Application of Bedside Hypertonic Saline-contrast Electrical Impedance Tomography of Lung Perfusion in Patients After Pulmonary Endarterectomy: Two Cases and Literature Review
-
摘要:
肺灌注电阻抗断层成像(electrical impedance tomography,EIT)作为一种床旁无创、连续、动态、无辐射的肺通气监测技术,目前已广泛应用于急危重症患者的诊疗。除肺通气监测外,近年来高渗盐水造影肺灌注EIT床旁监测也备受关注。本文介绍高渗盐水造影肺灌注EIT技术床旁评估2例肺动脉内膜剥脱术后患者的肺灌注情况,为该技术在此类患者围术期管理中的应用提供参考。
-
关键词:
- 床旁高渗盐水造影电阻抗断层成像 /
- 肺灌注 /
- 慢性血栓栓塞性肺动脉高压 /
- 肺动脉内膜剥脱术
Abstract:Pulmonary electrical impedance tomography (EIT), a noninvasive, continuous, dynamic, and radiation-free bedside imaging technique for monitoring pulmonary ventilation, is now widely utilized in the diagnosis and management of critically ill patients. Beyond ventilation monitoring, hypertonic saline contrast-enhanced EIT for bedside pulmonary perfusion assessment has recently garnered significant attention. This article describes the application of hypertonic saline contrast-enhanced EIT to evaluate pulmonary perfusion in two patients following pulmonary endarterectomy, providing a reference for its perioperative application in such patients.
-
1. 病例资料
病例1
患者男性,31岁,因“右胸疼痛伴咯血6个月”于2024年2月21日入住北京协和医院心外科。患者6个月前无明显诱因出现右侧胸痛,伴咳嗽、痰中带血,当地医院诊断为“肺栓塞、肺动脉高压”,给予“利伐沙班”治疗,仍存在右胸不适。2个月前于外院诊断为“右下肢静脉血栓形成”,行“右下肢静脉取栓术+滤网置入术”,术后口服达比加群,每次110 mg,每12小时用药1次。患者上述胸痛、咯血症状仍反复,为求进一步诊治于2024年2月21日至我院就诊。入院查体:体温36 ℃,脉搏80次/min,呼吸频率17次/min,血压97/65 mm Hg,SpO2 99%,双下肺可闻及细湿性啰音,余查体无特殊。
完善相关检查。实验室检查:(1)血常规:白细胞(white blood cell,WBC)计数5.18×109/L,血红蛋白(hemoglobin,HGB) 154 g/L,血小板(platelet,PLT)计数202×109/L;(2)凝血功能:凝血酶原时间(prothrombin time,PT) 16.4 s,国际标准化比值(international normalized ratio,INR) 1.42,活化部分凝血活酶时间(activated partial thromboplastin time,APTT) 35.0 s,D-二聚体(D-dimer) 0.33 mg/L;(3)动脉血气分析:酸碱度(potential of hydrogen,pH) 7.45,二氧化碳分压(partial pressure of carbon dioxide,PCO2) 35 mm Hg(1 mm Hg=0.133 kPa),氧分压(partial pressure of oxygen,PO2) 81 mm Hg,实际碱剩余(actual base excess,ABE) 0.8 mmol/L,乳酸(lactic acid,Lac) 1.1 mmol/L;(4)其余电解质、肝肾功能、心肌酶未见明显异常。超声心动图:左心室射血分数(left ventricular ejection fraction,LVEF) 71%,重度肺动脉高压,肺动脉收缩压(pulmonary artery systolic pressure,PASP) 104 mm Hg,右心增大,中-重度三尖瓣关闭不全。主动脉计算机断层扫描血管造影(computed tomography angiography,CTA):右肺动脉主干及双肺动脉分支多发充盈缺损,肺栓塞可能(图 1A)。既往史无特殊。初步诊断:“慢性血栓栓塞性肺动脉高压,中-重度三尖瓣关闭不全,右心衰竭,下腔静脉滤器置入术后”。完善相关术前检查,排除手术禁忌证,入院第9日于全麻下行“低温体外循环下肺动脉内膜剥脱术”,术中剥除右肺动脉、各分支内膜及血栓(图 1B),监测PASP 40 mm Hg,平均压22 mm Hg。术后患者转重症监护病房(intensive care unit,ICU)治疗5 d,于入院第18日顺利出院。
