-
摘要:
先天性心脏病(congenital heart disease, CHD)指胎儿在胚胎时期的心脏发育异常, 通常伴有大血管发育不良, 其发病机制复杂, 目前尚未阐明。研究表明, Notch信号通路参与心脏发育的全过程, 包括原始心脏的形成及发育、出生后心脏正常功能的维持, 该通路异常会导致CHD的发生。本文就Notch信号通路参与心脏生长发育以及导致CHD的作用机制展开综述, 以期为CHD的早期诊断提供参考。
Abstract:Congenital heart disease (CHD) refers to abnormal development of the heart in the foetus during the embryonic period, usually accompanied by abnormal development of the large blood vessels. The pathogenesis of CHD is complex and has not yet been elucidated. Studies have shown that the Notch signaling pathway is involved in the whole process of cardiac development, including the formation and development of the primitive heart, and the maintenance of normal cardiac function after birth, and the abnormalities in this pathway can lead to the development of CHD. In this paper, we review the mechanisms of Notch signaling pathway involved in cardiac growth and development, with a view of providing reference for the early diagnosis of CHD.
-
Keywords:
- congenital heart disease /
- Notch signal pathway /
- heart development
-
先天性心脏病(congenital heart disease,CHD) 是最常见的人类发育出生缺陷,指胎儿在胚胎时期的心脏发育异常,通常伴有大血管发育不良,其发病机制复杂,目前尚未阐明。Notch信号通路最早于1917年在果蝇体内发现,其广泛存在于无脊椎动物及脊椎动物中,在各物种进化过程中高度保守[1]。该通路在哺乳动物心脏的房室管(atrioventricular canal,AVC)、流出道(outflow tract,OFT)、主动脉瓣及心室发育过程中均起到重要的调控作用,可促进心肌细胞再生、参与心脏血管构建,并通过负性调节心肌成纤维细胞向肌成纤维细胞转化修复心肌。研究表明,Notch信号通路的异常及Notch基因突变会导致CHD的发生。本文就Notch信号通路参与心脏发育及导致CHD的作用机制展开综述,以期为CHD的早期诊断提供参考。
1. Notch信号通路
Notch信号通路由Notch受体(Notch 1~4),Notch配体[Jagged 1~2(JAG1~2)、delta-like ligand 1~4(DLL1~4)],细胞内效应器分子[包括CSL(CBF-1/Suppressor of hairless/ Lag-1) DNA结合蛋白、毛发分裂增强因子(hairy and enhancer of split,Hes)基因家族、Hey(hairy and enhancer-of-split related with YRPW motif)基因]组成[2-3];Notch活化过程主要以经典的CBF-1/RBP-JK(C-promoter binding factor 1/recombination signal sequence-binding protein J)依赖途径为主,详见图 1。
