Clinical Application of Ultrasound-guided RISS Plane Block for Postoperative Analgesia After Minimally Invasive McKeown Esophagectomy: A Prospective Randomized Controlled Study
-
摘要:目的
探讨超声引导下菱形肌-肋间肌-低位前锯肌平面(rhomboid intercostal and subserratus plane, RISS)阻滞对微创McKeown食管癌根治术(minimally invasive McKeown esophagectomy, MIE-McKeown)患者术后镇痛的安全性和有效性,以期为微创食管癌手术患者术后镇痛方案选择提供新思路。
方法前瞻性收集2022年3月—2023年6月于重庆大学附属涪陵医院胸心外科行MIE-McKeown术患者的临床资料,采用随机数字表法将入组患者分为A、B、C 3组:A组采用持续RISS阻滞+患者自控静脉镇痛(patient-controlled intravenous analgesia, PCIA)策略,B组采用单次RISS阻滞+PCIA策略,C组采用单纯PCIA策略。记录并比较各组主要及次要结局指标:(1)镇痛效果[术后2 h、6 h、12 h、24 h、48 h的静息和咳嗽视觉模拟量表(visual analogue scale, VAS)疼痛评分];(2)术后镇痛药物使用情况[术后24 h内舒芬太尼用量、镇痛泵有效按压次数和补救性镇痛追加次数];(3)术后镇痛期间不良反应发生情况(头晕、嗜睡、恶心呕吐、低血压、尿潴留等);(4)术中血流动力学指标[不同时间点平均动脉压(mean arterial pressure, MAP)和心率];(5)镇痛满意度。其中(1)(2)(3)为主要结局指标,(4)(5)为次要结局指标。
结果共96例符合纳入和排除标准的患者入选本研究,A、B、C每组各32例。A组患者术后2 h、6 h、12 h、24 h、48 h静息和咳嗽VAS评分均低于C组,且术后2 h、24 h的静息VAS评分及术后12 h、24 h的咳嗽VAS评分均低于B组;B组患者术后2 h、6 h、12 h的静息VAS评分及2 h、6 h、12 h、24 h、48 h的咳嗽VAS评分均低于C组,差异均具有统计学意义(P均<0.05)。术后24 h内舒芬太尼用量、镇痛泵有效按压次数及补救性镇痛的追加次数在A、B、C 3组之间逐渐增加,差异具有统计学意义(P均<0.001)。C组头晕、恶心呕吐发生率均高于A、B组(P均<0.05)。3组患者在麻醉诱导前(T0)、切皮即刻(T1)、切皮后5 min(T2)、拔管后5 min(T3)的MAP和心率差异均无统计学意义(P均>0.05)。A、B、C 3组镇痛满意度依次降低(P<0.05)。
结论超声引导下RISS阻滞可为MIE-McKeown术患者提供良好的术后镇痛,作为多模式镇痛的积极探索,持续RISS镇痛效果更佳,值得临床进一步推广使用。
-
关键词:
- 超声引导 /
- 菱形肌-肋间肌-低位前锯肌平面阻滞 /
- 微创McKeown食管癌根治术 /
- 术后镇痛
Abstract:ObjectiveTo explore the clinical effect, safety and effectiveness of ultrasound-guided rhomboid intercostal and subserratus plane (RISS) block for postoperative analgesia after minimally invasive McKeown esophagectomy (MIE-McKeown), and provide new ideas for the selection of postoperative analgesia programs for minimally invasive esophageal cancer surgery patients.
MethodsA prospective randomized controlled study design was used to collect data. Patients undergoing MIE-McKeown in the Department of cardiothoracic surgery of Fuling Hospital of Chongqing University from March 2022 to June 2023 were prospectively collected as research objects. They were divided into three groups by random number table method: Group A: continuous RISS plane block+patient controlled intravenous analgesia (PCIA), Group B: single RISS plane block+PCIA, and Group C: control group, simple PCIA. The outcome indicators of each group were recorded and compared: ①Analgesic effect [visual analogue scale (VAS) pain score for rest and cough at 2, 6, 12, 24, and 48 hours after surgery], ②Postoperative use of analgesics [the amount of sufentanil used within 24 hours after surgery, the number of effective presses of the analgesia pump and the number of additional rescue analgesia], ③Adverse reactions during postoperative analgesia [dizziness, lethargy, postoperative nausea and vomiting(PONV), hypotension, respiratory depression, urinary retention, etc.], ④Intraoperative hemodynamic indicators [mean arterial pressure (MAP) and heart rate (HR) at different time points], ⑤Analgesia satisfaction. ①②③ were the primary outcome indicators, and ④⑤were the secondary outcome indicators.
