Hospital Acquired Infections and Non-Hospital Acquired Infections in the Department of Critical Care Medicine
-
摘要:
重症医学科感染患者来源复杂、感染部位多样,可能合并多种病原菌感染,且其耐药率高,为临床诊疗带来了巨大挑战。重症医学科感染可分为医院感染和非医院感染2种类型,二者临床特点存在较大差异。本文从医院感染与非医院感染的角度出发,就重症感染的相关概念、危险因素、发病机制以及血流感染、肺部感染、腹腔感染、颅内感染等常见重症感染特点、诊治方案与防控策略展开论述,以期为重症患者的临床管理提供有价值的指导。
Abstract:Patients with infections in the department of critical care medicine have complex sources and diverse sites of infection, which may be associated with multiple pathogenic bacteria and have a high rate of drug resistance, posing a significant challenge to clinical diagnosis and treatment. Infections in the department of critical care medicine can be divided into two types: hospital acquired infections and non-hospital acquired infections, with significant differences in clinical characteristics between the two. This article discusses the relevant concepts, risk factors, pathogenesis, and common characteristics of severe infections such as bloodstream infections, pulmonary infections, intra-abdominal infections, and intracranial infections, as well as diagnostic and treatment plans and prevention and control strategies from the perspectives of hospital acquired and non-hospital acquired infections, aiming to provide valuable guidance for the clinical management of critically ill patients.
-
骨成熟度的评估对于生长发育异常患儿的诊断、治疗及随访具有重要作用[1]。目前临床主要通过拍摄左手及腕部X线片评估骨龄以了解骨成熟度,但其具有辐射风险,且存在来源人群陈旧、一致性低、复杂费时等问题[2-3]。而超声可清晰显示发育期低回声骺软骨及其内强回声的次级骨化中心并进行相应测量,且无辐射,可用于动态随诊[4]。基于发育过程中长骨关节端的大体及微观特点[5-6],本研究结合长骨关节端声像表现,初步探索采用超声骺软骨厚度(ultrasonic epiphysis cartilage thickness, UECT)定量评估骺软骨发育情况并分析其与骨龄的相关性,以期为骨成熟度评估提供新思路。
1. 资料与方法
1.1 研究对象
本研究为前瞻性观察性研究,以2023年3—6月就读于济宁市某体校的青少年为研究对象,记录年龄、身高等信息。纳入标准:(1)年龄为7~18岁;(2)外形及营养状况良好。排除标准:(1)患有可能导致生长发育异常的慢性肝肾疾病、骨骼系统疾病、内分泌遗传综合征等;(2)超声或骨龄X线图像质量差、无法识别;(3)手和腕部及膝关节组成骨存在近期骨折史。
本研究已通过北京协和医院伦理审查委员会审批(审批号:K4393),研究对象或其亲属均签署知情同意书。
1.2 研究方法
1.2.1 X线检查
于1周内行X线骨龄检查,并由1名具有15年阅读骨龄片经验的内分泌科医师使用Greulich-Pyle(GP)图谱法评估骨龄。
1.2.2 超声检查
分别由具有20年及8年超声工作经验的2名医师针对非优势侧手、腕部及膝关节7个组成部位进行超声检查(GE Logiq E20彩色多普勒超声诊断仪),探头选用L6-24靴型探头及L2-9线阵探头。首先使患者手背朝上,采用L6-24靴型探头顺序扫查第三掌骨头部背侧正中矢状面、尺骨茎突冠状面、桡骨茎突冠状面。随后使患者采取俯卧位,暴露膝关节背侧,采用L2-9线阵探头扫查股骨内上髁冠状面、股骨外上髁冠状面、胫骨背侧正中矢状面、胫骨内侧髁冠状面。所有切面均清晰显示干骺端、次级骨化中心及骺软骨。
1.2.3 UECT测量
首先沿骨干强回声带外缘内侧作骨干方向延长线,其与骨干强回声带外缘产生交点,随后根据次级骨化中心所示强回声带的形状选择相应测量方法:(1)若呈从骨干向关节端下降的抛物线形,则以次级骨化中心骨干端外缘顶点与前述骨干外缘交点的距离作为UECT;(2)若呈半圆形,作与前述骨干方向延长线的平行线,其中与次级骨化中心强回声带相切的切点与前述骨干外缘交点距离为UECT(图 1、2)。对于单个研究对象的多部位UECT联合分析,则将各部位UECT之和作为总UECT并分析其与骨龄的相关性。
图 1 次级骨化中心呈从骨干向关节端下降的抛物线形(A)和半圆形(B)强回声带(UECT勾画示意图)Dia(diaphysis):骨干;Soc(secondary ossification center):次级骨化中心;UECT(ultrasonic epiphyseal cartilage thickness):超声骺软骨厚度Figure 1. The schematic diagram depicts the way to measure UECT when secondary ossification center shows a parabolic strong echo zone descending from the diaphysis to the joint end (A) and a semicircular strong echo band(B)图 2 次级骨化中心呈从骨干向关节端下降的抛物线形(A~G)和半圆形(a~g)强回声带(7个部位UECT超声图示)A.第三掌骨头部背侧正中矢状面;B.尺骨茎突冠状面;C.桡骨茎突冠状面;D.