-
摘要:
多黏菌素是一种环肽类抗菌药物,近年来随着多重耐药菌检出率不断攀升,多黏菌素类药物已成为治疗革兰阴性菌感染的最后手段。异质性耐药是指同一菌株中存在对抗菌药物敏感性不同的亚群,临床常规检测无法识别,感染异质性耐药菌株可导致临床治疗失败。在临床常见的革兰阴性菌中,PhoPQ和PmrAB双组分系统突变是导致多黏菌素异质性耐药的关键因素。本文围绕常见的革兰阴性菌,梳理其对多黏菌素异质性耐药机制研究进展,以期为快速准确检测异质性耐药菌株新技术的开发和临床治疗方案的制订提供更多参考依据。
Abstract:Polymyxins, a class of cyclic peptide antibiotics, have become the last line of defense against gram-negative bacterial infections as the number of multidrug-resistant bacteria continues to rise. Heteroresistance refers to the presence of subpopulations within the same strain with varying sensitivities to antibiotics, which cannot be detected by standard clinical tests and may result in treatment failure. In several common gram-negative bacteria, mutations in the PhoPQ and PmrAB two-component systems are key contributors to polymyxin heteroresistance. This review aims to summarize recent research on the mechanisms of polymyxin heteroresistance in gram-negative bacteria, so as to provide insights for developing rapid detection methods and improving clinical treatment strategies.
-
Keywords:
- polymyxins /
- heteroresistance /
- gram-negative bacteria /
- molecular mechanism
-
抗菌药物耐药是全球范围内的重大公共卫生安全问题,自20世纪70年代起革兰氏阴性菌(gram-negative bacteria, GNB)对不同种类抗菌药物耐药性的急速增加,临床可选择的抗菌药物逐渐受限[1],尤其近年来随着多重耐药菌(multidrug-resistant, MDR)和广泛耐药菌(extensively drug-resistant, XDR)的流行,许多患者即将面临无药可用的困境[2]。多黏菌素曾被用于治疗GNB感染,但因存在明显的肾毒性和神经毒性一度退出临床应用,随着细菌耐药形势的不断严峻,其重新得到审视并成为治疗GNB,尤其是耐碳青霉病原菌(carbapenem-resistant organism, CRO) 感染的最后一道防线[3-8]。
异质性耐药是指某个单一分离菌株在培养的群体中存在对某种抗菌药物敏感性不同的亚群,若一部分亚群的最小抑菌浓度(minimal inhibitory concentra-tion,MIC)值处于敏感折点以下,而另一部分亚群具有较高的MIC值(即存在耐药性),则该菌株被称为异质性耐药株[9]。由于多黏菌素的治疗窗较窄,过量用药易产生肾毒性和神经毒性,临床常低剂量使用,在该药物的作用下一些耐药亚群将被选择,进而导致治疗失败[10]。目前常规药敏方法无法检测异质性耐药株,而金标准群体谱分析(population analysis profiling,PAP)成本高、耗时长,无法用于临床常规检测。此外,由于多黏菌素类药物异质性耐药机制尚不明确,不同地区、菌种间异质性耐药率差异显著,因此本文围绕几种常见的GNB,阐述其对多黏菌素异质性耐药的机制,旨在为研发检测异质性耐药菌株的新技术提供思路。