ResultsA total of 96 patients who met the inclusion and exclusion criteria were enrolled, with 32 cases in each group. Group A patients had lower resting and cough VAS scores at 2, 6, 12, 24, and 48 hours after surgery compared to Group C. Group A had lower resting VAS scores at 2, 24 hours after surgery and lower cough VAS scores at 12, 24 hours after surgery compared to Group B. Group B patients had significantly lower resting VAS scores at 2, 6, 12 hours after surgery and lower cough VAS scores at 2, 6, 12, 24, and 48 hours after surgery compared to Group C (all P < 0.05). The dosage of sufentanil, the number of effective compressions of the analgesic pump, and the additional number of remedial analgesia gradually increased between groups A, B, and C within 24 hours after surgery, with statistical differences (all P < 0.01). The incidence of dizziness and PONV in Group C was higher than that in Groups A and B, respectively (both P < 0.05). There were no statistically significant differences in MAP and HR among the three groups of patients before anesthesia induction (T0), immediately after skin incision (T1), 5 minutes after skin incision (T2), and 5 minutes after extubation (T3) (all P > 0.05). The satisfaction with pain relief in Group A, Group B, and Group C decreased sequentially(P < 0.05).
ConclusionsUltrasound guided RISS block can provide good postoperative analgesia for MIE-McKeown surgery. As an active exploration of multimodal analgesia, continuous RISS has better analgesic effects. It is safe, effective, and worthy of further clinical promotion and use.
-
骨成熟度的评估对于生长发育异常患儿的诊断、治疗及随访具有重要作用[1]。目前临床主要通过拍摄左手及腕部X线片评估骨龄以了解骨成熟度,但其具有辐射风险,且存在来源人群陈旧、一致性低、复杂费时等问题[2-3]。而超声可清晰显示发育期低回声骺软骨及其内强回声的次级骨化中心并进行相应测量,且无辐射,可用于动态随诊[4]。基于发育过程中长骨关节端的大体及微观特点[5-6],本研究结合长骨关节端声像表现,初步探索采用超声骺软骨厚度(ultrasonic epiphysis cartilage thickness, UECT)定量评估骺软骨发育情况并分析其与骨龄的相关性,以期为骨成熟度评估提供新思路。
1. 资料与方法
1.1 研究对象
本研究为前瞻性观察性研究,以2023年3—6月就读于济宁市某体校的青少年为研究对象,记录年龄、身高等信息。纳入标准:(1)年龄为7~18岁;(2)外形及营养状况良好。排除标准:(1)患有可能导致生长发育异常的慢性肝肾疾病、骨骼系统疾病、内分泌遗传综合征等;(2)超声或骨龄X线图像质量差、无法识别;(3)手和腕部及膝关节组成骨存在近期骨折史。
本研究已通过北京协和医院伦理审查委员会审批(审批号:K4393),研究对象或其亲属均签署知情同意书。
1.2 研究方法
1.2.1 X线检查
于1周内行X线骨龄检查,并由1名具有15年阅读骨龄片经验的内分泌科医师使用Greulich-Pyle(GP)图谱法评估骨龄。
1.2.2 超声检查
分别由具有20年及8年超声工作经验的2名医师针对非优势侧手、腕部及膝关节7个组成部位进行超声检查(GE Logiq E20彩色多普勒超声诊断仪),探头选用L6-24靴型探头及L2-9线阵探头。首先使患者手背朝上,采用L6-24靴型探头顺序扫查第三掌骨头部背侧正中矢状面、尺骨茎突冠状面、桡骨茎突冠状面。随后使患者采取俯卧位,暴露膝关节背侧,采用L2-9线阵探头扫查股骨内上髁冠状面、股骨外上髁冠状面、胫骨背侧正中矢状面、胫骨内侧髁冠状面。所有切面均清晰显示干骺端、次级骨化中心及骺软骨。
1.2.3 UECT测量
首先沿骨干强回声带外缘内侧作骨干方向延长线,其与骨干强回声带外缘产生交点,随后根据次级骨化中心所示强回声带的形状选择相应测量方法:(1)若呈从骨干向关节端下降的抛物线形,则以次级骨化中心骨干端外缘顶点与前述骨干外缘交点的距离作为UECT;(2)若呈半圆形,作与前述骨干方向延长线的平行线,其中与次级骨化中心强回声带相切的切点与前述骨干外缘交点距离为UECT(图 1、2)。对于单个研究对象的多部位UECT联合分析,则将各部位UECT之和作为总UECT并分析其与骨龄的相关性。