股骨内上髁冠状面;E.股骨外上髁冠状面;F.胫骨背侧正中矢状面;G.胫骨内侧髁冠状面Figure 2. Ultrasound diagram of UECT at 7 sites when the secondary ossification center shows a parabolic strong echo zone descending from the diaphysis to the joint end(A-G) and a semicircular strong echo band(a-g)A.dorsal median sagittal plane of the third metacarpal head(MCP3); B.coronal plane of ulnar styloid process(Ulna); C.coronal plane of radial styloid process(Radius); D.coronal plane of medial epicondyle of femur(FM); E.coronal plane of lateral epicondyle of femur(FL); F.median sagittal plane of dorsal tibia(TD); G.coronal plane of medial condyle of tibia(TM)
UECT: 同图 11.2.4 重复测量信度检验
以组内相关系数(intraclass correlation coefficient, ICC)评估UECT测量的信度与可重复性。研究按照性别与骨龄采用分层抽样法随机抽取50人超声图像,由另一操作者再次测量UECT值,计算ICC并评估一致性。
1.3 样本量估算
采用G*power 3.1.9.7软件分析纳入的样本量,参数选择效应量f2=0.15、α=0.05,β=0.80,计算所需最小样本量为55例。
1.4 统计学处理
采用R Studio 4.3.0软件进行统计学分析。正态性分析采用Shapiro-Wilk检验,年龄、骨龄及身高均不符合正态分布,以中位数(四分位数)表示。组间比较采用秩和检验。计数资料以频数(百分数)表示,组间比较采用卡方检验。采用Spearman法分析UECT与骨龄的相关性,高低分级参考前述研究[7],|r|为0.5~0.7表示中度相关;|r|为0.7~0.9表示高度相关;|r|为0.9~1.0表示非常高度相关。采用SPSS 24.0软件进行ICC分析,计算参数选择single measurement、2-way random effects、absolute agreement,ICC≥0.75为一致性较好,ICC<0.4为一致性较差。以P<0.05为差异具有统计学意义。
2. 结果
2.1 一般资料
共纳入141名青少年,其中男性80名,女性61名。中位年龄为13(12,14)岁。男性身高显著高于女性(表 1)。男性中位骨龄15(13,17)岁,女性中位骨龄16(14,17)岁。男女骨龄与年龄差值>1岁者分别占比60%、67%。男女年龄、身高及骨龄分布见图 3。
表 1 男性与女性一般资料比较Table 1. General information between male and female项目 男性(n=80) 女性(n=61) P值 年龄[M(P25, P75),岁] 13(12, 14) 13(12, 14) 0.52 骨龄[M(P25, P75),岁] 15(13, 17) 16(14, 17) 0.40 骨龄-年龄>1岁[n(%)] 48(60) 41(67) 0.48 身高[M(P25, P75),cm] 175.3 (167.8, 181.4) 167.1 (161.4, 173.2) <0.001 2.2 发育过程长骨关节端的声像表现
利用超声观察不同骨龄阶段研究对象的长骨关节端,其声像表现存在以下规律:生长发育初期,次级骨化中心首先在低回声骨骺中央萌出,声像图显示为小半圆形强回声带。次级骨化中心进一步扩展增大,但仍然保持半圆形的形状。随着骨成熟度提高,次级骨化中心所示强回声带呈从骨干向关节端下降的似抛物线形,强回声带的骨干端从低于骨干外缘逐渐上升至与其平齐。生长晚期至终止时,次级骨化中心与骨干不断接近,最终形成一条完整、平滑的强回声带,关节面被覆薄层低回声关节软骨(图 4)。
2.3 UECT与骨龄相关性
男、女7个部位的UECT均随骨龄增长而减小,至骨龄18岁时测量值趋近于0(表 2、3)。各部位UECT与骨龄均呈负相关,男性单部位UECT与骨龄均呈高度负相关(|r|≥0.83),而女性单部位UECT与骨龄呈中高度负相关(0.65≤|r|≤0.75)(表 4)。
表 2 不同骨龄男性青少年7个部位的UECT测值[M(P25, P75),mm]Table 2. Measured values of UECT at 7 sites in male adolescents of different bone ages[M(P25, P75), mm]骨龄(岁) MCP3 Ulna Radius FM FL TD TM 8(n=1) 1.4 4.2 5.4 5.0 2.6 3.0 4.7 9(n=1) 1.4 3.0 4.8 5.7 3.7 3.4 3.5 11(n=6) 1.7(1.3, 2.2) 3.2(2.7, 3.5) 4.2(4.0, 4.9) 3.5(2.4, 4.2) 2.5(2.2, 2.7) 3.6(2.8, 4.1) 4.0(3.5, 4.8) 12(n=3) 1.3(1.2, 1.9) 4.4(3.6, 5.2) 4.9(3.7, 5.5) 2.4(2.15, 3) 3.1(2.7, 3.8) 1.6(1.5, 2.1) 4.5(4.5, 4.8) 12.5(n=1) 1.0 2.6 3.1 2.1 2.4 2.3 2.8 13(n=11) 1.4(0.9, 1.5) 2.5(2.1, 2.9) 3.0(2.6, 3.3) 2.0(1.3, 2.6) 2.9(2.3, 3.0) 1.8(1.7, 2.0) 3.0(2.6, 3.2) 13.5(n=2) 1.5(1.2, 1.9) 3.0(2.9, 3.0) 3.1(3.0, 3.2) 1.9(1.9, 1.9) 1.7(1.6, 1.9) 3.0(2.4, 3.5) 2.7(2.5, 2.8) 14(n=7) 0.8(0.7, 0.9) 2.0(1.5, 2.1) 2.2(1.9, 2.9) 1.8(1.4, 2.0) 2.0(1.3, 2.3) 1.6(1.2, 2.2) 2.1(2.0, 3.3) 15(n=11) 0.6(0.6, 0.7) 1.9(1.5, 2.2) 2.2(1.6, 2.3) 1.5(1.1, 1.9) 1.7(0.9, 2.7) 1.2(0.7, 