1. 多黏菌素概述
多黏菌素是一类由多黏类芽孢杆菌产生的环寡肽抗菌药物,包括A~E 5种类型,其中多黏菌素B和多黏菌素E(黏菌素)是获批上市可用于临床的多黏菌素类药物[1],二者均属于窄谱药物且抗菌谱基本一致,对大部分需氧GNB具有强大的抗菌活性。同时,非发酵菌如铜绿假单胞菌、鲍曼不动杆菌、嗜麦芽窄食单胞菌及肠杆菌科细菌包括耐碳青霉烯肠杆菌科细菌(carbapenem-resistant Enterobacteriaceae, CRE)也对其高度敏感[4]。此外,研究证实多黏菌素对革兰阳性菌如金黄色葡萄球菌[5]、无乳链球菌[6]等亦具有一定的抗菌活性。CHINET中国细菌耐药监测网数据显示,2021年临床分离的肠杆菌目细菌对多黏菌素E和多黏菌素B的耐药率分别为7.6%和8.8%,整体表现为较低的耐药水平[7]。由于多黏菌素是治疗CRO感染的最后选择,一旦菌株对多黏菌素耐药,临床将面临无药可用的局面,且近年来质粒介导的多黏菌素耐药基因(mobile colistin resistance,mcr)在多国被检出,具有水平传播造成广泛耐药的可能[8],因此正确使用多黏菌素类药物并加强耐药性防范刻不容缓。
2. 多黏菌素类药物抗菌作用机制
多黏菌素B和多黏菌素E具有相似的分子结构,二者的抗菌作用机制基本一致,对GNB的主要作用位点是细胞壁上的脂多糖(lipopolysaccharide, LPS)[1]。多黏菌素分子的二羟基丁酸基团带正电荷,与LPS的亲和力是二价阳离子的2~3倍,通过与LPS上带负电荷的磷酸根发生极性相互作用,竞争性取代镁离子(Mg2+)和钙离子(Ca2+),可破坏LPS的正常结构,导致细菌外膜与内膜相融合,通透性增加,细胞质内容物外流,最终导致细菌死亡[1]。
除上述直接抗菌活性外,多黏菌素类药物也可通过其他途径发挥杀菌或治疗作用。(1)囊泡接触途径: 即多黏菌素分子在穿过细胞外膜后可与阴离子磷脂囊泡相结合,导致外膜的内小叶与细胞质膜的外小叶发生融合,继而导致磷脂丢失和细胞死亡。(2)抗内毒素活性: LPS也是GNB内毒素的主要成分,多黏菌素通过与LPS分子相结合或中和,可抑制内毒素活性,从而减少细胞因子的产生并预防炎症因子风暴的发生。(3)羟自由基途径: 多黏菌素E通过产生活性氧(reactive oxygen species, ROS)可引起细菌DNA、脂质和蛋白质损伤,最终诱发细胞死亡。(4)抑制呼吸酶途径: 在大肠埃希菌、鲍曼不动杆菌、肺炎克雷伯菌等菌种中,多黏菌素可抑制其重要的呼吸酶(如还原型辅酶Ⅰ氧化酶等),导致细菌死亡[11]。
3. 常见GNB对多黏菌素异质性耐药的机制
当前多黏菌素耐药机制尚未完全明晰,主要是通过影响多黏菌素类药物直接抗菌活性的作用位点所引起,已知的耐药机制可大致分为染色体编码的多黏菌素耐药和由质粒介导的多黏菌素耐药。前者主要通过一系列与LPS合成相关的基因突变导致LPS携带电荷减少,多黏菌素与之结合能力下降,进而发生耐药,属于由染色体介导的垂直转移;后者主要是通过含有mcr基因的质粒在菌株中水平转移引起。
3.1 鲍曼不动杆菌
鲍曼不动杆菌为临床常见的GNB,是造成医院感染的主要病原体之一,其临床治疗首选碳青霉烯类药物,近年来耐碳青霉烯鲍曼不动杆菌(carbapenem-resistant Acinetobacter Baumannii, CRAB)检出率明显升高,多黏菌素类逐渐成为替代药物用于鲍曼不动杆菌感染的治疗,有关多黏菌素异质性耐药的研究也更多集中于此类耐药形势较为严峻的菌种。有研究显示,CRAB中超60%的菌株对多黏菌素E表现为异质性耐药,并在含药条件下诱导后其中80.2%的菌株可转变为稳定耐药;与完全敏感的菌株相比,对多黏菌素E异质性耐药的CRAB感染者14 d死亡率显著增加[12]。一项纳入15篇研究的Meta分析显示,鲍曼不动杆菌对多黏菌素E的异质性耐药率为33%(95% CI:16%~53%, 极差:0~100%)[13]。