图 1 肺动脉CTA及肺动脉内膜剥脱术中标本A.可见主肺动脉增宽,直径约36 mm,右肺动脉主干可见充盈缺损,双肺动脉分支多发充盈缺损(箭头);B.右肺动脉、各分支内膜及血栓,病理符合血栓Figure 1. CTA of pulmonary artery and intraoperative specimen from pulmonary endarterectomyA.the main pulmonary artery is dilated with a diameter of approximately 36 mm, there is a filling defect visible in the right pulmonary artery trunk, and multiple filling defects are present in the branches of both pulmonary arteries(arrow); B.the intima and thrombus of the right pulmonary artery and its branches, pathology confirms the presence of thrombus
CTA(computed tomography angiography): 计算机断层扫描血管造影病例2
患者男性,36岁,因“下肢肿痛、活动后气促8年”, 于2024年2月27日入住北京协和医院心外科。2016年,患者因长期开车后出现双下肢肿痛,于外院诊断为“下肢血栓闭塞性脉管炎”,予口服“华法林”抗凝,上述症状进行性加重,出现右下肢剧烈胀痛伴右足淤紫,先后行“右股动脉球囊扩张、置管溶栓术、右下肢截肢术”。期间患者伴随活动后气促,无胸痛、心悸、呼吸困难,外院诊断为“肺栓塞”,予以抗凝治疗,效果不佳。为行进一步手术治疗,患者于2024年2月入住我院心外科。
入院查体:体温36.1 ℃,脉搏95次/min,呼吸频率20次/min,血压107/62 mm Hg,心、肺、腹查体未见明显异常,右下肢截肢至膝关节上约10 cm。实验室检查:(1)血常规:WBC计数6.39×109/L,HGB 157 g/L,PLT计数211×109/L;(2)凝血功能:D-二聚体0.98 mg/L,余指标无异常;(3)动脉血气分析:pH 7.48,PCO2 29 mm Hg,PO2 59 mm Hg,ABE 0.8 mmol/L,Lac 1.3 mmol/L;(4)N末端脑钠肽前体(N-terminal pro-brain natriuretic peptide,NT-pro-BNP) 1187 ng/L;高敏心肌肌钙蛋白(high-sensitive cardiac troponin,hs-cTn) 740 ng/L;(5)其余电解质、肝肾功能未见明显异常。计算机断层扫描肺动脉造影(computed tomography pulmonary angiography,CTPA):双肺动脉多发肺栓塞, 主肺动脉增宽, 右心增大(图 2A)。右心漂浮导管监测:肺动脉压(pulmonary artery pressure,PAP) 102/36(58)mm Hg,肺动脉楔压(pulmonary artery wedge pressure,PAWP) 13 mm Hg,心排血指数(cardiac index,CI) 1.89 L/ (min·m2),肺血管阻力(pulmonary vascular resistance,PVR) 13.20 WU,体循环阻力(systemic vas-cular resistance,SVR) 20.00 WU。心外科评估患者肺动脉血栓存在手术指征,与患者及家属沟通手术方案及风险后,于入院第11日行“体外循环下正中开胸肺动脉取栓+内膜剥脱术”,剥除主肺动脉及左右各分支肺动脉血栓及增厚内膜(图 2B),术后监测PAP 65/19(31)mm Hg,于ICU治疗6日后转心外科病房继续治疗。