1.8) 2.2(1.3, 2.5) 16(n=4) 0.4(0.2, 0.4) 1.1(0.9, 1.4) 1.2(0.8, 1.7) 0.8(0.6, 1.0) 1.2(1.0, 1.3) 0.7(0.5, 0.8) 1.3(1.1, 1.4) 17(n=19) 0.1(0, 0.4) 1.3(0.7, 1.7) 1.3(1.1, 1.5) 0(0, 0.8) 0.9(0.6, 1.4) 0(0, 0.7) 0.6(0, 1.3) 18(n=14) 0(0, 0) 0.6(0.4, 1.0) 0.6(0.4, 0.9) 0(0, 0) 0(0, 0.4) 0(0, 0) 0(0, 0) 表 3 不同骨龄女性青少年7个部位的UECT测值[M(P25, P75),mm]Table 3. Measured values of UECT at 7 sites in female adolescents of different bone ages [M(P25, P75), mm]骨龄(岁) MCP3 Ulna Radius FM FL TD TM 7(n=1) 1.7 4.7 6.4 3.1 3.8 1.5 2.3 8(n=1) 2.0 5.4 4.9 1.8 4.0 3.8 3.0 11(n=2) 1.1(1.0, 1.2) 2.4(2.0, 2.7) 3.4(2.6, 4.3) 2.5(2.2, 2.7) 2.2(1.7, 2.6) 1.9(1.8, 1.9) 1.7(1.4, 1.9) 11.5(n=1) 0.7 1.5 2.6 2.9 1.9 1.4 2.4 12(n=2) 0.9(0.8, 0.9) 1.9(1.9, 2.0) 2.1(2.0, 2.3) 1.5(1.4, 1.6) 1.7(1.7, 1.8) 0.9(0.9, 1.0) 4.4(4.0, 4.7) 13(n=7) 0.5(0.4, 0.6) 1.7(1.1, 1.8) 1.7(1.5, 1.9) 1.3(1.1, 2.0) 1.1(1.0, 1.3) 1.1(0.8, 1.4) 1.9(1.0, 2.7) 14(n=3) 0.3(0.3, 0.7) 1.3(1.3, 1.8) 1.3(1.2, 1.8) 1.4(0.7, 2.1) 1.0(1.0, 1.3) 0.6(0.3, 0.7) 1.3(1.2, 1.3) 15(n=4) 0.5(0.3, 0.5) 1.9(1.5, 2.1) 1.6(1.5, 1.7) 1.1(0.6, 1.6) 0.9(0.7, 1.4) 0.9(0.6, 1.3) 0.8(0.3, 1.5) 16(n=13) 0(0, 0) 0.9(0.9, 1.1) 0.8(0.6, 1.2) 0(0, 0.6) 0.9(0.5, 1.5) 0(0, 0) 0(0, 0.5) 17(n=19) 0(0, 0.2) 0.8(0.6, 1.1) 1.1(1.0, 1.4) 0(0, 0.7) 0.5(0, 1.0) 0(0, 0.2) 0(0, 0.2) 18(n=8) 0(0, 0) 0.4(0.2, 0.7) 0.6(0.4, 0.8) 0(0, 0) 0(0, 0.1) 0(0, 0) 0(0, 0) 表 4 单部位UECT与骨龄的相关系数(r)Table 4. Correlation coefficient between single-site UECT and bone age性别 MCP3 Ulna Radius FM FL TM TD 男 -0.84 -0.85 -0.90 -0.83 -0.80 -0.87 -0.86 女 -0.74 -0.71 -0.69 -0.67 -0.65 -0.75 -0.71 MCP3、Ulna、Radius、FM、FL、TD、TM:同图 2 男、女7个部位UECT总和与骨龄的负相关性均达到较高水平(男:|r|=0.93;女:|r|=0.80)(表 5), 单独选取手和腕部3个部位或膝关节4个部位时,女性UECT总和与骨龄高度负相关(|r|≥0.76),而男性则表现出非常高度负相关性(|r|≥0.90)(表 6)。
表 5 7个部位UECT总和与骨龄及年龄的相关系数(r)Table 5. Correlation between the sum of UECT at 7 sites and bone age or chronological age性别 骨龄 年龄 男 -0.93 -0.79 女 -0.80 -0.64 表 6 多部位UECT总和与骨龄的相关系数Table 6. Correlation coefficient between UECT sum of different sites and bone age性别 FL+TM+TD FM+TM+TD knee joint hand and wrist all 男 -0.91 -0.92 -0.93 -0.90 -0.93 女 -0.80 -0.76 -0.79 -0.77 -0.80 FL、FM、TM、TD:同图 2;knee joint:膝关节4个部位UECT总和;hand and wrist:手和腕部3个部位UECT总和;all:7个部位UECT总和 2.4 不同操作者测量UECT的可重复性
7个部位UECT测量的一致性分析均具有显著统计学意义(P均<0.001),ICC值均≥0.75提示各部位UECT测量一致性均较好(表 7)。
表 7 UECT测量的一致性分析Table 7. Consistency analysis of UECT measurements部位 ICC 95% CI MCP3 0.91 0.79~0.96 Ulna 0.95 0.84~0.98 Radius 0.91 0.78~0.97 FM 0.98 0.95~0.99 FL 0.93 0.83~0.97 TD 0.93 0.83~0.97 TM 0.95 0.89~0.98 MCP3、Ulna、Radius、FM、FL、TD、TM:同图 2;ICC(intraclass correlation coefficient): 组内相关系数 3. 讨论
本研究显示,UECT与骨龄呈中至高度负相关,提示UECT可一定程度上反映发育过程中骺软骨的变化,具有较好的可重复性,可用于骨成熟度水平定量评估。声像图显示发育过程中长骨次级骨化中心形态变化及其与骨干的位置关系改变,与大体及微观研究结果相符[5-6]。与其他利用骨骺生长发育过程中声像改变划分阶段推测法医学年龄的研究不同[8-9],本研究以UECT连续定量评估骨成熟度,而Torenek等[10]根据手和腕部的所有指骨和桡骨远端骨骺以及第一掌骨头部的籽骨共13个部位的声像表现构建半定量评估系统,结果发现除第一、二指骨近节指骨外,超声与X线的评分结果无统计学差异(P<0.05)。本研究发现,UECT与骨龄相关性在不同性别中存在差异,男性单个及多个部位均表现为高度负相关,而女性多为中度负相关,分析原因可能是大骨龄女性比例较高(16~18岁骨龄的女性占比67%),且女性的发育起点和终点均早于男性,使女性UECT值多数较低,未来可通过控制研究群体的分布开展进一步研究。