目前研究报道的鲍曼不动杆菌多黏菌素异质性耐药机制主要与PmrAB双组分系统(two-component system, TCS)发生突变相关。PmrB是一种细胞膜感应激酶,在感应到细胞外界条件发生改变,如金属离子减少、pH变化时,其将被激活并正向调节下游PmrA和PmrC表达,PmrC是一种磷酸乙醇胺转移酶,可促使细胞膜上脂质A被磷酸乙醇胺(phosphoethanolamine,pEtN)修饰并减少其携带的负电荷,从而降低多黏菌素与细胞膜结合的能力,表现为MIC升高、对多黏菌素稳定耐药和异质性耐药。多项研究已证实[14-16],PmrAB不同位点突变可导致不同的表型,稳定耐药株与异质性耐药株均存在PmrAB突变,但二者的突变位点不同,前者的突变位点多位于PmrB的组胺酸激酶作用区,后者的突变位点多位于非功能区。PmrB表达上调是鲍曼不动杆菌对多黏菌素E稳定耐药与异质性耐药的共同特点。有研究证实,鲍曼不动杆菌对替加环素异质性耐药与多黏菌素E异质性耐药呈高度相关性,绝大多数菌株对此两种药物均表现为异质性,且其中一种药物的耐药亚群对另一药物表现为敏感,二者联合使用则无异质性耐药亚群出现,为异质性耐药鲍曼不动杆菌感染提供了新的治疗思路[16]。由此可见,鲍曼不动杆菌对多黏菌素E的异质性耐药与PmrAB TCS突变密切相关,联合使用抗菌药物可能是治疗异质性耐药菌株感染的新策略。此外,也有研究表明鲍曼不动杆菌对多黏菌素异质性耐药的机制与LpxACD等基因突变相关,该基因与脂质A的生物合成相关,突变后可导致细菌生长缓慢甚至完全丢失LPS,诱发异质性耐药。少量文献显示,外排泵相关基因(如adeB)表达上调也参与鲍曼不动杆菌产生异质性耐药机制的调节[17]。
3.2 铜绿假单胞菌
与鲍曼不动杆菌相似,耐碳青霉烯铜绿假单胞菌(carbapenem-resistant Pseudomonas aeruginosa, CRPA)也是造成医院感染的主要原因,且近年来其分离率呈逐年上升趋势。在一项纳入143株常规药敏结果显示对多黏菌素E敏感CRPA的研究中,26%的菌株实为异质性耐药菌株,但其与患者90 d死亡率无统计学关联。该现象可能与标本类型较复杂、无菌部位感染病例少(15%)有关[18]。在铜绿假单胞菌中,除上述提到的PmrAB TCS外,PhoPQ TCS也参与对多黏菌素异质性耐药过程的调控[19],其可通过正向调节下游arn操纵子参与合成4-脱氧氨基阿拉伯糖胞苷(4-amino-4-deoxy-L-arabinose, L-Ara4N),从而修饰脂质A,以减少菌株与多黏菌素的结合。此外,铜绿假单胞菌中还存在其他3种与多黏菌素耐药相关的TCS,分别为ColR/ColS、ParR/ParS和CprR/CprS[20]。Lin等[21]研究表明,铜绿假单胞菌多黏菌素稳定耐药株和异质性耐药株中均存在PmrB、PhoQ、ParR和CprS点突变,但位点不同。Kapel等[22]研究发现,约30%的铜绿假单胞菌敏感菌株在近折点(2 mg/L)的多黏菌素E浓度下孵育24 h以上可进化出异质性耐药群体,且异质性耐药的铜绿假单胞菌中存在2个PmrB突变热点(V28A和P254S);15株异质性菌株中有8株表现为V28A和P254S单点突变,1株为脂蛋白合成相关基因拷贝数增加,1株为Ⅱ型分泌系统蛋白拷贝数增加,余5株异质性耐药菌株与敏感菌株无单核苷酸多态性和基因扩增差异,但这些突变在异质性耐药中的具体作用尚需进一步研究。
3.3 肺炎克雷伯菌
肺炎克雷伯菌主要分布于人体呼吸道和肠道,是一种条件致病菌,可引发肺炎、支气管炎、肠炎等,其中耐碳青霉烯肺炎克雷伯菌(carbapenem-resistant Klebsiella pneumoniae, CRKP)感染者死亡率高达40%~50%[23]。Wang等[24]研究表明,71.9%(69/96)的CRKP对多黏菌素呈现异质性耐药。在小鼠腹腔感染模型中,多黏菌素E对异质性耐药的CRKP治疗无效,进而导致小鼠死亡[25]。在肺炎克雷伯菌对多黏菌素稳定耐药和异质性耐药机制中同样存在PmrAB和PhoPQ TCS突变,其可导致下游基因表达上调,使脂质A被pEtN或L-Ara4N修饰,从而减少与多黏菌素的结合。