目前,哺乳动物中存在4种Notch基因(Notch 1~4),其中Notch 1~3与人类疾病有关[4]。动物实验表明,Notch 1在哺乳动物胚胎时期心血管系统的发育过程中发挥重要作用,如在大鼠的胚胎发育阶段,心脏发育最初部位中胚层中即可检测到Notch 1的表达[5]。同时,Notch 1突变与钙化性主动脉瓣膜病(calcific aortic valve disease,CAVD)发生率成正相关[6]。Notch 2突变则会导致Alagille综合征(Alagille syndrome,ALGS)[7]。而Notch 3与动脉平滑肌细胞发育有关,其突变与显性遗传病有关。
2. Notch信号通路参与心脏发育
Notch在哺乳动物线性心管形成前后的表达特性已被证实。动物实验表明,在大鼠胚胎期第7.5天,Notch 1首先表达于中胚层,第8天后局限于原始心管OFT内膜层,从而调控心脏的形态,Notch 4表达于心内膜,至胚胎期第12.5天可在心室OFT房室区、心房肌和心室肌小梁中检测到JAG1的表达,而Notch 2直到胚胎期第13.5天才出现在心房和心室肌中[8]。Notch信号通路可参与房室管、心脏传导系统、心室、OFT、冠状动脉的发育。
2.1 房室管形成
在AVC的形成过程中,部分心内膜细胞在临近心肌信号刺激下发生改变,Notch信号通路活化促进细胞上皮——间质转化(epithelial to mesenchymal transition,EMT)形成腹侧、背侧两个心内膜垫,二者相对生长、彼此融合将房室总管分隔,同时,心内膜垫也参与瓣膜组织的形成[9]。Abu等[10]研究发现,斑马鱼瓣膜组织发育的基因表达与哺乳动物相似,JAG 1b、Hey1、Hey2基因参与编码AVC心内膜关键成分。因此Notch信号通路的活化是诱导EMT的必要条件,促进房室结的形成。骨形态发生蛋白2(bone morphogenetic protein-2,BMP2)是AVC分化和EMT发生的关键信号,BMP2失活则会破坏EMT[11]。Andrés-Delgado等[12]研究发现,心肌中Notch 1异位激活导致非腔室心肌表达Hey1,从而抑制BMP2的表达并破坏瓣膜EMT,而心内膜细胞中Notch 1可上调AVC心肌中BMP2的表达,二者呈正相关。此外,Notch信号通路靶基因Hey1通过抑制BMP2在房室中的表达,将其和Tbx 2的表达限制于AVC中,进而促进AVC的成熟,影响房室总管的分隔以及房室瓣的形成[13]。因此,Notch信号通路在心脏发育的不同部位对BMP2的调控作用有所差异,可将BMP2及促AVC形成相关基因限制于AVC中,以促进AVC的发育。
2.2 心脏传导系统发育
在心脏起搏点窦房结(sinoatrial node,SAN)形成过程中,Notch 1信号在SAN的心内膜中募集。Wang等[14]研究发现,在心脏发育过程中,静脉窦瓣(sinus venous valve,SVV)与SAN共同发育,而在Notch 1基因敲除的胚胎心肌SVV中Wnt2基因表达明显降低,说明Wnt2可通过Wnt/β-catenin信号通路参与SVV的形成。因此,Notch 1可上调Wnt信号促进SVV与SAN的形成。
2.3 心室发育
早期心室发育首先是心肌小梁的形成,而Notch 1存在于小梁底部的心室心内膜细胞中,其活性可影响BMP10的表达,进而调控心肌细胞增殖。此外,Notch信号通路还影响激活心肌小梁形成的EFNB2通路和神经调节素1(neuregulin 1,NRG1)-ERBB通路,心内膜Notch通路通过作用于神经嵴衍生物表达蛋白2(recombinant heart and neural crest derivatives expres-sed protein 2,HAND2)调控NRG1的表达,而EFNB2是NRG1的上游因子,在免疫球蛋白Kappa J区重组信号结合蛋白(recombination signal binding protein for immunoglobulin kappa J region,RBPJ)突变体中外源性给予NRG1可恢复心肌细胞分化缺陷[13],说明NRG1可促进心肌小梁形成[15];另有研究发现,早期心室发育中的DLL4向β-1, 3-N-乙酰葡糖胺基转移酶Manic Fringe(β-1, 3-N-acetylglucosaminyltransfe-rase manic fringe,MFNG)重组蛋白修饰的Notch 1受体发出信号并促进心肌压紧[13]。动物实验表明,小鼠胚胎心肌细胞表达的Hey2可促进致密心肌细胞向小梁层扩张,进而促进内小梁和外致密层之间心肌杂交带的形成以及心室压实[16]。综上,Notch信号通路可通过调控BMP10、EFNB2通路、NRG1-ERBB通路中相关蛋白表达以及上调下游基因促进早期心室发育。
2.4 OFT发育