多项研究通过测量发育过程中长骨关节端结构进行骨成熟度评估,Castriota-Scanderbeg等[11-12]研究发现,无骨龄提前或延后的研究对象股骨头软骨超声测量厚度与年龄、骨龄、身高等均高度相关,但对于发育异常对象而言,该方法与放射学评估的一致性较低。本研究显示,男女UECT与骨龄均呈负相关性,且明显高于其与年龄的相关性(表 5),说明UECT可反映研究对象的发育提前特点。
另有多个研究聚焦于骨关节端的次级骨化中心研究。Sherif等[13]利用超声测量正常儿童的根骨体积并以此作为标准准确预测了验证组健康儿童的年龄,但从出生后第5年开始根骨的体积增长率仅为12%左右,因此其应用范围较有限,也缺乏在发育异常患儿中的验证。Windschall等[14]利用超声测量早产儿与足月儿的股骨远端及胫骨近端次级骨化中心大小并评估其与胎龄的相关性,发现存在中度相关(R2=0.35~0.50)。Wan等[15-17]将骨化中心最大直径与无回声骨骺最大直径比值定义为骨化率,发现桡骨茎突冠状面、尺骨茎突冠状面、股骨内上髁冠状面三者的骨化率总和与骨龄呈正相关(r=0.97),对异常骨龄具有非常高的诊断性与特异性(灵敏度≥93%,特异度≥98%)。骨化率反映了骺软骨骨化不断扩大并最终发育成骨关节末端的过程,而UECT则反映骨化中心不断接近骨干端至最后愈合的过程。前者是比值型指标,受身高影响可能更小,但关节端的骺软骨与发育成熟后保留于骨表面的薄层关节软骨均表现为同质性的低回声[18],常难以获得准确的骨骺最大直径。有研究采用手和腕部以及膝关节X线片测量数个长骨次级骨化中心以及骨干的横径比来评估骨成熟度,结果均表现为高度相关[19-20],而本研究声像图显示,发育成熟过程中长骨的次级骨化中心往往先上升至与骨干外缘同一高度,随后表现为二者间骺软骨不断变薄至消失,因此前述方法可能对生长发育晚期的变化描述有限。
本研究局限性:(1)单中心研究;(2)研究对象多处于发育晚期,骨成熟度呈偏态分布;(3)对次级骨化中心的研究不足,可确定次级骨化中心形成似抛物线形及其骨干端与骨干外缘相平齐所对应的成熟度水平,进一步划分发育阶段;(4)缺乏与放射学方法评估骨龄的一致性评价。
综上所述,超声可观察描述长骨关节端的生长发育变化,UECT与骨龄表现出中至高度负相关,具有用于骨成熟度定量评估的潜在价值。
作者贡献:史展负责文献检索、论文撰写;常志刚负责提出研究思路、论文修订。利益冲突:所有作者均声明不存在利益冲突 -
社区获得性/医疗保健机构相关血流感染 医院获得性血流感染 感染源 常见病原菌 感染源 常见病原菌 CAP 肺炎链球菌、嗜血杆菌属、肠杆菌科、金黄色葡萄球菌 HAP/VAP 肠杆菌科、铜绿假单胞菌、鲍曼不动杆菌、金黄色葡萄球菌 腹腔感染 肠杆菌科(产ESBL)、厌氧菌、肠球菌属 腹腔感染 肠杆菌科、肠球菌属、念珠菌属 尿路感染 肠杆菌科(产ESBL) 尿路感染 肠杆菌科、铜绿假单胞菌、肠球菌属 脑膜炎 肺炎链球菌、脑膜炎奈瑟菌、单核细胞增生李斯特菌 导管相关感染 肠杆菌科、铜绿假单胞菌、葡萄球菌属、肠球菌属、念珠菌属 心内膜炎 金黄色葡萄球菌、链球菌属、肠球菌属 外科部位感染 因感染位置而异 皮肤软组织感染 金黄色葡萄球菌、β-溶血链球菌、肠杆菌科、厌氧菌 原发性血流感染 肠杆菌科、铜绿假单胞菌、念珠菌属 CAP(community-acquired pneumonia):社区获得性肺炎;HAP (hospital acquired pneumonia):医院获得性肺炎;VAP(ventilator associated pneumonia):呼吸机相关性肺炎;ESBL(extended-spectrum β-lactamases):超广谱β-内酰胺酶 表 2 复杂腹腔感染经验性抗菌药物选用原则
Table 2 Considerations in empirical antibiotics of complex abdominal infection
社区获得性继发性腹膜炎 ·选择抗菌谱可覆盖肠道革兰阴性兼性需氧杆菌和对β-内酰胺类敏感的革兰阳性球菌的抗菌药物 ·对于发生在远端小肠、结肠或近端胃肠道穿孔伴梗阻的感染,应选择兼顾厌氧菌的抗菌药物 ·对于社区获得性感染患者,使用抗菌谱覆盖肠球菌的抗菌药物并无额外获益 ·如无高危因素,避免在重症医学科内使用针对医院感染的药物 ·高危患者(APACHE Ⅱ评分较高、营养状况差、合并心血管疾病、免疫抑制或感染源无法控制),应使用广谱抗菌药物 医院获得性及第三型腹膜炎 ·医院获得性腹腔感染患者,耐药情况更为常见 ·病原谱与其他医院感染的情况相似 ·应基于当地的病原学特点及耐药情况选用恰当的抗菌药物 ·抗菌药物抗菌谱应覆盖肠球菌 ·应基于患者既往抗菌药物使用情况和潜在的危险因素考虑是否存在真菌感染 APACHE Ⅱ(acute physiology and chronic health evaluation Ⅱ):急性生理学与慢性健康状况Ⅱ 表 3 重症医学科主要医院感染防控措施
Table 3 Summary of common infection prevention and control approaches in the Department of Critical Care Medicine
项目 措施 方法 参考文献 环境 手卫生 落实“两前三后”手卫生,即在准备接触患者前、进行无菌操作前、接触患者体液(血液、尿液、引流液、粪便等)后、接触患者后、接触患者周围环境后,均应进行快速手卫生,且实施时间应至少持续20~30 s;除医护人员外,还应强调重症医学科护理员、保洁员等非固定人员及探视的患者家属落实手卫生,该措施对MDRO感染的预防十分有效 [43-44] 环境卫生 (1)环境清洁可减少定植和医院感染;(2)应保持物体表面清洁,污染后及时清洁消毒;(3)普通患者持续使用的医疗设备每天清洁消毒1~2次,交叉使用的医疗设备在直接接触患者后应立即清洁消毒,不直接接触患者的部分应每周清洁消毒1~2次;(4)MDRO感染或定植患者使用的医疗器械/设备应专人专用,或每次使用后均消毒;(5)地面应每天清洁消毒1~2次 [43, 45] 主动筛查 对于携带MDRO且可具有传播途径的患者,应主动筛查,以便迅速发现传染源并切断感染链 [46] 环境隔离 防止MDRO的传播及其他通过直接或间接接触患者或患者环境进行传播的病原微生物,是隔离接触的主要目标,对于需进行隔离的患者,首选方法是单间病房隔离 [43] 通风设备 床边通风可降低患者携带的任何病原体经空气传播的风险,可采用空气消毒器、紫外线灯照射消毒等空气洁净技术达到消毒效果 [47] 去定植 