此外,mgrB是PhoPQ TCS中的负性调控因子,该基因发生点突变、插入或表达下调均可导致下游系统被活化,从而产生异质性耐药[25-27]。Jayol等[28]研究表明,PhoP单位点突变(D191Y)即可导致菌株由敏感转变为异质性耐药;该团队还发现异质性耐药菌株的敏感亚群也存在该突变,且PhoP上合并存在25 bp缺失有助于使该蛋白失活并恢复敏感表型。另有研究发现,异质性耐药表型可被外排泵抑制剂所逆转,即耐药亚群可在外排泵抑制剂的作用下恢复为敏感菌株[29],该现象主要是由AcrAB-TolC及OqxAB外排泵系统在耐药亚群中表达上调所致[30]。此外,有研究者证实lpxM、yciM等与细胞膜脂质合成相关的基因突变可同时导致菌株药敏表型和菌落形态变化,敏感亚群为黏液型菌落,而耐药亚群为非黏液型[26, 31]。另有一种DNA修复酶mutS编码基因突变后的菌株对多黏菌素呈现异质性耐药,且在合并PhoPQ或PmrAB突变时表现为稳定耐药[32]。因此,肺炎克雷伯菌对多黏菌素类药物的耐药性与其复杂的TCS突变密切相关,特别是外排泵抑制剂的潜在治疗作用值得进一步研究,以应对异质性耐药的挑战。
3.4 阴沟肠杆菌复合体
阴沟肠杆菌复合体(Enterobacter cloacae complex, ECC)是肠杆菌属中引起医院感染最主要的菌种,其包含多种物种,如阴沟肠杆菌(E.cloacae)、霍氏肠杆菌(E.hormaechei)和阿氏肠杆菌(E.asburiae)等,依据hsp60序列的不同可将ECC分为12个簇。CRE中ECC分离率居第3位(7.1%),仅次于大肠埃希菌和肺炎克雷伯菌。目前已有临床感染多黏菌素异质性耐药的ECC菌株报道,且异质性耐药菌株在药物作用下培养可导致耐药亚群比例升高[33],经血流感染后可导致小鼠死亡[10]。由于多黏菌素异质性耐药ECC菌株中的耐药亚群对宿主固有免疫(包括溶菌酶、活性氧等)具有较强抵抗,因此宿主感染异质性菌株后可引起耐药亚群在体内增多,增加治疗难度[10]。
ECC不同菌种及不同簇(cluster)之间的异质性耐药特征存有差异,全部或大多数Enterobacter roggenkampii(簇Ⅳ)、Enterobacter kobei(簇Ⅱ)、Enterobacter cloacae subspecies(簇Ⅺ/Ⅻ)、Enterobacter chuandaensis(簇Ⅲ/Ⅸ)对多黏菌素表现为异质性耐药;而Enterobacter hormaechei subspecies(簇Ⅷ/Ⅵ)及Enterobacter ludwigii(簇Ⅴ)则无异质性菌株;簇Ⅰ及簇Ⅲ的菌株在多黏菌素E异质性耐药方面无明显特征[34-35]。
ECC对于多黏菌素敏性降低同样是由于arn操纵子活化所引起[35],其可对细菌外脂质进行修饰从而阻止与药物的结合,该过程亦受PhoPQ TCS的调控,且PhoQ相较于PhoP发挥更为重要的作用[36]。与其他肠杆菌科细菌不同,在ECC中PmrAB与异质性耐药的产生无关[34, 37]。ECC也存在主动外排机制,多黏菌素异质性耐药菌株表现为AcrAB-TolC外排泵过表达并受soxRS调节因子的正向调控[38-39]。此外,ECC中存在CcrAB的同源基因ECL_ 01761-ECL_ 01762,其对AcrAB-TolC外排泵系统同样具有调控作用[40]。ECC对多黏菌素类药物的异质性耐药性揭示了不同菌种和簇在耐药机制上的复杂性,未来需针对特定菌种制订差异化治疗方案,以提高临床疗效并减少耐药亚群扩散。
3.5 大肠埃希菌
目前对于大肠埃希菌的研究主要集中于多黏菌素稳定耐药的分子机制,而异质性耐药的报道较少见。从耐药机制来看,大肠埃希菌与其他肠杆菌科相似,可大致分为主动外排机制(AcrAB)[41]、耐药质粒的传播(mcr基因)[42-43]及LPS修饰,其中LPS修饰包括PhoPQ-PmrAB TCS突变[44-46]和EptA、EptB、EptC等磷酸乙醇胺转移酶活化[47]。针对大肠埃希菌多黏菌素异质性耐药的研究发现,50%(2/4)的异质性菌株存在PmrB突变(P95L),所有异质性耐药菌株均存在PmrC表达上调,且异质性表型可被外排泵抑制剂所逆转[48];超半数(11/17)的异质性耐药亚群与亲代相比存在PmrAB或PhoPQ突变,唯一稳定耐药亚群的PmrB HAMP功能区存在R93P突变[49]。