Notch信号通路在第二心野(second heart fields,SHF)衍生的心脏结构中发挥关键作用。SHF是指心脏发育所需心脏祖细胞的第二来源,其对心肌、心内膜以及间充质细胞均有影响,而这些细胞可形成OFT结构。Notch 1可下调SHF阳性细胞Wnt/β-catenin信号传导以促进SHF中的心脏祖细胞分化[13]。De Zoysa等[17]研究发现,在小鼠心脏发育早期敲除DLL4后会导致SHF细胞凋亡率上升4倍以及OFT发育不足。Rammah等[18]发现,Notch配体、Notch 1以及非经典的配体DLK1 (delta-like noncanonical Notch ligand 1)通路可负调控过氧化物酶体增殖物激活受体γ(peroxisome proliferators-activated receptors,PPARγ),从而保证OFT正常发育。因此,Notch信号通路可通过促进Wnt信号通路及DLL4促进SHF分化,同时其配体及受体可直接促进OFT发育。
2.5 冠状动脉发育
Notch信号通路与心脏冠状动脉发育有关,参与冠脉血管壁的形成。血管内皮生长因子(vascular endothelial growth factor,VEGF)在血管形成中发挥重要作用,其通过结合血管内皮细胞生长因子受体(vascular endothelial growth factor receptor-2,VEGFR-2) 促进血管出芽,而Notch受体可抑制VEGFR-2的表达,Notch配体DLL4可抑制血管新生芽的形成[19]。Travisano等[20]研究发现,Notch配体JAG1和DLL4拮抗调节冠状动脉初级动脉丛的形成,且EphrinB2是拮抗过程中的关键效应因子,随后的冠状动脉分化依赖于DLL4-JAG1-EphrinB2信号级联反应。此外,Notch信号通路通过调节心外膜细胞向上皮细胞-间充质的转化影响冠状动脉平滑肌细胞分化,其作用于转化生长因子-β(transforming growth factor-β,TGF-β)的上游信号[21],TGF-β可与Notch信号通路共同调控冠状动脉的正常发育[22]。McCallinhart等[23]首次发现,Notch配体JAG1及其受体可在冠状动脉肌内皮连接(myoendothelial junction,MEJ)内表达,平滑肌可借助于该连接,接受血液或内皮细胞的化学信息。因此,Notch信号通路可通过双重调节VEGF来调控血管出芽,其与配体结合通过EphrinB2拮抗调节冠状动脉初级动脉丛的形成,促进冠状动脉分化,同时也可作用于TGF-β上游信号促进冠状动脉形成。
3. Notch信号通路与CHD
3.1 CHD概述
CHD是先天性疾病中较常见的一类。根据《常见先天性心脏病经皮介入治疗指南(2021版) 》,CHD包括室间隔缺损(ventricular septal defect,VSD)、房间隔缺损(atrial septal defect,ASD)、动脉导管未闭(patent ductus arteriosus,PDA)、肺动脉狭窄(pulmonary stenosis,PS)、法洛四联症(tetralogy of fallot,TOF)、左心发育不全综合征(hypoplastic left heart syndrome,HLHS)等[24]。全球新生儿中CHD患病以VSD、ASD为主[25]。上述研究表明,Notch信号通路能够作用于心脏发育各个阶段,Notch基因突变与CHD发病密切相关。
3.2 Notch信号通路异常导致CHD
3.2.1 HLHS
HLHS是以左心室、二尖瓣、主动脉瓣和升主动脉左心部分发育不良为特征的严重单心室CHD。研究表明,Notch靶基因启动子位点赖氨酸甲基转移酶2D(lysine methyltransferase 2D,KMT2D)缺陷会导致HLHS患者冠状动脉畸形[26]。此外,Notch信号通路异常会导致瓣膜形成异常[27],SHF祖细胞中HAND2和Hey2基因缺失分别导致三尖瓣闭锁(tricuspid atresia,TA)和VSD[28]。如阻断心内膜Notch-RBPJ通路会造成RBPJ表达缺失及VSD[29]。因此,Notch下游靶基因缺陷导致冠状动脉畸形从而引起左心部分发育不良,此外Notch信号通路异常使下游信号缺失可导致瓣膜形成异常以及VSD。
3.2.2 TOF
