. DOI: 10.3390/ijms23095234
[2] Qiao Z H, Wang X C, Deng Y W, et al. Clinical application of pre-expanded perforator flaps[J]. Facial Plast Surg Aesthet Med, 2023, 25(1): 68-73.
[3] Afrooghe A, Damavandi A R, Ahmadi E, et al. The current state of knowledge on how to improve skin flap survival: a review[J]. J Plast Reconstr Aesthet Surg, 2023, 82: 48-57. DOI: 10.1016/j.bjps.2023.04.021
[4] Sorg H, Sorg C G G, Tilkorn D J, et al. Free flaps for skin and soft tissue reconstruction in the elderly patient: indication or contraindication[J]. Med Sci (Basel), 2023, 11(1): 12.
[5] Tong X F, Xiao Z Y, Li P T, et al. Angiogenesis and flap-related research: a bibliometric analysis[J]. Int Wound J, 2023, 20(8): 3057-3072. DOI: 10.1111/iwj.14181
[6] Wang Y C, Li X D, Lv H, et al. Therapeutic potential of naringin in improving the survival rate of skin flap: a review[J]. Front Pharmacol, 2023, 14: 1128147. DOI: 10.3389/fphar.2023.1128147
[7] Ye H T, Li F D, Shen Y, et al. Rosuvastatin promotes survival of random skin flaps through AMPK-mTOR pathway-induced autophagy[J]. Int Immunopharmacol, 2023, 118: 110059. DOI: 10.1016/j.intimp.2023.110059
[8] Kuroki T, Takekoshi S, Kitatani K, et al. Protective effect of ebselen on ischemia-reperfusion injury in epigastric skin flaps in rats[J]. Acta Histochem Cytochem, 2022, 55(5): 149-157. DOI: 10.1267/ahc.22-00062
[9] Singh B, Kosuru R, Lakshmikanthan S, et al. Endothelial rap1 (Ras-association proximate 1) restricts inflammatory signaling to protect from the progression of atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2021, 41(2): 638-650. DOI: 10.1161/ATVBAHA.120.315401
[10] 罗高兴, 邓君. 原位监测并调控局部活性氧水平促进创面修复[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 899-904. DOI: 10.3760/cma.j.cn501225-20220720-00299 Luo G X, Deng J. In situ monitoring and regulation of local reactive oxygen species levels to promote wound repair[J]. Chin J Burns Wounds, 2022, 38(10): 899-904. DOI: 10.3760/cma.j.cn501225-20220720-00299
[11] Mills K H G. IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023, 23(1): 38-54. DOI: 10.1038/s41577-022-00746-9
[12] Korbecki J, Bobiński R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors[J]. Inflamm Res, 2019, 68(6): 443-458. DOI: 10.1007/s00011-019-01231-1
[13] Fan X H, Yang G Q, Kowitz J, et al. Takotsubo syndrome: translational implications and pathomechanisms[J]. Int J Mol Sci, 2022, 23(4): 1951. DOI: 10.3390/ijms23041951
[14] Odake K, Tsujii M, Iino T, et al. Febuxostat treatment attenuates oxidative stress and inflammation due to ischemia-reperfusion injury through the necrotic pathway in skin flap of animal model[J]. Free Radic Biol Med, 2021, 177: 238-246. DOI: 10.1016/j.freeradbiomed.2021.10.033
[15] Wang Y Q, Wang Y Y, Wang X T, et al. Effect of leukocyte-platelet fibrin-rich wound reconstruction followed by full-thickness skin grafting in the treatment of diabetic foot Wagner grade 4 ulcer gangrene (toe area)[J]. Platelets, 2023, 34(1): 2131752. DOI: 10.1080/09537104.2022.2131752
[16] Rajput S, Kuruoglu D, Salinas C A, et al. Flap management of groin wounds following vascular procedures: a review of 270 flaps for vascular salvage[J]. J Plast Reconstr Aesthet Surg, 2023, 78: 38-47. DOI: 10.1016/j.bjps.2023.01.028
[17] Zhou T T, Wang X B, Wang K T, et al. Activation of aldehyde dehydrogenase-2 improves ischemic random skin flap survival in rats[J]. Front Immunol, 2023, 14: 1127610. DOI: 10.3389/fimmu.2023.1127610
[18] Wang Y J, Che M X, Xin J G, et al. The role of IL-1β and TNF-α in intervertebral disc degeneration[J]. Biomed Pharmacother, 2020, 131: 110660. DOI: 10.1016/j.biopha.2020.110660
[19] Esteves G R, Junior I E, Masson I F B, et al. Photobiomodulation effect in tumoral necrosis factor-alpha(TNF-α) on the viability of random skin flap in rats[J]. Lasers Med Sci, 2022, 37(3): 1495-1501. DOI: 10.1007/s10103-021-03303-3
[20] 王飞, 田阳, 徐骁然, 等. 黄芪甲苷通过调控TLR-4/NF-κB信号通路对大鼠皮瓣缺血再灌注损伤的影响[J]. 中国皮肤性病学杂志, 2021, 35(5): 497-503. Wang F, Tian Y, Xu X R, et al. Effect of astragaloside on ischemia-reperfusion injuryin rat skin flap by regulating TLR-4/NF-κB signaling pathway[J]. Chin J Dermatovenereol, 2021, 35(5): 497-503.