4. 小结
作为治疗GNB感染的最后一道防线,多黏菌素类药物近年来受到了临床医生和科研人员越来越多的关注,而异质性耐药菌的出现对临床用药造成了极大影响,且临床常用的药敏方法如微量肉汤稀释法等无法检测异质性耐药,而E-test法、纸片法等检测异质性耐药的敏感性较为有限,给临床治疗带来了巨大挑战。越来越多的研究证明,异质性耐药菌株感染可导致不恰当的用药策略并使治疗失败,迫切需要发展快捷准确的异质性耐药检测新技术,以期为临床决策提供有用信息。
从现有研究可以看出,临床常见GNB对多黏菌素类异质性耐药机制主要围绕PhoPQ、PmrAB 2个TCS为核心,当该TCS或其上游基因突变导致TCS活化,正向调控下游修饰酶表达时,可使脂质A被pEtN或L-Ara4N所修饰,进而导致耐药亚群产生;此外多黏菌素类异质性耐药与脂质合成及外排泵系统表达也具有一定相关性。不同研究中分离的耐药亚群与敏感亚群相比未必存在稳定的遗传突变,也可能是通过基因串联扩增实现MIC变化。与多黏菌素类药物稳定耐药相比,异质性耐药的发生机制存在诸多异同,当合并多个基因突变时可导致菌株由异质性耐药向稳定性耐药转变,因此有研究者将异质性耐药视为稳定性耐药的前一阶段。在临床用药过程中,多黏菌素在早期快速杀灭大部分敏感亚群后,耐药亚群可快速适应药物压力并大量增殖,导致细菌再生[15]。这些耐药亚群通常具有适应性代价,在无药物压力的环境中生长较为缓慢,使无药物作用时的敏感亚群占据主要群体。耐药亚群的适应性代价为临床联合使用多黏菌素类药物提供了依据,如多黏菌素与碳青霉烯类药物通常具有协同作用[50],与四环素或米诺环素及阿米卡星或庆大霉素联用对于异质性耐药菌株也具有良好的杀菌作用[24]。本文概述了多黏菌素类药物在临床常见GNB中异质性耐药的机制,有助于提高临床医生运用多黏菌素类药物时对异质性耐药菌株的防范意识,为进一步探究异质性耐药机制提供基础,并为未来开发更有效、毒性更小的多黏菌素衍生物提供助力。
作者贡献:李琰冰负责文献收集、分析及论文撰写;周梦兰、徐英春负责论文审阅。利益冲突:所有作者均声明不存在利益冲突 -
[1] Falagas M E, Kasiakou S K. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections[J]. Clin Infect Dis, 2005, 40(9): 1333-1341. DOI: 10.1086/429323
[2] Sun J, Zhang H M, Liu Y H, et al. Towards understanding MCR-like colistin resistance[J]. Trends Microbiol, 2018, 26(9): 794-808. DOI: 10.1016/j.tim.2018.02.006
[3] Bialvaei A Z, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance[J]. Curr Med Res Opin, 2015, 31(4): 707-721. DOI: 10.1185/03007995.2015.1018989
[4] Kaye K S, Pogue J M, Tran T B, et al. Agents of last resort: polymyxin resistance[J]. Infect Dis Clin North Am, 2016, 30(2): 391-414. DOI: 10.1016/j.idc.2016.02.005
[5] Antonic V, Stojadinovic A, Zhang B X, et al. Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus[J]. Infect Drug Resist, 2013, 6: 175-186.