图 1 次级骨化中心呈从骨干向关节端下降的抛物线形(A)和半圆形(B)强回声带(UECT勾画示意图)Dia(diaphysis):骨干;Soc(secondary ossification center):次级骨化中心;UECT(ultrasonic epiphyseal cartilage thickness):超声骺软骨厚度Figure 1. The schematic diagram depicts the way to measure UECT when secondary ossification center shows a parabolic strong echo zone descending from the diaphysis to the joint end (A) and a semicircular strong echo band(B)图 2 次级骨化中心呈从骨干向关节端下降的抛物线形(A~G)和半圆形(a~g)强回声带(7个部位UECT超声图示)A.第三掌骨头部背侧正中矢状面;B.尺骨茎突冠状面;C.桡骨茎突冠状面;D.股骨内上髁冠状面;E.股骨外上髁冠状面;F.胫骨背侧正中矢状面;G.胫骨内侧髁冠状面Figure 2. Ultrasound diagram of UECT at 7 sites when the secondary ossification center shows a parabolic strong echo zone descending from the diaphysis to the joint end(A-G) and a semicircular strong echo band(a-g)A.dorsal median sagittal plane of the third metacarpal head(MCP3); B.coronal plane of ulnar styloid process(Ulna); C.coronal plane of radial styloid process(Radius); D.coronal plane of medial epicondyle of femur(FM); E.coronal plane of lateral epicondyle of femur(FL); F.median sagittal plane of dorsal tibia(TD); G.coronal plane of medial condyle of tibia(TM)
UECT: 同图 11.2.4 重复测量信度检验
以组内相关系数(intraclass correlation coefficient, ICC)评估UECT测量的信度与可重复性。研究按照性别与骨龄采用分层抽样法随机抽取50人超声图像,由另一操作者再次测量UECT值,计算ICC并评估一致性。
1.3 样本量估算
采用G*power 3.1.9.7软件分析纳入的样本量,参数选择效应量f2=0.15、α=0.05,β=0.80,计算所需最小样本量为55例。
1.4 统计学处理
采用R Studio 4.3.0软件进行统计学分析。正态性分析采用Shapiro-Wilk检验,年龄、骨龄及身高均不符合正态分布,以中位数(四分位数)表示。组间比较采用秩和检验。计数资料以频数(百分数)表示,组间比较采用卡方检验。采用Spearman法分析UECT与骨龄的相关性,高低分级参考前述研究[7],|r|为0.5~0.7表示中度相关;|r|为0.7~0.9表示高度相关;|r|为0.9~1.0表示非常高度相关。采用SPSS 24.0软件进行ICC分析,计算参数选择single measurement、2-way random effects、absolute agreement,ICC≥0.75为一致性较好,ICC<0.4为一致性较差。以P<0.05为差异具有统计学意义。
2. 结果
2.1 一般资料
共纳入141名青少年,其中男性80名,女性61名。中位年龄为13(12,14)岁。男性身高显著高于女性(表 1)。男性中位骨龄15(13,17)岁,女性中位骨龄16(14,17)岁。男女骨龄与年龄差值>1岁者分别占比60%、67%。男女年龄、身高及骨龄分布见图 3。
表 1 男性与女性一般资料比较Table 1. General information between male and female项目 男性(n=80) 女性(n=61) P值 年龄[M(P25, P75),岁] 13(12, 14) 13(12, 14) 0.52 骨龄[M(P25, P75),岁] 15(13, 17) 16(14, 17) 0.40 骨龄-年龄>1岁[n(%)] 48(60) 41(67) 0.48 身高[M(P25, P75),cm] 175.3 (167.8, 181.4) 167.1 (161.4, 173.2) <0.001 2.2 发育过程长骨关节端的声像表现
利用超声观察不同骨龄阶段研究对象的长骨关节端,其声像表现存在以下规律:生长发育初期,次级骨化中心首先在低回声骨骺中央萌出,声像图显示为小半圆形强回声带。次级骨化中心进一步扩展增大,但仍然保持半圆形的形状。随着骨成熟度提高,次级骨化中心所示强回声带呈从骨干向关节端下降的似抛物线形,强回声带的骨干端从低于骨干外缘逐渐上升至与其平齐。生长晚期至终止时,次级骨化中心与骨干不断接近,最终形成一条完整、平滑的强回声带,关节面被覆薄层低回声关节软骨(图 4)。
2.3 UECT与骨龄相关性
男、女7个部位的UECT均随骨龄增长而减小,至骨龄18岁时测量值趋近于0(表 2、3)。各部位UECT与骨龄均呈负相关,男性单部位UECT与骨龄均呈高度负相关(|r|≥0.83),而女性单部位UECT与骨龄呈中高度负相关(0.65≤|r|≤0.75)(表 4)。