建议所有重症医学科患者每天使用氯己定擦浴,多项研究表明,每天使用葡萄糖氯己定乙醇湿巾洗浴可显著降低重症医学科患者耐药菌相关感染和定植风险;选择性口咽部去污染和选择性消化道去污染有助于降低特定区域内的细菌负荷 [48-49] 抗菌药物 规范抗菌药物使用 尽早降阶梯使用抗生素,尽量避免长期使用广谱、高级别抗生素 [50] 肺部 预防HAP/VAP 采用集束化防控措施可显著降低HAP/VAP发生率,包括床头抬高(30°~40°)、每日镇静及拔管评估、声门下分泌物充分引流、避免频繁更换通气回路、选择合适的肠内营养方式、预防应激性溃疡 [51-52] 血流 预防CRBSI 采用集束化防控措施(如英国Matching Michigan项目等)可显著降低CRBSI发生率,穿刺过程中应注意事项包括:加强手卫生、穿隔离衣、皮肤清洁消毒、使用最大无菌屏障预防、选择最佳的导管置入部位、无菌氯己定消毒敷贴覆盖穿刺部位,加强护理人员培训,护理时需严格遵守无菌原则维护中心静脉导管 [53-54] MDRO(multi-drug resistant organisms):多重耐药菌;CRBSI(catheter related blood stream infection):导管相关血流感染;HAP、VAP:同表 1 -
[1] 翟茜, 胡波, 郑瑞强, 等. 重症感染诊疗流程[J]. 中华重症医学电子杂志, 2017, 3(2): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYD201702010.htm Zhai Q, Hu B, Zheng R Q, et al. Protolized diagnosis and treatment in severe infection[J]. Chin J Crit Care Intensive Care Med, 2017, 3(2): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYD201702010.htm
[2] Lamontagne F, Harrison D A, Rowan K M. qSOFA for identifying sepsis among patients with infection[J]. JAMA, 2017, 317(3): 267-268. DOI: 10.1001/jama.2016.19684
[3] Vincent J L, Moreno R, Takala J, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine[J]. Intensive Care Med, 1996, 22(7): 707-710. DOI: 10.1007/BF01709751
[4] 中华医学会重症医学分会. 呼吸机相关性肺炎诊断、预防和治疗指南(2013)[J]. 中华内科杂志, 2013, 52(6): 524-543. DOI: 10.3760/cma.j.issn.0578-1426.2013.06.024 Critical Care Medicine Branch of the Chinese Medical Association. Diagnosis, prevention, and treatment guidelines for ventilator associated pneumonia (2013)[J]. Chin J Intern Med, 2013, 52(6): 524-543. DOI: 10.3760/cma.j.issn.0578-1426.2013.06.024
[5] 中华医学会外科学分会, 中国研究型医院学会感染性疾病循证与转化专业委员会, 中华外科杂志编辑部. 外科常见腹腔感染多学科诊治专家共识[J]. 中华外科杂志, 2021, 59(3): 161-178. Chinese Society of Surgery of Chinese Medical Association, Infectious Diseases Society for Evidence-based and Translational Medicine of Chinese Research Hospital Association, Editorial Board of Chinese Journal of Surgery. Expert consensus on multidisciplinary management of intra-abdominal infections[J]. Chin J Surg, 2021, 59(3): 161-178.
[6] Magill S S, Edwards J R, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections[J]. N Engl J Med, 2014, 370(13): 1198-1208. DOI: 10.1056/NEJMoa1306801
[7] 中华医学会呼吸病学分会感染学组. 中国成人医院获得性肺炎与呼吸机相关性肺炎诊断和治疗指南(2018年版)[J]. 中华结核和呼吸杂志, 2018, 41(4): 255-280. DOI: 10.3760/cma.j.issn.1001-0939.2018.04.006 Infectious Disease Group of the Respiratory Disease Branch of the Chinese Medical Association. Diagnosis and treatment guidelines for Chinese adult hospital acquired pneumonia and ventilator associated pneumonia (2018 edition)[J]. Chin J Tuberc Respir Dis, 2018, 41(4): 255-280. DOI: 10.3760/cma.j.issn.1001-0939.2018.04.006
[8] American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associ-ated pneumonia[J]. Am J Respir Crit Care Med, 2005, 171(4): 388-416. DOI: 10.1164/rccm.200405-644ST
[9] Kalil A C, Metersky M L, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society[J]. Clin Infect Dis, 2016, 63(5): e61-e111. DOI: 10.1093/cid/ciw353