[21] He J B, Fang M J, Ma X Y, et al. Angiogenic and anti-inflammatory properties of azadirachtin A improve random skin flap survival in rats[J]. Exp Biol Med (Maywood), 2020, 245(18): 1672-1682. DOI: 10.1177/1535370220951896
[22] Jiang Z K, Wang K T, Lin Y T, et al. Nesfatin-1 regulates the HMGB1-TLR4-NF-κB signaling pathway to inhibit inflammation and its effects on the random skin flap survival in rats[J]. Int Immunopharmacol, 2023, 124(Pt A): 110849.
[23] 卫会明, 郑蕾, 魏世杰, 等. 皮瓣修复术后早期感染血浆NLRP3炎症小体-IL-1β信号通路的表达[J]. 中华医院感染学杂志, 2022, 32(13): 1996-2000. Wei H M, Zheng L, Wei S J, et al. Expression of plasma NLRP3 inflammasome-IL-1β signaling pathway in flap repair patients with postoperative early infection[J]. Chin J Nosocomiol, 2022, 32(13): 1996-2000.
[24] Huang G Q, Lin Y T, Fang M J, et al. Protective effects of icariin on dorsal random skin flap survival: an experimental study[J]. Eur J Pharmacol, 2019, 861: 172600. DOI: 10.1016/j.ejphar.2019.172600
[25] Matsushima K, Yang D, Oppenheim J J. Interleukin-8: an evolving chemokine[J]. Cytokine, 2022, 153: 155828. DOI: 10.1016/j.cyto.2022.155828
[26] Wang Q, Zhang X, Sun W T, et al. Clinical study on vacuum assisted closure combined with multiple flaps in the treatment of severe hand trauma[J]. Pak J Med Sci, 2022, 38(1): 248-253.
[27] Plebani M. Why C-reactive protein is one of the most requested tests in clinical laboratories?[J]. Clin Chem Lab Med, 2023, 61(9): 1540-1545. DOI: 10.1515/cclm-2023-0086
[28] Schmidt F, Ward M, Repanos C. Postoperative serum C-reactive protein dynamics after pharyngolaryngectomy with jejunal free-flap reconstruction[J]. Ann R Coll Surg Engl, 2023, 105(3): 263-268. DOI: 10.1308/rcsann.2021.0315
[29] Guo L L, Chen Y X, Feng X L, et al. Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function[J]. Stem Cell Res Ther, 2022, 13(1): 325. DOI: 10.1186/s13287-022-03013-9
[30] Lin J T, Jia C, Wang Y L, et al. Therapeutic potential of pravastatin for random skin flaps necrosis: involvement of promoting angiogenesis and inhibiting apoptosis and oxidative stress[J]. Drug Des Devel Ther, 2019, 13: 1461-1472. DOI: 10.2147/DDDT.S195479
[31] Jomova K, Raptova R, Alomar S Y, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging[J]. Arch Toxicol, 2023, 97(10): 2499-2574. DOI: 10.1007/s00204-023-03562-9
[32] Zhang D P, Jin C, Han T, et al. Sinomenine promotes flap survival by upregulating eNOS and eNOS-mediated auto-phagy via PI3K/AKT pathway[J]. Int Immunopharmacol, 2023, 116: 109752. DOI: 10.1016/j.intimp.2023.109752
[33] Jaganjac M, Milkovic L, Zarkovic N, et al. Oxidative stress and regeneration[J]. Free Radic Biol Med, 2022, 181: 154-165. DOI: 10.1016/j.freeradbiomed.2022.02.004
[34] Meng M J, Huo R, Wang Y, et al. Lentinan inhibits oxidative stress and alleviates LPS-induced inflammation and apoptosis of BMECs by activating the Nrf2 signaling pathway[J]. Int J Biol Macromol, 2022, 222(Pt B): 2375-2391.
[35] Shi X, Zhou H P, Wei J, et al. The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases[J]. Redox Biol, 2022, 58: 102553. DOI: 10.1016/j.redox.2022.102553
[36] Meng Z F, Wang K T, Lan Q C, et al. Saxagliptin promotes random skin flap survival[J]. Int Immunopharmacol, 2023, 120: 110364. DOI: 10.1016/j.intimp.2023.110364
[37] Zhang T, Huang Q, Gan K F, et al. Effects of limonin treatment on the survival of random skin flaps in mice[J]. Front Surg, 2023, 9: 1043239. DOI: 10.3389/fsurg.2022.1043239
[38] Mayo J S, Kurata W E, O'Connor K M, et al. Oxidative stress alters angiogenic and antimicrobial content of extracellular vesicles and improves flap survival[J]. Plast Reconstr Surg Glob Open, 2019, 7(12): e2588. DOI: 10.1097/GOX.0000000000002588
[39] Liu S Z, Yao S J, Yang H, et al. Autophagy: regulator of cell death[J]. Cell Death Dis, 2023, 14(10): 648. DOI: 10.1038/s41419-023-06154-8
[40] Li B L, Chen Z T, Luo X B, et al. Butylphthalide inhibits autophagy and promotes multiterritory perforator flap survival[J]. Front Pharmacol, 2020, 11: 612932.