表 2 不同骨龄男性青少年7个部位的UECT测值[M(P25, P75),mm]Table 2. Measured values of UECT at 7 sites in male adolescents of different bone ages[M(P25, P75), mm]骨龄(岁) MCP3 Ulna Radius FM FL TD TM 8(n=1) 1.4 4.2 5.4 5.0 2.6 3.0 4.7 9(n=1) 1.4 3.0 4.8 5.7 3.7 3.4 3.5 11(n=6) 1.7(1.3, 2.2) 3.2(2.7, 3.5) 4.2(4.0, 4.9) 3.5(2.4, 4.2) 2.5(2.2, 2.7) 3.6(2.8, 4.1) 4.0(3.5, 4.8) 12(n=3) 1.3(1.2, 1.9) 4.4(3.6, 5.2) 4.9(3.7, 5.5) 2.4(2.15, 3) 3.1(2.7, 3.8) 1.6(1.5, 2.1) 4.5(4.5, 4.8) 12.5(n=1) 1.0 2.6 3.1 2.1 2.4 2.3 2.8 13(n=11) 1.4(0.9, 1.5) 2.5(2.1, 2.9) 3.0(2.6, 3.3) 2.0(1.3, 2.6) 2.9(2.3, 3.0) 1.8(1.7, 2.0) 3.0(2.6, 3.2) 13.5(n=2) 1.5(1.2, 1.9) 3.0(2.9, 3.0) 3.1(3.0, 3.2) 1.9(1.9, 1.9) 1.7(1.6, 1.9) 3.0(2.4, 3.5) 2.7(2.5, 2.8) 14(n=7) 0.8(0.7, 0.9) 2.0(1.5, 2.1) 2.2(1.9, 2.9) 1.8(1.4, 2.0) 2.0(1.3, 2.3) 1.6(1.2, 2.2) 2.1(2.0, 3.3) 15(n=11) 0.6(0.6, 0.7) 1.9(1.5, 2.2) 2.2(1.6, 2.3) 1.5(1.1, 1.9) 1.7(0.9, 2.7) 1.2(0.7, 1.8) 2.2(1.3, 2.5) 16(n=4) 0.4(0.2, 0.4) 1.1(0.9, 1.4) 1.2(0.8, 1.7) 0.8(0.6, 1.0) 1.2(1.0, 1.3) 0.7(0.5, 0.8) 1.3(1.1, 1.4) 17(n=19) 0.1(0, 0.4) 1.3(0.7, 1.7) 1.3(1.1, 1.5) 0(0, 0.8) 0.9(0.6, 1.4) 0(0, 0.7) 0.6(0, 1.3) 18(n=14) 0(0, 0) 0.6(0.4, 1.0) 0.6(0.4, 0.9) 0(0, 0) 0(0, 0.4) 0(0, 0) 0(0, 0) 表 3 不同骨龄女性青少年7个部位的UECT测值[M(P25, P75),mm]Table 3. Measured values of UECT at 7 sites in female adolescents of different bone ages [M(P25, P75), mm]骨龄(岁) MCP3 Ulna Radius FM FL TD TM 7(n=1) 1.7 4.7 6.4 3.1 3.8 1.5 2.3 8(n=1) 2.0 5.4 4.9 1.8 4.0 3.8 3.0 11(n=2) 1.1(1.0, 1.2) 2.4(2.0, 2.7) 3.4(2.6, 4.3) 2.5(2.2, 2.7) 2.2(1.7, 2.6) 1.9(1.8, 1.9) 1.7(1.4, 1.9) 11.5(n=1) 0.7 1.5 2.6 2.9 1.9 1.4 2.4 12(n=2) 0.9(0.8, 0.9) 1.9(1.9, 2.0) 2.1(2.0, 2.3) 1.5(1.4, 1.6) 1.7(1.7, 1.8) 0.9(0.9, 1.0) 4.4(4.0, 4.7) 13(n=7) 0.5(0.4, 0.6) 1.7(1.1, 1.8) 1.7(1.5, 1.9) 1.3(1.1, 2.0) 1.1(1.0, 1.3) 1.1(0.8, 1.4) 1.9(1.0, 2.7) 14(n=3) 0.3(0.3, 0.7) 1.3(1.3, 1.8) 1.3(1.2, 1.8) 1.4(0.7, 2.1) 1.0(1.0, 1.3) 0.6(0.3, 0.7) 1.3(1.2, 1.3) 15(n=4) 0.5(0.3, 0.5) 1.9(1.5, 2.1) 1.6(1.5, 1.7) 1.1(0.6, 1.6) 0.9(0.7, 1.4) 0.9(0.6, 1.3) 0.8(0.3, 1.5) 16(n=13) 0(0, 0) 0.9(0.9, 1.1) 0.8(0.6, 1.2) 0(0, 0.6) 0.9(0.5, 1.5) 0(0, 0) 0(0, 0.5) 17(n=19) 0(0, 0.2) 0.8(0.6, 1.1) 1.1(1.0, 1.4) 0(0, 0.7) 0.5(0, 1.0) 0(0, 0.2) 0(0, 0.2) 18(n=8) 0(0, 0) 0.4(0.2, 0.7) 0.6(0.4, 0.8) 0(0, 0) 0(0, 0.1) 0(0, 0) 0(0, 0) 表 4 单部位UECT与骨龄的相关系数(r)Table 4. Correlation coefficient between single-site UECT and bone age性别 MCP3 Ulna Radius FM FL TM TD 男 -0.84 -0.85 -0.90 -0.83 -0.80 -0.87 -0.86 女 -0.74 -0.71 -0.69 -0.67 -0.65 -0.75 -0.71 MCP3、Ulna、Radius、FM、FL、TD、TM:同图 2 男、女7个部位UECT总和与骨龄的负相关性均达到较高水平(男:|r|=0.93;女:|r|=0.80)(表 5), 单独选取手和腕部3个部位或膝关节4个部位时,女性UECT总和与骨龄高度负相关(|r|≥0.76),而男性则表现出非常高度负相关性(|r|≥0.90)(表 6)。