TOF是具有PS、VSD、主动脉骑跨以及右心室肥大4种异常表现的紫绀型先天性心脏畸形。Page等[30]发现,Notch 1基因位点变异会引发非典型性TOF。研究表明,TOF患者右心室OFT蛋白δ样DLK1的表达显著低于对照组,DLK1启动子低甲基化从而抑制DLK1基因的转录活性导致TOF[31],提示Notch 1基因位点变异以及Notch配体基因转录活性下降均会导致TOF。
3.2.3 PDA
PDA是婴儿出生后动脉导管持续未闭保持开放的病理状态,常合并血管畸形,严重时可表现为艾森曼格综合征。Ovali等[32]研究发现,Notch受体对小鼠收缩性平滑肌细胞分化发挥正性作用。此外,JAG1-Notch信号轴也存在于平滑肌细胞中,在血管发育期间可促进平滑肌细胞分化及导管的解剖闭合[33]。因此,Notch受体与配体均可正性调节血管平滑肌细胞分化,其缺失会导致有特定作用的细胞相关基因表达下调,从而影响动脉导管解剖重塑,进而导致PDA。
3.2.4 二叶式主动脉瓣病变
二叶式主动脉瓣病变(bicuspid aortic valve,BAV)在CHD中的发病率仅为1%~2%,目前相关研究较少,病因尚不明确。Kostina等[34]研究发现,左心室OFT畸形患者中Notch 1基因突变与BAV相关,BAV患者主动脉内皮细胞主动下调Notch信号,且所有Notch配体均无法上调EMT,导致Notch信号通路异常,从而引起内皮功能障碍及主动脉壁改变。在BAV患者升主动脉活检过程中发现,Sirtuin 1 (SirT1)的激活与Notch信号通路之间存在负反馈调节[35]。对SirT1敲除小鼠进行研究发现,该小鼠在产前或围产期会死于心脏瓣膜畸形,表明SirT1参与心脏发育与瓣膜形成[36]。综上,这些分子或可作为潜在生物标志物,为BAV的早期诊断提供新思路。
3.2.5 CAVD
Ackah等[37]研究发现,在非综合征型常染色体显性遗传的人类家系中,Notch 1突变会引起一系列发育性主动脉瓣异常和严重的瓣膜钙化,Notch 1的转录本在正在发育的小鼠主动脉瓣中表现活跃,Notch 1信号通路激活的毛发相关转录抑制因子(Hrt)家族与转录因子Runx2相互作用,抑制Runx2转录活性,而Runx2与主动脉瓣钙化密切相关,是成骨细胞的核心转录调节因子。另有研究表明,Notch 1突变可导致钙盐沉积的去抑制,进而导致主动脉瓣钙化[38]。Acharya等[39]对离体猪主动脉瓣钙化模型进行研究发现,抑制Notch信号活性则钙化加速,同时主动下调Notch信号后,转录因子Sox9及其靶基因表达显著下调,反之,刺激Notch信号则钙化减慢,说明Notch信号通路异常可通过不同途径导致主动脉瓣钙化。
3.2.6 ALGS
研究表明,JAG1和Notch 2突变会导致ALGS的发生,且大多数Notch 2突变是错义突变[40]。Gilbert等[41]研究发现,ALGS患者中约94.5%存在JAG1突变(包括错义突变、无义突变、剪接突变等),2.5%的患者存在Notch 2突变,为临床诊断提供了新思路。动物实验表明,小鼠JAG1纯合突变为致死性突变,而JAG1杂合小鼠仅表现为眼部异常,无心脏异常表现,Notch 2单倍剂量不足的小鼠则表现为ALGS特征性多系统病变[42],这表明Notch 2及JAG1对心脏发育均具有重要意义。
4. 小结与展望
综上所述,Notch信号通路在心脏生长发育时期发挥重要调节作用,影响心脏的形态结构及正常功能。该通路异常可通过介导HAND2、Runx2等因子的缺失以及JAG、DLK1等的异常表达导致CHD,未来或可进一步对这一通路的下游信号分子进行检测,从而提高胎儿CHD的检出率。
作者贡献:田坤灵负责查阅整理文献、论文撰写;陈川宁负责论文修订及论文审校。利益冲突:所有作者均声明不存在利益冲突 -
[1] Zhou B H, Lin W L, Long Y L, et al. Notch signaling pathway: architecture, disease, and therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 95. DOI: 10.1038/s41392-022-00934-y