图 2 CTPA及肺动脉内膜剥脱术中标本A.双肺动脉多发充盈缺损,双肺动脉主干可见钙化,主肺动脉增宽,直径约36 mm(箭头);B.双肺动脉内膜病理示动脉内膜组织退变,可见坏死、胆固醇结晶及钙化Figure 2. CTPA and intraoperative specimen from pulmonary endarterectomyA.multiple filling defects are present within both pulmonary arteries, with calcification visible in the trunks of both pulmonary arteries, and the main pulmonary artery is dilated, with a diameter of approximately 36 mm(arrow); B.the pathological examination of the bilateral pulmonary artery intima revealed degeneration of the intimal tissue, necrosis, cholesterol crystals, and calcification
CTPA(computed tomography pulmonary angiography): 计算机断层扫描肺动脉造影2. 床旁高渗盐水造影肺灌注EIT技术的应用
采用床旁高渗盐水造影肺灌注EIT技术明确上述2例患者术后的肺通气及灌注情况,在充分镇痛镇静和呼吸机控制通气时,将EIT电极缚带围绕于患者第4肋间水平,在呼气末屏气期间由中心静脉导管“弹丸”式注射10%的氯化钠(NaCl)溶液10 mL,期间采集患者胸腔电阻抗数据(2 min),进行肺通气和血流相关电阻抗数据分析,最后生成肺通气、肺灌注以及通气-血流匹配(VQ Match%)阻抗影像(图 3)。通气分布图显示:白色区域代表通气比例高,黑色区域代表无通气,蓝色区域通气介于二者之间,按“十字交叉”四象限分区,单一象限区域ROI%-通气<15% 可诊断该区域通气不足[1]。血流分布显示:中间近似红黑色区域血流灌注比例高,越往周边绿色区域血流分布越低,象限区域分布10% ≤ROI%-血流<15% 提示轻-中度血流不足,ROI%-血流<10% 提示重度血流不足[2]。通气-血流匹配阻抗影像的建构:以通气和血流图像最大像素值20%作为阈值确定具有通气和血流的区域,将其联合进行比较进一步建构通气-血流匹配图像,相关参数如下:(1)灰色标记为死腔通气分数(Dead Space%),即只有通气但无血流灌注的区域占总区域的百分比,Dead Space%>30%提示死腔通气显著增加[2];(2)红色标记为肺内分流分数(Shunt%),即仅有血流灌注但无通气的区域占总区域的百分比;(3)黄色标记为通气-血流匹配百分比(VQ Match%),即整体既有血流灌注又有通气的区域占总区域的百分比,VQ Match%<60% 提示通气-血流匹配显著失调[2]。
图 3 基于高渗盐水造影肺灌注EIT技术的肺通气分布、血流分布和通气-血流匹配图A.病例1; B.病例2Figure 3. Lung ventilation distribution, blood flow distribution and ventilation-perfusion matching images based on hypertonic saline contrast EIT techniqueA.Case 1;B.Case 2
EIT(electrical impedance tomography): 电阻抗断层成像; GI(global inhomogeneity): 整体不均匀性病例1的通气分布图提示,双肺通气功能未见明显异常;血流分布图可见左下区存在重度血流缺失(ROI%-血流8%),死腔通气分数(35.38%)显著增加;右肺动脉区域通气-血流匹配良好,未见显著血流缺失情况,结合患者术后肺动脉压下降,氧合改善,提示经右肺动脉内膜剥脱术(pulmonary endarterectomy,PEA)后,右肺灌注情况得以改善(图 3A)。病例2的EIT通气分布图各象限区域ROI%-通气均≥15%,血流分布图各象限区域ROI%-血流均≥ 15%,全局通气-血流匹配良好,提示患者经过双侧PEA后,双肺灌注恢复理想(图 3B)。本文2例患者术后床旁高渗盐水造影肺灌注EIT均提示手术再通部位的肺灌注恢复良好,床旁高渗盐水造影肺灌注EIT技术有助早期床旁评估PEA后的肺灌注恢复情况,可及时筛查术后呼吸、循环衰竭病因,协助排查有无原位血栓形成可能,对于指导治疗及评估预后具有潜在价值。
3. 讨论