表 5 7个部位UECT总和与骨龄及年龄的相关系数(r)Table 5. Correlation between the sum of UECT at 7 sites and bone age or chronological age性别 骨龄 年龄 男 -0.93 -0.79 女 -0.80 -0.64 表 6 多部位UECT总和与骨龄的相关系数Table 6. Correlation coefficient between UECT sum of different sites and bone age性别 FL+TM+TD FM+TM+TD knee joint hand and wrist all 男 -0.91 -0.92 -0.93 -0.90 -0.93 女 -0.80 -0.76 -0.79 -0.77 -0.80 FL、FM、TM、TD:同图 2;knee joint:膝关节4个部位UECT总和;hand and wrist:手和腕部3个部位UECT总和;all:7个部位UECT总和 2.4 不同操作者测量UECT的可重复性
7个部位UECT测量的一致性分析均具有显著统计学意义(P均<0.001),ICC值均≥0.75提示各部位UECT测量一致性均较好(表 7)。
表 7 UECT测量的一致性分析Table 7. Consistency analysis of UECT measurements部位 ICC 95% CI MCP3 0.91 0.79~0.96 Ulna 0.95 0.84~0.98 Radius 0.91 0.78~0.97 FM 0.98 0.95~0.99 FL 0.93 0.83~0.97 TD 0.93 0.83~0.97 TM 0.95 0.89~0.98 MCP3、Ulna、Radius、FM、FL、TD、TM:同图 2;ICC(intraclass correlation coefficient): 组内相关系数 3. 讨论
本研究显示,UECT与骨龄呈中至高度负相关,提示UECT可一定程度上反映发育过程中骺软骨的变化,具有较好的可重复性,可用于骨成熟度水平定量评估。声像图显示发育过程中长骨次级骨化中心形态变化及其与骨干的位置关系改变,与大体及微观研究结果相符[5-6]。与其他利用骨骺生长发育过程中声像改变划分阶段推测法医学年龄的研究不同[8-9],本研究以UECT连续定量评估骨成熟度,而Torenek等[10]根据手和腕部的所有指骨和桡骨远端骨骺以及第一掌骨头部的籽骨共13个部位的声像表现构建半定量评估系统,结果发现除第一、二指骨近节指骨外,超声与X线的评分结果无统计学差异(P<0.05)。本研究发现,UECT与骨龄相关性在不同性别中存在差异,男性单个及多个部位均表现为高度负相关,而女性多为中度负相关,分析原因可能是大骨龄女性比例较高(16~18岁骨龄的女性占比67%),且女性的发育起点和终点均早于男性,使女性UECT值多数较低,未来可通过控制研究群体的分布开展进一步研究。
多项研究通过测量发育过程中长骨关节端结构进行骨成熟度评估,Castriota-Scanderbeg等[11-12]研究发现,无骨龄提前或延后的研究对象股骨头软骨超声测量厚度与年龄、骨龄、身高等均高度相关,但对于发育异常对象而言,该方法与放射学评估的一致性较低。本研究显示,男女UECT与骨龄均呈负相关性,且明显高于其与年龄的相关性(表 5),说明UECT可反映研究对象的发育提前特点。
另有多个研究聚焦于骨关节端的次级骨化中心研究。Sherif等[13]利用超声测量正常儿童的根骨体积并以此作为标准准确预测了验证组健康儿童的年龄,但从出生后第5年开始根骨的体积增长率仅为12%左右,因此其应用范围较有限,也缺乏在发育异常患儿中的验证。Windschall等[14]利用超声测量早产儿与足月儿的股骨远端及胫骨近端次级骨化中心大小并评估其与胎龄的相关性,发现存在中度相关(R2=0.35~0.50)。Wan等[15-17]将骨化中心最大直径与无回声骨骺最大直径比值定义为骨化率,发现桡骨茎突冠状面、尺骨茎突冠状面、股骨内上髁冠状面三者的骨化率总和与骨龄呈正相关(r=0.97),对异常骨龄具有非常高的诊断性与特异性(灵敏度≥93%,特异度≥98%)。骨化率反映了骺软骨骨化不断扩大并最终发育成骨关节末端的过程,而UECT则反映骨化中心不断接近骨干端至最后愈合的过程。前者是比值型指标,受身高影响可能更小,但关节端的骺软骨与发育成熟后保留于骨表面的薄层关节软骨均表现为同质性的低回声[18],常难以获得准确的骨骺最大直径。有研究采用手和腕部以及膝关节X线片测量数个长骨次级骨化中心以及骨干的横径比来评估骨成熟度,结果均表现为高度相关[19-20],而本研究声像图显示,发育成熟过程中长骨的次级骨化中心往往先上升至与骨干外缘同一高度,随后表现为二者间骺软骨不断变薄至消失,因此前述方法可能对生长发育晚期的变化描述有限。
本研究局限性:(1)单中心研究;(2)研究对象多处于发育晚期,骨成熟度呈偏态分布;(3)对次级骨化中心的研究不足,可确定次级骨化中心形成似抛物线形及其骨干端与骨干外缘相平齐所对应的成熟度水平,进一步划分发育阶段;(4)缺乏与放射学方法评估骨龄的一致性评价。
综上所述,超声可观察描述长骨关节端的生长发育变化,UECT与骨龄表现出中至高度负相关,具有用于骨成熟度定量评估的潜在价值。
作者贡献:罗富超负责收集、分析数据,撰写论文;吴旌、钟斌、吕兵、黄国刚负责收集数据;程鹏、刘洋、张泽学、韦晓红负责核对、整理数据;张俊华负责课题设计、指导论文修订。利益冲突:所有作者均声明不存在利益冲突 -
图 1 RISS操作示意图
A.经导管将局麻药注入菱形肌与肋间肌之间的深筋膜平面内;B.经导管将局麻药注入前锯肌与肋间肌之间的筋膜平面;C.超声验证导管位置
Figure 1. RISS operation diagram
A.Inject local anesthetic into the deep fascia plane between the rhombic muscle and intercostal muscle through a catheter; B.Inject local anesthetic into the fascia plane between the serratus anterior and intercostal muscles through a catheter; C.Ultrasound verification of catheter position