[2] 王雪淞, 周林, 李林材, 等. Notch信号通路调控间充质干细胞的增殖与分化[J]. 中国组织工程研究, 2024, 28(19): 3076-3083. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202419019.htm Wang X S, Zhou L, Li L C, et al. Notch signaling pathway regulates proliferation and differentiation of mesenchymal stem cells[J]. Chin J Tissue Eng Res, 2024, 28(19): 3076-3083. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202419019.htm
[3] 李婷, 程亚楠, 周小平. 阻断Notch信号通路后补益营卫方对衰老皮肤表皮干细胞Notch1、Jagged1、RBP-Jκ和Hes1表达的影响[J]. 中国老年学杂志, 2023, 43(4): 876-880. DOI: 10.3969/j.issn.1005-9202.2023.04.027 Li T, Cheng Y N, Zhou X P. Effect of supplementing Yingwei recipe on expression of Notch1, Jagged1, RBP-Jκ and Hes1 in epidermal stem cells of aging skin after blocking Notch signaling pathway[J]. Chin J Gerontol, 2023, 43(4): 876-880. DOI: 10.3969/j.issn.1005-9202.2023.04.027
[4] 张岩, 谢新明, 韩冬, 等. Notch信号通路与心血管疾病的研究进展[J]. 医学综述, 2016, 22(14): 2748-2750. DOI: 10.3969/j.issn.1006-2084.2016.14.013 Zhang Y, Xie X M, Han D, et al. Notch signal pathway in cardiovascular diseases[J]. Med Recapitulate, 2016, 22(14): 2748-2750. DOI: 10.3969/j.issn.1006-2084.2016.14.013
[5] Buijtendijk M F J, Barnett P, Van Den Hoff M J B. Development of the human heart[J]. Am J Med Genet C Semin Med Genet, 2020, 184(1): 7-22. DOI: 10.1002/ajmg.c.31778
[6] Kraler S, Blaser M C, Aikawa E, et al. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy[J]. Eur Heart J, 2022, 43(7): 683-697. DOI: 10.1093/eurheartj/ehab757
[7] Yang Q, Wu F, Mi Y P, et al. Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2[J]. Cell Prolif, 2020, 53(3): e12764. DOI: 10.1111/cpr.12764
[8] Langa P, Shafaattalab S, Goldspink P H, et al. A perspective on Notch signalling in progression and arrhythmogenesis in familial hypertrophic and dilated cardiomyopathies[J]. Philos Trans R Soc Lond B Biol Sci, 2023, 378(1879): 20220176. DOI: 10.1098/rstb.2022.0176
[9] Poelmann R E, Gittenberger-De Groot A C. Hemodynamics in cardiac development[J]. J Cardiovasc Dev Dis, 2018, 5(4): 54.
[10] Abu Nahia K, Migda M, Quinn T A, et al. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region[J]. Cell Mol Life Sci, 2021, 78(19/20): 6669-6687.