[10] Kreitmann L, Helms J, Martin-Loeches I, et al. ICU-acquired infections in immunocompromised patients[J]. Intensive Care Med, 2024, 50(3): 332-349. DOI: 10.1007/s00134-023-07295-2
[11] Akrami K, Sweeney D A. The microbiome of the critically ill patient[J]. Curr Opin Crit Care, 2018, 24(1): 49-54. DOI: 10.1097/MCC.0000000000000469
[12] Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice[J]. Gut, 2017, 66(4): 569-580. DOI: 10.1136/gutjnl-2016-313017
[13] 中华预防医学会医院感染控制分会, 中华医学会感染病学分会, 中国医院协会医院感染管理专业委员会, 等. 中国碳青霉烯耐药革兰阴性杆菌(CRO) 感染预防与控制技术指引[J]. 中华医院感染学杂志, 2019, 29(13): 2075-2080. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWG202002001.htm Hospital Infection Control Branch of the Chinese Association of Preventive Medicine, Infectious Disease Branch of the Chinese Medical Association, Hospital Infection Management Professional Committee of China Hospital Association, et al. Technical guidelines for prevention and control of carbapenem- resistant gram-negative bacilli infection in China[J]. Chin J Nosocomiol, 2019, 29(13): 2075-2080. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWG202002001.htm
[14] 陈佰义, 何礼贤, 胡必杰, 等. 中国鲍曼不动杆菌感染诊治与防控专家共识[J]. 中国医药科学, 2012, 2(8): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GYKX201208006.htm Chen B Y, He L X, Hu B J, et al. Expert consensus on the diagnosis, treatment, and prevention of Acinetobacter baumannii infection in China[J]. China Med Pharm, 2012, 2(8): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GYKX201208006.htm
[15] Azoulay E, Russell L, Van De Louw A, et al. Diagnosis of severe respiratory infections in immunocompromised patients[J]. Intensive Care Med, 2020, 46(2): 298-314. DOI: 10.1007/s00134-019-05906-5
[16] Lionakis M S, Netea M G. Candida and host determinants of susceptibility to invasive candidiasis[J]. PLoS Pathog, 2013, 9(1): e1003079. DOI: 10.1371/journal.ppat.1003079
[17] Roblot F, Godet C, Le Moal G, et al. Analysis of underlying diseases and prognosis factors associated with Pneumocystis carinii pneumonia in immunocompromised HIV-negative patients[J]. Eur J Clin Microbiol Infect Dis, 2002, 21(7): 523-531. DOI: 10.1007/s10096-002-0758-5
[18] Timsit J F, Ruppé E, Barbier F, et al. Bloodstream infections in critically ill patients: an expert statement[J]. Intensive Care Med, 2020, 46(2): 266-284. DOI: 10.1007/s00134-020-05950-6
[19] 中国医师协会急诊医师分会, 中华医学会急诊医学分会, 中国急诊专科医联体, 等. 急诊成人细菌性感染诊疗专家共识[J]. 中国急救医学, 2020, 40(11): 1029-1035. DOI: 10.3969/j.issn.1002-1949.2020.11.002 Emergency Physicians Branch of the Chinese Medical Association, Emergency Medicine Branch of the Chinese Medical Association, China Emergency Medical Association, et al. Consensus among emergency diagnosis and treatment experts for adult bacterial infections[J]. Chin J Crit Care Med, 2020, 40(11): 1029-1035. DOI: 10.3969/j.issn.1002-1949.2020.11.002