EIT技术通过局部电极施加微弱电流,感应呼吸过程中胸腔生物电阻抗变化,再利用相应的成像算法监测肺内不同区域的通气功能状态,以实时动态呈现肺断层通气图像[3]。在此基础上,高渗盐水造影肺灌注EIT技术则利用造影剂首次通过成像的原理:分析经“弹丸”式注射的高电导率造影剂(10 mL 10% NaCl)首次通过右心房、右心室和肺循环的显现时序和系列影像以反映区域肺灌注情况[2]。安全性方面,“弹丸”式注射需在1~2 s内将目标液体推注至静脉内,由中心静脉导管注射可避免因高渗透性导致的局部血管刺激。此外,10 mL 10% NaCl溶液注射后可被机体快速平衡,对内环境和容量影响相对较小。目前,暂无床旁高渗盐水造影肺灌注EIT技术导致严重电解质紊乱等不良反应的相关报道[2]。有效性方面,多个动物实验已证实高渗盐水造影肺灌注EIT成像与单光子发射计算机断层扫描(single-photon emission computed tomography,SPECT)肺灌注成像存在相关性和一致性[4-5]。此外,与肺动脉造影、CTPA、SPECT、核素显像、多种惰性气体清除技术、自动肺参数估计器等方法相比,高渗盐水造影肺灌注EIT技术对于重症患者肺灌注监测具有独特优势,主要表现为可床旁操作、应用便捷、非侵入性、无辐射及肾毒性,可动态、重复检查,减少患者转运风险。
目前,多项临床研究表明,高渗盐水造影肺灌注EIT技术可用于肺动脉高压[6]、肺栓塞(pulmonary embolism,PE)[7]、急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)[8]、新型冠状病毒肺炎感染[9-10]等,在评估肺通气、肺血流以及区域通气-血流匹配方面展现出重要应用潜力。近年来,随着床旁高渗盐水造影肺灌注EIT技术的发展,肺栓塞的床旁诊断成为可能[7]。一项前瞻性观察性研究表明[11],当EIT通气血流分布图像计算得出死腔通气分数>30.37%,可有效诊断急性肺栓塞,其特异度(98.6%)和灵敏度(90.9%)均明显高于D-二聚体。
本文报道了高渗盐水EIT肺灌注技术在PEA后患者中的应用,虽缺少术前EIT肺通气、肺血流及通气-血流匹配方面的数据作为参考,但本文2例患者经PEA剥离肺动脉内膜及血栓后,通过高渗盐水造影肺灌注EIT技术验证术后肺灌注恢复区域与手术区域高度吻合,血流动力学及心功能状态改善,预后均良好。慢性血栓栓塞性肺动脉高压(chronic thromboembolic pulmonary hypertension,CTEPH)是急性肺栓塞的一种并发症,属于毛细血管前性肺动脉高压,PEA是其首选治疗方案[12]。对于心外科、肺血管术后等血流动力学不稳定、氧合不佳、造影剂不耐受及转运风险较大的患者,高渗盐水造影肺灌注EIT技术可提供肺通气-血流床旁断层影像信息,并深入到肺局部区域,虽然EIT的空间分辨率较低,但在一定范围内仍具有定位优势,可与传统的血气分析、超声肺动脉压结合,相互印证,更好地为临床决策提供可靠的综合判断。Zarantonello等[13]报道采用EIT技术评价肺灌注缺损,协助诊断肺移植术后患者的肺动脉狭窄情况,为该技术在肺移植术后患者的肺灌注评估提供了临床参考证据。
本文回顾国内外文献,总结床旁肺灌注EIT技术主要适应证如下:(1)呼吸衰竭的病因诊断和疗效判断;(2)急性PE的床旁诊断和抗凝等疗效判断,特别是转运困难或转运高风险的可疑肺栓塞重症患者;(3)通过肺灌注缺失和V/Q异常监测,判断肺血管相关心胸外科术后患者是否存在肺血管狭窄/阻塞;(4)机械通气时进行肺通气/灌注监测,用以评估俯卧位、呼气末正压以及NO吸入等呼吸治疗对肺灌注及通气-血流匹配的影响。
尽管EIT具有较高的临床应用价值,但其也存在一定的局限性。(1)EIT的空间分辨率较低,仅能检测出中心型PE。对于较小的栓塞,其精确度不如CTPA。(2)目前高渗盐水造影肺灌注EIT的实施需在呼吸暂停期进行,适用于能够自行屏气8 s以上的自主呼吸患者或不受自主呼吸影响的机械通气患者,无法耐受屏气(张力性气胸、支气管胸膜瘘等)的患者应用受限[2]。最新一项研究纳入了8例健康猪模型、5例肺损伤猪模型及2例ARDS患者[14],比较“无呼吸暂停”(非屏气)与传统“呼吸暂停”(屏气)的高渗盐水造影肺灌注EIT图像,结果显示两组间无显著统计学差异,提示在稳定通气期间进行非屏气高渗盐水造影肺灌注EIT与屏气肺灌注EIT评估结果相当,但该结论仍需更多大样本研究加以验证。(3)EIT主要为功能成像,可能出现与肺解剖不完全一致的情况。此外,通气-血流匹配是指整体既有血流灌注又有通气的区域占总区域的百分比,有别于绝对意义的通气血流比[V/Q:每分钟肺泡通气量(V)与每分钟肺血流量(Q)的比值]。(4)EIT监测为断层成像,不同EIT电极缚带位置反映不同断层的肺通气功能,动态监测时应在同一平面进行评估。(5)在某些特殊临床情况下应慎用EIT,包括心脏起搏器、心律除颤器置入或正在接受电刺激/电刀治疗,需警惕相关干扰对电阻抗的影响,避免图像质量不佳,影响临床决断;EIT监测电极缚带胸廓区域或局部皮肤感染或有开放伤口;严重胸廓畸形和体质量指数>50 kg/m2时,胸廓畸形和局部脂肪对电阻成像存在影响,结果解读需慎重。
作者贡献:蔡秋燕负责论文撰写及资料收集;刘旺林、程卫、刘晶晶、张超纪、刘剑州、隆云、何怀武参与疾病诊治;何怀武指导论文修订。利益冲突:所有作者均声明不存在利益冲突 -