RISS(rhomboid intercostal and subserratus plane): 菱形肌-肋间肌-低位前锯肌平面; RMi: 小菱形肌; RMa: 大菱形肌; Trap: 斜方肌; ToA: 听诊三角; SA: 前锯肌; LD: 背阔肌; LA: 局麻药图 2 研究对象入组流程图
BMI(body mass index):体质量指数;PCIA(patient-controlled intravenous analgesia):患者自控静脉镇痛; RISS:同图 1
Figure 2. Enrollment process of subjects
表 1 患者一般资料
Table 1 General information of patients
指标 A组(n=32) B组(n=32) C组(n=32) 性别[n(%)] 男性 22(68.75) 23(71.88) 24(75.00) 女性 10(31.25) 9(28.12) 8(25.00) 年龄(x±s, 岁) 54.69±8.83 56.06±9.08 53.44±9.72 BMI(x±s, kg/m2) 22.35±1.16 22.22±1.44 22.62±1.32 ASA分级[n(%)] Ⅰ级 8(25.00) 9(28.12) 12(37.50) Ⅱ级 24(75.00) 23(71.88) 20(62.50) 手术时间(x±s, min) 250.29±49.11 264.88±46.32 244.04±61.27 肿瘤位置[n(%)] 食管上段 3(9.38) 6(18.74) 3(9.38) 食管中段 14(43.75) 13(40.63) 12(37.50) 食管下段 15(46.87) 13(40.63) 17(53.12) 病理类型[n(%)] 鳞癌 31(96.88) 31(96.88) 31(96.88) 腺癌 1(3.12) 1(3.12) 1(3.12) 病理分期[n(%)] Ⅰ期 7(21.88) 9(28.13) 5(15.63) Ⅱ期 15(46.87) 8(25.00) 19(59.37) Ⅲ期 10(31.25) 15(46.87) 8(25.00) ASA(American Society of Anesthesiologists):美国麻醉医师协会;BMI:同图 2 表 2 患者术后各时间点视觉模拟量表疼痛评分比较(x±s)
Table 2 Pain scores on visual analogue scales at different postoperative time points(x±s)
状态 组别 术后2 h 术后6 h 术后12 h 术后24 h 术后48 h 静息 A组(n=32) 0.31±0.19ac 1.52±0.44ab 1.77±0.77ab 2.16±0.50bc 0.98±0.10abc B组(n=32) 0.53±0.19a 1.25±0.40ab 2.11±0.53ab 3.24±0.59b 1.22±0.46b C组(n=32) 1.69±0.45 4.41±1.42a 4.29±0.80b 3.36±0.75b 1.33±0.43b 咳嗽 A组(n=32) 1.11±0.45a 1.76±1.05ab 2.09±0.74abc 2.93±0.49abc 2.27±0.51ab B组(n=32) 1.18±0.48a 2.04±0.92ab 2.88±0.87ab 3.41±0.76ab 2.18±0.46ab C组(n=32) 3.60±1.92 3.95±1.53 4.78±0.81b 4.62±0.80b 2.61±0.69b 注:与术后2 h时比较,aP<0.05;与C组比较,bP<0.05;与B组比较,cP<0.05 表 3 患者术后镇痛药物使用情况比较
Table 3 Postoperative analgesic drug use among patients
变量 A组(n=32) B组(n=32) C组(n=32) F/H值 P值 舒芬太尼用量(x±s, μg) 52.51±4.07 61.77±5.01 74.06±8.67 95.902 <0.001 镇痛泵按压次数(x±s, 次) 1.28±1.02 2.78±1.31 4.71±1.88 45.003 <0.001 补救镇痛追加次数[M(Q),次] 6.00(6.25) 8.50(10.00) 16.00(14.25) 22.495 <0.001 表 4 患者术后镇痛期间不良反应发生情况比较[n(%)]
Table 4 Adverse reactions during postoperative analgesia in patients[n(%)]
不良反应 A组(n=32) B组(n=32) C组(n=32) χ2值 P值 头晕 2(6.25) 3(9.38) 9(28.13) 7.192 0.027 嗜睡 0(0) 0(0) 1(3.13) 2.021 0.364 恶心呕吐 2(6.25) 3(9.38) 10(31.25) 9.007 0.011 低血压 0(0) 1(3.13) 1(3.13) 1.021 0.600 尿潴留 1(3.13) 0(0) 2(6.25) 2.605 0.356 表 5 患者术中血流动力学指标比较(x±s)
Table 5 Intraoperative hemodynamic indicators in patients(x±s)