[6] Mlynarcik P, Kolar M. Molecular mechanisms of polymyxin resistance and detection of mcr genes[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2019, 163(1): 28-38. DOI: 10.5507/bp.2018.070
[7] 胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5): 521-530. Hu F P, Guo Y, Zhu D M, et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in 2021[J]. Chin J Infect Chemother, 2022, 22(5): 521-530.
[8] MacNair C R, Stokes J M, Carfrae L A, et al. Overcoming mcr-1 mediated colistin resistance with colistin in combina-tion with other antibiotics[J]. Nat Commun, 2018, 9(1): 458. DOI: 10.1038/s41467-018-02875-z
[9] El-Halfawy O M, Valvano M A. Antimicrobial heteroresistance: an emerging field in need of clarity[J]. Clin Microbiol Rev, 2015, 28(1): 191-207. DOI: 10.1128/CMR.00058-14
[10] Band V I, Crispell E K, Napier B A, et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae[J]. Nat Microbiol, 2016, 1(6): 16053. DOI: 10.1038/nmicrobiol.2016.53
[11] El-Sayed Ahmed M A E, Zhong L L, Shen C, et al. Colistin and its role in the Era of antibiotic resistance: an extended review (2000—2019)[J]. Emerg Microbes Infect, 2020, 9(1): 868-885. DOI: 10.1080/22221751.2020.1754133
[12] Kon H, Hameir A, Nutman A, et al. Prevalence and clinical consequences of colistin heteroresistance and evolution into full resistance in carbapenem-resistant Acinetobacter baumannii[J]. Microbiol Spectr, 2023, 11(3): e0509322. DOI: 10.1128/spectrum.05093-22
[13] Karakonstantis S, Saridakis I. Colistin heteroresistance in Acinetobacter spp. : systematic review and meta-analysis of the prevalence and discussion of the mechanisms and potential therapeutic implications[J]. Int J Antimicrob Agents, 2020, 56(2): 106065. DOI: 10.1016/j.ijantimicag.2020.106065
[14] Charretier Y, Diene S M, Baud D, et al. Colistin heteroresistance and involvement of the PmrAB regulatory system in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2018, 62(9): e00788-18.
[15] Rodriguez C H, Traglia G, Bastias N, et al. Discrepancies in susceptibility testing to colistin in Acinetobacter baumannii: the influence of slow growth and heteroresistance[J]. Int J Antimicrob Agents, 2019, 54(5): 587-591. DOI: 10.1016/j.ijantimicag.2019.08.010
[16] Jo J, Kwon K T, Ko K S. Multiple heteroresistance to tigecycline and colistin in Acinetobacter baumannii isolates and its implications for combined antibiotic treatment[J]. J Biomed Sci, 2023, 30(1): 37. DOI: 10.1186/s12929-023-00914-6
[17] Chen L J, Lin J, Lu H, et al. Deciphering colistin heteroresistance in Acinetobacter baumannii clinical isolates from Wenzhou, China[J]. J Antibiot (Tokyo), 2020, 73(7): 463-470. DOI: 10.1038/s41429-020-0289-2
[18] Howard-Anderson J, Davis M, Page A M, et al. Preval-ence of colistin heteroresistance in carbapenem-resistant Pseudomonas aeruginosa and association with clinical outcomes in patients: an observational study[J]. J Antimicrob Chemother, 2022, 77(3): 793-798. DOI: 10.1093/jac/dkab461
[19] Miller A K, Brannon M K, Stevens L, et al. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients[J]. Antimicrob Agents Chemother, 2011, 55(12): 5761-5769. DOI: 10.1128/AAC.05391-11
[20] Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes[J]. Clin Microbiol Rev, 2017, 30(2): 557-596. DOI: 10.1128/CMR.00064-16
[21] Lin J, Xu C Q, Fang R C, et al. Resistance and heteroresistance to colistin in Pseudomonas aeruginosa isolates from Wenzhou, China[J]. Antimicrob Agents Chemother, 2019, 63(10): e00556-19.