图 1 肺动脉CTA及肺动脉内膜剥脱术中标本
A.可见主肺动脉增宽,直径约36 mm,右肺动脉主干可见充盈缺损,双肺动脉分支多发充盈缺损(箭头);B.右肺动脉、各分支内膜及血栓,病理符合血栓
Figure 1. CTA of pulmonary artery and intraoperative specimen from pulmonary endarterectomy
A.the main pulmonary artery is dilated with a diameter of approximately 36 mm, there is a filling defect visible in the right pulmonary artery trunk, and multiple filling defects are present in the branches of both pulmonary arteries(arrow); B.the intima and thrombus of the right pulmonary artery and its branches, pathology confirms the presence of thrombus
CTA(computed tomography angiography): 计算机断层扫描血管造影图 2 CTPA及肺动脉内膜剥脱术中标本
A.双肺动脉多发充盈缺损,双肺动脉主干可见钙化,主肺动脉增宽,直径约36 mm(箭头);B.双肺动脉内膜病理示动脉内膜组织退变,可见坏死、胆固醇结晶及钙化
Figure 2. CTPA and intraoperative specimen from pulmonary endarterectomy
A.multiple filling defects are present within both pulmonary arteries, with calcification visible in the trunks of both pulmonary arteries, and the main pulmonary artery is dilated, with a diameter of approximately 36 mm(arrow); B.the pathological examination of the bilateral pulmonary artery intima revealed degeneration of the intimal tissue, necrosis, cholesterol crystals, and calcification
CTPA(computed tomography pulmonary angiography): 计算机断层扫描肺动脉造影图 3 基于高渗盐水造影肺灌注EIT技术的肺通气分布、血流分布和通气-血流匹配图
A.病例1; B.病例2
Figure 3. Lung ventilation distribution, blood flow distribution and ventilation-perfusion matching images based on hypertonic saline contrast EIT technique
A.Case 1;B.Case 2
EIT(electrical impedance tomography): 电阻抗断层成像; GI(global inhomogeneity): 整体不均匀性 -
[1] He H W, Chi Y, Long Y, et al. Three broad classifications of acute respiratory failure etiologies based on regional ventilation and perfusion by electrical impedance tomography: a hypothesis-generating study[J]. Ann Intensive Care, 2021, 11(1): 134. DOI: 10.1186/s13613-021-00921-6
[2] 何怀武, 隆云, 池熠, 等. 床旁高渗盐水造影肺灌注电阻抗断层成像的技术规范与临床应用[J]. 中华医学杂志, 2021, 101(15): 1097-1101. He H W, Long Y, Chi Y, et al. Technology specification of bedside hypertonic saline-contrast electrical impedance tomography of lung perfusion and clinical application[J]. Natl Med J China, 2021, 101(15): 1097-1101.