[20] 中华医学会呼吸病学分会感染学组. 铜绿假单胞菌下呼吸道感染诊治专家共识[J]. 中华结核和呼吸杂志, 2014, 37(1): 9-15. Infectious Disease Group of the Respiratory Disease Branch of the Chinese Medical Association. Expert consensus on the diagnosis and treatment of lower respiratory tract infections caused by Pseudomonas aeruginosa[J]. Chin J Tuberc Respir Dis, 2014, 37(1): 9-15.
[21] Newman N, Issa A, Greenberg D, et al. Central venous catheter-associated bloodstream infections[J]. Pediatr Blood Cancer, 2012, 59(2): 410-414. DOI: 10.1002/pbc.24135
[22] 杨祖耀, 詹思延, 王波, 等. 中国血流感染住院病死率的系统评价和meta分析[J]. 北京大学学报(医学版), 2010, 42(3): 304-307. https://www.cnki.com.cn/Article/CJFDTOTAL-BYDB201003016.htm Yang Z Y, Zhan S Y, Wang B, et al. Fatality and secular trend of bloodstream infections during hospitalization in China: a systematic review and meta-analysis[J]. J Peking Univ Health Sci, 2010, 42(3): 304-307. https://www.cnki.com.cn/Article/CJFDTOTAL-BYDB201003016.htm
[23] Gouel-Cheron A, Swihart B J, Warner S, et al. Epidemio-logy of ICU-onset bloodstream infection: prevalence, pathogens, and risk factors among 150, 948 ICU patients at 85 U.S. hospitals[J]. Crit Care Med, 2022, 50(12): 1725-1736.
[24] De Sousa T, Hébraud M, Dapkevicius M L N E, et al. Genomic and metabolic characteristics of the pathogenicity in Pseudomonas aeruginosa[J]. Int J Mol Sci, 2021, 22(23): 12892.
[25] Pappas P G, Kauffman C A, Andes D R, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America[J]. Clin Infect Dis, 2016, 62(4): e1-e50.
[26] 李琰冰, 陆旻雅, 肖盟, 等. 中国临床重要真菌监测的工作进展[J]. 中国合理用药探索, 2022, 19(8): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYS202208002.htm Li Y B, Lu M Y, Xiao M, et al. Progress of clinical important fungi surveillance in China[J]. Chin J Ration Drug Use, 2022, 19(8): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYS202208002.htm
[27] Han X D, Zhou F, Li H, et al. Effects of age, comorbidity and adherence to current antimicrobial guidelines on mortality in hospitalized elderly patients with community-acquired pneumonia[J]. BMC Infect Dis, 2018, 18(1): 192.
[28] 中华医学会急诊医学分会, 中国老年社区获得性肺炎急诊诊疗专家共识组. 中国老年社区获得性肺炎急诊诊疗专家共识[J]. 中华急诊医学杂志, 2023, 32(10): 1319-1327. Emergency Medicine Branch of the Chinese Medical Association, Consensus group of emergency diagnosis and treatment experts for community-acquired pneumonia in the elderly in China. Consensus among emergency diagnosis and treatment experts for community-acquired pneumonia in the elderly in China[J]. Chin J Emerg Med, 2023, 32(10): 1319-1327.
[29] Clementi N, Ghosh S, De Santis M, et al. Viral respiratory pathogens and lung injury[J]. Clin Microbiol Rev, 2021, 34(3): e00103-20.
[30] Sakr Y, Moreira C L, Rhodes A, et al. The impact of hospital and ICU organizational factors on outcome in critically ill patients: results from the extended prevalence of infection in intensive care study[J]. Crit Care Med, 2015, 43(3): 519-526.
[31] Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury[J]. Front Immunol, 2020, 11: 1722.