[22] Kapel N, Caballero J D, MacLean R C. Localized pmrB hypermutation drives the evolution of colistin heteroresistance[J]. Cell Rep, 2022, 39(10): 110929. DOI: 10.1016/j.celrep.2022.110929
[23] Patel G, Huprikar S, Factor S H, et al. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies[J]. Infect Control Hosp Epidemiol, 2008, 29(12): 1099-1106. DOI: 10.1086/592412
[24] Wang Y F, Ma X Q, Zhao L L, et al. Heteroresistance is associated with in vitro regrowth during colistin treatment in carbapenem-resistant Klebsiella pneumoniae[J]. Front Microbiol, 2022, 13: 868991. DOI: 10.3389/fmicb.2022.868991
[25] Band V I, Satola S W, Burd E M, et al. Carbapenem-resistant Klebsiella pneumoniae exhibiting clinically undetected colistin heteroresistance leads to treatment failure in a murine model of infection[J]. mBio, 2018, 9(2): e02448-17.
[26] Bardet L, Baron S, Leangapichart T, et al. Deciphering heteroresistance to colistin in a Klebsiella pneumoniae isolate from Marseille, France[J]. Antimicrob Agents Chemother, 2017, 61(6): e00356-17.
[27] Sánchez-León I, Pérez-Nadales E, Marín-Sanz J A, et al. Heteroresistance to colistin in wild-type Klebsiella pneum-oniae isolates from clinical origin[J]. Microbiol Spectr, 2023, 11(6): e0223823. DOI: 10.1128/spectrum.02238-23
[28] Jayol A, Nordmann P, Brink A, et al. Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system[J]. Antimicrob Agents Chemother, 2015, 59(5): 2780-2784. DOI: 10.1128/AAC.05055-14
[29] Weng YS, Wang T, Huang B, et al. Multicenter study of colistin heteroresistance in carbapenem-resistant Klebsiella pneumoniae strains in China[J]. Microbiol Spectr, 2023, 11(4): e0221822. DOI: 10.1128/spectrum.02218-22
[30] Wang T, Wang X J, Chen S M, et al. Emergence of colistin-heteroresistant and carbapenem-resistant hyperviru-lent Klebsiella pneumoniae[J]. J Glob Antimicrob Resist, 2023, 35: 237-243. DOI: 10.1016/j.jgar.2023.09.020
[31] Halaby T, Kucukkose E, Janssen A B, et al. Genomic characterization of colistin heteroresistance in Klebsiella pneumoniae during a nosocomial outbreak[J]. Antimicrob Agents Chemother, 2016, 60(11): 6837-6843. DOI: 10.1128/AAC.01344-16
[32] Sato T, Wada T, Nishijima S, et al. Emergence of the novel aminoglycoside acetyltransferase variant aac(6')-Ib-D179Y and acquisition of colistin heteroresistance in carbapenem-resistant Klebsiella pneumoniae due to a disrupting mutation in the DNA repair enzyme MutS[J]. mBio, 2020, 11(6): e01954-20.