[11] Prados B, Gómez-Apiñániz P, Papoutsi T, et al. Myocardial Bmp2 gain causes ectopic EMT and promotes cardiomyocyte proliferation and immaturity[J]. Cell Death Dis, 2018, 9(3): 399. DOI: 10.1038/s41419-018-0442-z
[12] Andrés-Delgado L, Galardi-Castilla M, Münch J, et al. Notch and Bmp signaling pathways act coordinately during the formation of the proepicardium[J]. Dev Dyn, 2020, 249(12): 1455-1469. DOI: 10.1002/dvdy.229
[13] MacGrogan D, Münch J, De La Pompa J L. Notch and interacting signalling pathways in cardiac development, disease, and regeneration[J]. Nat Rev Cardiol, 2018, 15(11): 685-704. DOI: 10.1038/s41569-018-0100-2
[14] Wang Y D, Lu P F, Jiang L P, et al. Control of sinus venous valve and sinoatrial node development by endocardial NOTCH1[J]. Cardiovasc Res, 2020, 116(8): 1473-1486. DOI: 10.1093/cvr/cvz249
[15] Ye S Q, Wang C K, Xu Z H, et al. Impaired human cardiac cell development due to NOTCH1 deficiency[J]. Circ Res, 2023, 132(2): 187-204. DOI: 10.1161/CIRCRESAHA.122.321398
[16] Tsedeke A T, Allanki S, Gentile A, et al. Cardiomyocyte heterogeneity during zebrafish development and regeneration[J]. Dev Biol, 2021, 476: 259-271. DOI: 10.1016/j.ydbio.2021.03.014
[17] De Zoysa P, Toubat O, Harvey D, et al. Murine model of cardiac defects observed in Adams-Oliver syndrome driven by Delta-like ligand-4 haploinsufficiency[J]. Stem Cells Dev, 2021, 30(12): 611-621. DOI: 10.1089/scd.2021.0058
[18] Rammah M, Théveniau-Ruissy M, Sturny R, et al. PPARγ and NOTCH regulate regional identity in the murine cardiac outflow tract[J]. Circ Res, 2022, 131(10): 842-858. DOI: 10.1161/CIRCRESAHA.122.320766
[19] Neffeová K, Olejníčková V, Naňka O, et al. Development and diseases of the coronary microvasculature and its communication with the myocardium[J]. WIREs Mech Dis, 2022, 14(5): e1560. DOI: 10.1002/wsbm.1560
[20] Travisano S I, Oliveira V L, Prados B, et al. Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade[J]. Elife, 2019, 8: e49977. DOI: 10.7554/eLife.49977
[21] Tomanek R, Angelini P. Embryology of coronary arteries and anatomy/pathophysiology of coronary anomalies. A comprehensive update[J]. Int J Cardiol, 2019, 281: 28-34. DOI: 10.1016/j.ijcard.2018.11.135
[22] Zhang Q, Wang L, Wang S Q, et al. Signaling pathways and targeted therapy for myocardial infarction[J]. Signal Transduct Target Ther, 2022, 7(1): 78. DOI: 10.1038/s41392-022-00925-z
[23] McCallinhart P E, Biwer L A, Clark O E, et al. Myoendothelial junctions of mature coronary vessels express notch signaling proteins[J]. Front Physiol, 2020, 11: 29. DOI: 10.3389/fphys.2020.00029
[24] 国家卫生健康委员会国家结构性心脏病介入质量控制中心, 国家心血管病中心结构性心脏病介入质量控制中心, 中华医学会心血管病学分会先心病经皮介入治疗指南工作组, 等. 常见先天性心脏病经皮介入治疗指南(2021版)[J]. 中华医学杂志, 2021, 101(38): 3054-3076. DOI: 10.3760/cma.j.cn112137-20210730-01696 National Center for Quality Control of Structural Heart Disease Intervention, National Health Commission, National Cardiovascular Center Structural Heart Disease Intervention Quality Control Center, Working Group on Guidelines for Percutaneous Interventional Treatment of Congenital Heart Disease, Cardiovascular Branch of the Chinese Medical Association, et al. Guidelines for percutaneous interventional treatment of common congenital heart disease (2021 edition)[J]. Natl Med J China, 2021, 101(38): 3054-3076. DOI: 10.3760/cma.j.cn112137-20210730-01696
[25] 艾珊珊, 何爱彬. 先天性心脏病基础研究进展[J]. 协和医学杂志, 2021, 12(3): 291-297. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202103002.htm Ai S S, He A B. Advances in basic research of congenital heart disease[J]. Med J PUMCH, 2021, 12(3): 291-297. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202103002.htm