指标 组别 T0 T1 T2 T3 MAP(mm Hg) A组(n=32) 92.75±7.55 80.50±7.67 92.32±8.02 92.95±6.98 B组(n=32) 94.14±8.90 79.74±8.98 93.11±7.98 93.92±8.60 C组(n=32) 95.65±6.92 79.17±9.20 96.26±4.25 94.12±5.99 F值 1.093 0.191 3.849 0.445 P值 0.340 0.826 0.053 0.507 心率(次/min) A组(n=32) 75.63±10.04 64.01±6.51 69.56±8.65 73.99±9.88 B组(n=32) 76.41±10.58 61.81±6.72 74.76±8.51 72.58±9.75 C组(n=32) 78.84±8.86 63.22±6.75 73.55±7.99 74.57±7.80 F值 0.998 0.888 3.419 0.482 P值 0.372 0.415 0.067 0.498 MAP(mean arterial pressure):平均动脉压 表 6 患者术后镇痛满意度比较[n(%)]
Table 6 Postoperative analgesia satisfaction among patients[n(%)]
满意度 非常不满意 不满意 基本满意 比较满意 满意 A组(n=32) 0(0) 2(6.25) 13(37.50) 10(31.25) 8(25.00) B组(n=32) 1(3.13) 3(9.38) 16(50.00) 7(21.88) 5(15.63) C组(n=32) 4(12.50) 11(34.38) 14(43.75) 2(6.25) 1(3.13) H值 22.903 P值 <0.001 -
[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660
[2] 郑荣寿, 张思维, 孙可欣, 等. 2016年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2023, 45(3): 212-220. DOI: 10.3760/cma.j.cn112152-20220922-00647 Zheng R S, Zhang S W, Sun K X, et al. Cancer statistics in China, 2016[J]. Chin J Oncol, 2023, 45(3): 212-220. DOI: 10.3760/cma.j.cn112152-20220922-00647
[3] Berlth F, Hadzijusufovic E, Mann C, et al. Minimally invasive esophagectomy for esophageal cancer[J]. Ther Umsch, 2022, 79(3/4): 181-187.
[4] Chen Y, Xie Y J, Zhang H, et al. Modified McKeown vs. traditional McKeown minimally invasive esophagectomy in improving short-term efficacy and the quality of life of esophageal cancers: a retrospective comparative cohort study[J]. J Gastrointest Oncol, 2022, 13(4): 1579-1588. DOI: 10.21037/jgo-22-712
[5] Pan H G, Zhang R Q, Li A, et al. Laparoscopic gastric dissociation using a two-port approach in minimally invasive esophagectomy[J]. World J Surg Oncol, 2022, 20(1): 375. DOI: 10.1186/s12957-022-02843-4
[6] Bayman E O, Parekh K R, Keech J, et al. A prospective study of chronic pain after thoracic surgery[J]. Anesthesiology, 2017, 126(5): 938-951. DOI: 10.1097/ALN.0000000000001576
[7] Marshall K, McLaughlin K. Pain management in thoracic surgery[J]. Thorac Surg Clin, 2020, 30(3): 339-346. DOI: 10.1016/j.thorsurg.2020.03.001
[8] Feray S, Lubach J, Joshi G P, et al. PROSPECT guidelines for video-assisted thoracoscopic surgery: a systematic review and procedure-specific postoperative pain management recommendations[J]. Anaesthesia, 2022, 77(3): 311-325. DOI: 10.1111/anae.15609
[9] Shelley B G, Anderson K J, Macfarlane A J R. Regional anaesthesia for thoracic surgery: what is the PROSPECT that fascial plane blocks are the answer?[J]. Anaesthesia, 2022, 77(3): 252-256. DOI: 10.1111/anae.15612
[10] Elsharkawy H, Maniker R, Bolash R, et al. Rhomboid intercostal and subserratus plane block: a cadaveric and clinical evaluation[J]. Reg Anesth Pain Med, 2018, 43(7): 745-751.