[3] Frerichs I, Amato M B P, Van Kaam A H, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group[J]. Thorax, 2017, 72(1): 83-93. DOI: 10.1136/thoraxjnl-2016-208357
[4] Hentze B, Muders T, Luepschen H, et al. Regional lung ventilation and perfusion by electrical impedance tomography compared to single-photon emission computed tomography[J]. Physiol Meas, 2018, 39(6): 065004. DOI: 10.1088/1361-6579/aac7ae
[5] Hinz J, Neumann P, Dudykevych T, et al. Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs[J]. Chest, 2003, 124(1): 314-322. DOI: 10.1378/chest.124.1.314
[6] Smit H J, Vonk-Noordegraaf A, Boonstra A, et al. Assessment of the pulmonary volume pulse in idiopathic pulmonary arterial hypertension by means of electrical impedance tomography[J]. Respiration, 2006, 73(5): 597-602. DOI: 10.1159/000088694
[7] He H W, Long Y, Frerichs I, et al. Detection of acute pulmonary embolism by electrical impedance tomography and saline bolus injection[J]. Am J Respir Crit Care Med, 2020, 202(6): 881-882. DOI: 10.1164/rccm.202003-0554IM
[8] Pavlovsky B, Pesenti A, Spinelli E, et al. Effects of PEEP on regional ventilation-perfusion mismatch in the acute respiratory distress syndrome[J]. Crit Care, 2022, 26(1): 211. DOI: 10.1186/s13054-022-04085-y
[9] Mauri T, Spinelli E, Scotti E, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019[J]. Crit Care Med, 2020, 48(8): 1129-1134. DOI: 10.1097/CCM.0000000000004386
[10] Fossali T, Pavlovsky B, Ottolina D, et al. Effects of prone position on lung recruitment and ventilation-perfusion matching in patients with COVID-19 acute respiratory distress syndrome: a combined CT scan/electrical impedance tomography study[J]. Crit Care Med, 2022, 50(5): 723-732. DOI: 10.1097/CCM.0000000000005450
[11] He H W, Chi Y, Long Y, et al. Bedside evaluation of pulmonary embolism by saline contrast electrical impedance tomography method: a prospective observational study[J]. Am J Respir Crit Care Med, 2020, 202(10): 1464-1468. DOI: 10.1164/rccm.202005-1780LE
[12] Galiè N, Humbert M, Vachiery J L, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT)[J]. Eur Heart J, 2016, 37(1): 67-119. DOI: 10.1093/eurheartj/ehv317
[13] Zarantonello F, Sella N, Pettenuzzo T, et al. Bedside detection and follow-up of pulmonary artery stenosis after lung transplantation[J]. Am J Respir Crit Care Med, 2021, 204(9): 1100-1102. DOI: 10.1164/rccm.202101-0229IM
[14] Victor M, Xin Y, Alcala G, et al. First-pass kinetics model to estimate pulmonary perfusion by electrical impedance tomography during uninterrupted breathing[J]. Am J Respir Crit Care Med, 2024, 209(10): 1263-1265. DOI: 10.1164/rccm.202310-1919LE