[26] Yu Z Y, Zhou X, Liu Z Y, et al. KMT2D-NOTCH mediates coronary abnormalities in hypoplastic left heart syndrome[J]. Circ Res, 2022, 131(3): 280-282. DOI: 10.1161/CIRCRESAHA.122.320783
[27] Miao Y F, Tian L, Martin M, et al. Intrinsic endocardial defects contribute to hypoplastic left heart syndrome[J]. Cell Stem Cell, 2020, 27(4): 574-589. e8. DOI: 10.1016/j.stem.2020.07.015
[28] Yu Z Y, Pek N M Q, Gu M X. Delving into the molecular world of single ventricle congenital heart disease[J]. Curr Cardiol Rep, 2022, 24(5): 463-471. DOI: 10.1007/s11886-022-01667-8
[29] Salguero-Jiménez A, Grego-Bessa J, D'Amato G, et al. Myocardial Notch1-Rbpj deletion does not affect NOTCH signaling, heart development or function[J]. PLoS One, 2018, 13(12): e0203100. DOI: 10.1371/journal.pone.0203100
[30] Page D J, Miossec M J, Williams S G, et al. Whole exome sequencing reveals the major genetic contributors to nonsyndromic Tetralogy of Fallot[J]. Circ Res, 2019, 124(4): 553-563. DOI: 10.1161/CIRCRESAHA.118.313250
[31] Tian G X, He L L, Gu R Y, et al. CpG site hypomethylation at ETS1 binding region regulates DLK1 expression in Chinese patients with Tetralogy of Fallot[J]. Mol Med Rep, 2022, 25(3): 93. DOI: 10.3892/mmr.2022.12609
[32] Ovali F. Molecular and mechanical mechanisms regulating ductus arteriosus closure in preterm infants[J]. Front Pediatr, 2020, 8: 516. DOI: 10.3389/fped.2020.00516
[33] Salvador J, Hernandez G E, Ma F Y, et al. Transcriptional evaluation of the ductus arteriosus at the single-cell level uncovers a requirement for vim (vimentin) for complete closure[J]. Arterioscler Thromb Vasc Biol, 2022, 42(6): 732-742. DOI: 10.1161/ATVBAHA.121.317172
[34] Kostina A S, Uspensky V E, Irtyuga O B, et al. Notch-dependent EMT is attenuated in patients with aortic aneurysm and bicuspid aortic valve[J]. Biochim Biophys Acta, 2016, 1862(4): 733-740. DOI: 10.1016/j.bbadis.2016.02.006
[35] Abudupataer M, Zhu S C, Yan S Q, et al. Aorta smooth muscle-on-a-chip reveals impaired mitochondrial dynamics as a therapeutic target for aortic aneurysm in bicuspid aortic valve disease[J]. Elife, 2021, 10: e69310. DOI: 10.7554/eLife.69310
[36] Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity[J]. Front Pharmacol, 2022, 13: 1035387. DOI: 10.3389/fphar.2022.1035387
[37] Ackah R L, Yasuhara J, Garg V. Genetics of aortic valve disease[J]. Curr Opin Cardiol, 2023, 38(3): 169-178. DOI: 10.1097/HCO.0000000000001028
[38] Garg V, Muth A N, Ransom J F, et al. Mutations in NOTCH1 cause aortic valve disease[J]. Nature, 2005, 437(7056): 270-274. DOI: 10.1038/nature03940
[39] Acharya A, Hans C P, Koenig S N, et al. Inhibitory role of Notch1 in calcific aortic valve disease[J]. PLoS One, 2011, 6(11): e27743. DOI: 10.1371/journal.pone.0027743
[40] Kohut T J, Gilbert M A, Loomes K M. Alagille syndrome: a focused review on clinical features, genetics, and treatment[J]. Semin Liver Dis, 2021, 41(4): 525-537. DOI: 10.1055/s-0041-1730951
[41] Gilbert M A, Bauer R C, Rajagopalan R, et al. Alagille syndrome mutation update: comprehensive overview of JAG1 and NOTCH2 mutation frequencies and insight into missense variant classification[J]. Hum Mutat, 2019, 40(12): 2197-2220. DOI: 10.1002/humu.23879
[42] Meester J A N, Verstraeten A, Alaerts M, et al. Overlapp-ing but distinct roles for NOTCH receptors in human cardiovascular disease[J]. Clin Genet, 2019, 95(1): 85-94. DOI: 10.1111/cge.13382