[32] 卢昆, 耿仕涛, 唐士凯, 等. 术后腹腔感染的研究进展[J]. 中国普外基础与临床杂志, 2021, 28(4): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPWL202104020.htm Lu K, Geng S T, Tang S K, et al. Research progress of postoperative intra-abdominal infection[J]. Chin J Bas Clin Gen Surg, 2021, 28(4): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPWL202104020.htm
[33] Weigelt J A. Empiric treatment options in the management of complicated intra-abdominal infections[J]. Cleve Clin J Med, 2007, 74(Suppl 4): S29-S37.
[34] Lin S Y, Huang C H, Ko W C, et al. Recent developments in antibiotic agents for the treatment of complicated intra-abdominal infections[J]. Expert Opin Pharmacother, 2016, 17(3): 339-354.
[35] World Health Organization. The burden of health care-associated infection worldwide[EB/OL]. [2024-02-27]. https://www.who.int/news-room/feature-stories/detail/the-burden-of-health-care-associated-infection-worldwide.
[36] 中华医学会外科学分会外科感染与重症医学学组, 中国医师协会外科医师分会肠瘘外科医师专业委员会. 中国手术部位感染预防指南[J]. 中华胃肠外科杂志, 2019, 22(4): 301-314. Surgical Infection and Critical Care Medicine Group of the Chinese Medical Association's Surgery Branch, The Professional Committee of Intestinal Fistula Surgeons of the Surgical Branch of the Chinese Medical Association. Chinese guideline for the prevention of surgical site infection[J]. Chin J Gastrointest Surg, 2019, 22(4): 301-314.
[37] Brouwer M C, Van De Beek D. Epidemiology of community-acquired bacterial meningitis[J]. Curr Opin Infect Dis, 2018, 31(1): 78-84.
[38] Figueiredo A H A, Brouwer M C, Van De Beek D. Acute community-acquired bacterial meningitis[J]. Neurol Clin, 2018, 36(4): 809-820.
[39] Tunkel A R, Hasbun R, Bhimraj A, et al. 2017 Infectious Diseases Society of America's clinical practice guidelines for healthcare-associated ventriculitis and meningitis[J]. Clin Infect Dis, 2017, 64(6): e34-e65.
[40] Van De Beek D, Cabellos C, Dzupova O, et al. ESCMID guideline: diagnosis and treatment of acute bacterial meningitis[J]. Clin Microbiol Infect, 2016, 22(Suppl 3): S37-S62.
[41] Tunkel A R, Hartman B J, Kaplan S L, et al. Practice guidelines for the management of bacterial meningitis[J]. Clin Infect Dis, 2004, 39(9): 1267-1284.
[42] Chen Y, Liu L. The treatment of nosocomial meningitis and brain abscess by carbapenem-resistant Klebsiella pneumonia[J]. Br J Neurosurg, 2023, 37(4): 634-636.
[43] Centers for Disease Control and Prevention (CDC). Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities[J]. MMWR Morb Mortal Wkly Rep, 2009, 58(10): 256-260.
[44] Pittet D, Hugonnet S, Harbarth S, et al. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection control programme[J]. Lancet, 2000, 356(9238): 1307-1312.
[45] Peters A, Schmid M N, Parneix P, et al. Impact of environmental hygiene interventions on healthcare-associated infections and patient colonization: a systematic review[J]. Antimicrob Resist Infect Control, 2022, 11(1): 38.
[46] Tacconelli E. Screening and isolation for infection control[J]. J Hosp Infect, 2009, 73(4): 371-377.
[47] Friedman N D, Carmeli Y, Walton A L, et al. Carbapenem-resistant enterobacteriaceae: a strategic roadmap for infection control[J]. Infect Control Hosp Epidemiol, 2017, 38(5): 580-594.
[48] Hammond N E, Myburgh J, Seppelt I, et al. Association between selective decontamination of the digestive tract and in-hospital mortality in intensive care unit patients receiving mechanical ventilation: a systematic review and meta-analysis[J]. JAMA, 2022, 328(19): 1922-1934.
[49] The SuDDICU Investigators for the Australian and New Zealand Intensive Care Society Clinical Trials Group. Effect of selective decontamination of the digestive tract on hospital mortality in critically ill patients receiving mechanical ventilation: a randomized clinical trial[J]. JAMA, 2022, 328(19): 1911-1921.
[50] Timsit J F, Lipman J, Bassetti M. Antimicrobial de-escalation is part of appropriate antibiotic usage in ICU[J]. Intensive Care Med, 2020, 46(5): 1039-1042.
[51] Rello J, Lode H, Cornaglia G, et al. A European care bundle for prevention of ventilator-associated pneumonia[J]. Intensive Care Med, 2010, 36(5): 773-780.
[52] Hellyer T P, Ewan V, Wilson P, et al. The intensive care society recommended bundle of interventions for the preven-tion of ventilator-associated pneumonia[J]. J Intensive Care Soc, 2016, 17(3): 238-243.
[53] Selby L M, Rupp M E, Cawcutt K A. Prevention of central-line associated bloodstream infections: 2021 update[J]. Infect Dis Clin North Am, 2021, 35(4): 841-856.
[54] Bion J, Richardson A, Hibbert P, et al. 'Matching Michigan': a 2-year stepped interventional programme to minimise central venous catheter-blood stream infections in intensive care units in England[J]. BMJ Qual Saf, 2013, 22(2): 110-123.
计量
- 文章访问数: 743
- HTML全文浏览量: 52
- PDF下载量: 111