[41] Lou J S, Zhang H J, Qi J J, et al. Cyclic helix B peptide promotes random-pattern skin flap survival via TFE3-mediated enhancement of autophagy and reduction of ROS levels[J]. Br J Pharmacol, 2022, 179(2): 301-321. DOI: 10.1111/bph.15702
[42] 马岁录, 何志军, 刘涛, 等. 中药单体调控"细胞自噬"防治皮瓣坏死[J]. 中国组织工程研究, 2024, 28(1): 153-158. Ma S L, He Z J, Liu T, et al. Traditional Chinese medicine monomer in the prevention and treatment of flap necrosis by regulating "autophagy"[J]. Chin J Tissue Eng Res, 2024, 28(1): 153-158.
[43] Luo G J, Zhou Z K, Huang C X, et al. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps[J]. Heliyon, 2023, 9(7): e17909.
[44] Jiang J T, Dong C J, Zhai L, et al. Paeoniflorin suppresses TBHP-Induced oxidative stress and apoptosis in human umbilical vein endothelial cells via the Nrf2/HO-1 signaling pathway and improves skin flap survival[J]. Front Pharmacol, 2021, 12: 735530.
[45] Zhao Y H, Shi Y Y, Lin H. Hypoxia promotes adipose-derived stem cells to protect human dermal microvascular endothelial cells against hypoxia/reoxygenation injury[J]. J Surg Res, 2021, 266: 230-235.
[46] Lan Q C, Wang K T, Meng Z F, et al. Roxadustat promotes hypoxia-inducible factor-1α/vascular endothelial growth factor signalling to enhance random skin flap survival in rats[J]. Int Wound J, 2023, 20(9): 3586-3598.
[47] Karimipour M, Farjah G H, Hassanzadeh M, et al. Post-treatment with metformin improves random skin flap survival through promoting angiogenesis in rats[J]. Vet Res Forum, 2022, 13(2): 233-239.
[48] He S Q, Walimbe T, Chen H Y, et al. Bioactive extracellular matrix scaffolds engineered with proangiogenic proteoglycan mimetics and loaded with endothelial progenitor cells promote neovascularization and diabetic wound healing[J]. Bioact Mater, 2022, 10: 460-473.
[49] Zaripova L N, Midgley A, Christmas S E, et al. Mesenchymal stem cells in the pathogenesis and therapy of autoim-mune and autoinflammatory diseases[J]. Int J Mol Sci, 2023, 24(22): 16040.
[50] 何波, 何志军, 刘涛, 等. 间充质干细胞治疗皮瓣缺血再灌注损伤的作用机制及优势[J]. 中国组织工程研究, 2024, 28(25): 4065-4071. He B, He Z J, Liu T, et al. Action mechanism and advantages of mesenchymal stem cells for treating flap ischemia-reperfusion injury[J]. Chin J Tissue Eng Res, 2024, 28(25): 4065-4071.
[51] Chehelcheraghi F, Chien S, Bayat M. Mesenchymal stem cells improve survival in ischemic diabetic random skin flap via increased angiogenesis and VEGF expression[J]. J Cell Biochem, 2019, 120(10): 17491-17499.
[52] Lin X, Kong B, Zhu Y J, et al. Bioactive fish scale scaffolds with MSCs-loading for skin flap regeneration[J]. Adv Sci (Weinh), 2022, 9(21): e2201226.
[53] Niu Q F, Yang Y, Li D L, et al. Exosomes derived from bone marrow mesenchymal stem cells alleviate Ischemia-Reperfusion injury and promote survival of skin flaps in rats[J]. Life (Basel), 2022, 12(10): 1567.
[54] Deng C, Dong K K, Liu Y J, et al. Hypoxic mesenchymal stem cell-derived exosomes promote the survival of skin flaps after ischaemia-reperfusion injury via mTOR/ULK1/FUNDC1 pathways[J]. J Nanobiotechnology, 2023, 21(1): 340.
[55] de Souza I C, Takejima A L, Simeoni R B, et al. Acellular biomaterials associated with autologous bone marrow-derived mononuclear stem cells improve wound healing through paracrine effects[J]. Biomedicines, 2023, 11(4): 1003. http://www.keyanzhidian.com/doc/detail?id=2076768521
[56] Nakagawa T, Sasaki M, Kataoka-Sasaki Y, et al. Intraven-ous infusion of mesenchymal stem cells promotes the survival of random pattern flaps in rats[J]. Plast Reconstr Surg, 2021, 148(4): 799-807.
计量
- 文章访问数: 911
- HTML全文浏览量: 5
- PDF下载量: 10