[33] Napier B A, Band V, Burd E M, et al. Colistin heteroresistance in Enterobacter cloacae is associated with cross-resistance to the host antimicrobial lysozyme[J]. Antimicrob Agents Chemother, 2014, 58(9): 5594-5597. DOI: 10.1128/AAC.02432-14
[34] Guérin F, Isnard C, Sinel C, et al. Cluster-dependent colistin hetero-resistance in Enterobacter cloacae complex[J]. J Antimicrob Chemother, 2016, 71(11): 3058-3061. DOI: 10.1093/jac/dkw260
[35] Fukuzawa S, Sato T, Aoki K, et al. High prevalence of colistin heteroresistance in specific species and lineages of Enterobacter cloacae complex derived from human clinical specimens[J]. Ann Clin Microbiol Antimicrob, 2023, 22(1): 60. DOI: 10.1186/s12941-023-00610-1
[36] Doijad S P, Gisch N, Frantz R, et al. Resolving colistin resistance and heteroresistance in Enterobacter species[J]. Nat Commun, 2023, 14(1): 140. DOI: 10.1038/s41467-022-35717-0
[37] Kang K N, Klein D R, Kazi M I, et al. Colistin heteroresistance in Enterobacter cloacae is regulated by PhoPQ-dependent 4-amino-4-deoxy-l-arabinose addition to lipid A[J]. Mol Microbiol, 2019, 111(6): 1604-1616. DOI: 10.1111/mmi.14240
[38] Telke A A, Olaitan A O, Morand S, et al. soxRS induces colistin hetero-resistance in enterobacter asburiae and enterobacter cloacae by regulating the acrAB-tolC efflux pump[J]. J Antimicrob Chemother, 2017, 72(10): 2715-2721. DOI: 10.1093/jac/dkx215
[39] Liu S X, Fang R C, Zhang Y, et al. Characterization of resistance mechanisms of Enterobacter cloacae complex co-resistant to carbapenem and colistin[J]. BMC Microbiol, 2021, 21(1): 208. DOI: 10.1186/s12866-021-02250-x
[40] Pantel L, Guérin F, Serri M, et al. Exploring cluster-dependent antibacterial activities and resistance pathways of NOSO-502 and colistin against Enterobacter cloacae complex species[J]. Antimicrob Agents Chemother, 2022, 66(11): e0077622. DOI: 10.1128/aac.00776-22
[41] Liu J, Huang Z Y, Ruan B, et al. Quantitative proteomic analysis reveals the mechanisms of polymyxin B toxicity to Escherichia coli[J]. Chemosphere, 2020, 259: 127449. DOI: 10.1016/j.chemosphere.2020.127449
[42] Jayol A, Nordmann P, André C, et al. Increased colistin resistance upon acquisition of the plasmid-mediated mcr-1 gene in Escherichia coli isolates with chromosomally encoded reduced susceptibility to polymyxins[J]. Int J Antimicrob Agents, 2017, 50(3): 503-504. DOI: 10.1016/j.ijantimicag.2017.07.006
[43] Kieffer N, Royer G, Decousser J W, et al. Mcr-9, an inducible gene encoding an acquired phosphoethanolamine transferase in Escherichia coli, and its origin[J]. Antimicrob Agents Chemother, 2019, 63(9): e00965-19.
[44] Sato T, Shiraishi T, Hiyama Y, et al. Contribution of novel amino acid alterations in PmrA or PmrB to colistin resistance in mcr-negative Escherichia coli clinical isolates, including major multidrug-resistant lineages O25b: H4-ST131-H30Rx and non-x[J]. Antimicrob Agents Chemother, 2018, 62(9): e00864-18.
[45] Phan M D, Nhu N T K, Achard M E S, et al. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli[J]. J Antimicrob Chemother, 2017, 72(10): 2729-2736. DOI: 10.1093/jac/dkx204
[46] Cannatelli A, Giani T, Aiezza N, et al. An allelic variant of the PmrB sensor kinase responsible for colistin resistance in an Escherichia coli strain of clinical origin[J]. Sci Rep, 2017, 7(1): 5071. DOI: 10.1038/s41598-017-05167-6
[47] Salazar J, Alarcón M, Huerta J, et al. Phosphoethanola-mine addition to the Heptose Ⅰ of the Lipopolysaccharide modifies the inner core structure and has an impact on the binding of Polymyxin B to the Escherichia coli outer membrane[J]. Arch Biochem Biophys, 2017, 620: 28-34. DOI: 10.1016/j.abb.2017.03.008
[48] Liao W L, Lin J, Jia H Y, et al. Resistance and heteroresistance to colistin in Escherichia coli isolates from Wenzhou, China[J]. Infect Drug Resist, 2020, 13: 3551-3561. DOI: 10.2147/IDR.S273784
[49] Kuang Q H, He D D, Sun H R, et al. R93P substitution in the PmrB HAMP domain contributes to colistin heteroresistance in Escherichia coli isolates from swine[J]. Antimicrob Agents Chemother, 2020, 64(11): e01509-20.
[50] Zusman O, Avni T, Leibovici L, et al. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems[J]. Antimicrob Agents Chemother, 2013, 57(10): 5104-5111. DOI: 10.1128/AAC.01230-13
计量
- 文章访问数: 109
- HTML全文浏览量: 26
- PDF下载量: 34