[11] 徐志华, 张含露, 杨梅, 等. 达芬奇机器人与胸腹腔镜联合辅助McKeown食管癌根治术后患者短期疼痛的非随机对照研究[J]. 中国胸心血管外科临床杂志, 2018, 25(5): 378-381. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYX201805005.htm Xu Z H, Zhang H L, Yang M, et al. Short-term postopera-tive pain of robot-assisted versus thoracolaparoscopic McKeown esophagectomy for esophageal carcinoma: a non-randomized controlled trial[J]. Chin J Clin Thorac Cardiovasc Surg, 2018, 25(5): 378-381. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYX201805005.htm
[12] 周建明, 靖胜杰, 陆启同, 等. 微创Ivor-Lewis手术与微创McKeown手术围手术期并发症的临床观察[J]. 中华肿瘤杂志, 2022, 44(6): 577-580. DOI: 10.3760/cma.j.cn112152-20200704-00626 Zhou J M, Jing S J, Lu Q T, et al. Clinical observation on perioperative complications of minimally invasive Ivor-Lewis and minimally invasive McKeown esophagectomy[J]. Chin J Oncol, 2022, 44(6): 577-580. DOI: 10.3760/cma.j.cn112152-20200704-00626
[13] Ishikawa S, Ozato S, Ebina T, et al. Early postoperative pulmonary complications after minimally invasive esophagectomy in the prone position: incidence and perioperative risk factors from the perspective of anesthetic management[J]. Gen Thorac Cardiovasc Surg, 2022, 70(7): 659-667. DOI: 10.1007/s11748-022-01818-2
[14] Elsharkawy H, Hamadnalla H, Altinpulluk E Y, et al. Rhomboid intercostal and subserratus plane block-a case series[J]. Korean J Anesthesiol, 2020, 73(6): 550-556. DOI: 10.4097/kja.19479
[15] Kozanhan B, Semerkant T, Esme H, et al. Evaluation of rhomboid intercostal and subserratus plane block under direct vision for postoperative analgesia in thoracic surgeries: a prospective, randomized controlled trial[J]. Eur J Cardiothorac Surg, 2022, 62(6): ezac498. DOI: 10.1093/ejcts/ezac498
[16] Elsharkawy H, Ince I, Pawa A. Rhomboid intercostal and sub-serratus (RISS) plane block for analgesia after lung transplant[J]. J Clin Anesth, 2019, 56: 85-87. DOI: 10.1016/j.jclinane.2019.01.042
[17] Deng W, Hou X M, Zhou X Y, et al. Rhomboid intercostal block combined with sub-serratus plane block versus rhomboid intercostal block for postoperative analgesia after video-assisted thoracoscopic surgery: a prospective randomized-controlled trial[J]. BMC Pulm Med, 2021, 21(1): 68. DOI: 10.1186/s12890-021-01432-7
[18] West D. Evaluation of rhomboid intercostal and subserratus plane block under direct vision for postoperative analgesia in thoracic surgeries: a prospective, randomized controlled trial, thoracic non-oncologic[J]. Eur J Cardiothorac Surg, 2022, 62(6): ezac532. DOI: 10.1093/ejcts/ezac532
[19] Ökmen K, Gürbüz H, Özkan H. Application of unilateral rhomboid intercostal and subserratus plane block for analgesia after laparoscopic cholecystectomy: a quasi-experimental study[J]. Korean J Anesthesiol, 2022, 75(1): 79-85. DOI: 10.4097/kja.21229
[20] Ilfeld B M, Khatibi B, Maheshwari K, et al. Ambulatory continuous peripheral nerve blocks to treat postamputation phantom limb pain: a multicenter, randomized, quadruple-masked, placebo-controlled clinical trial[J]. Pain, 2021, 162(3): 938-955. DOI: 10.1097/j.pain.0000000000002087
[21] 王明, 曹云飞, 梅雨柳, 等. 菱形肌-肋间肌-低位前锯肌平面阻滞在肺癌患者术后镇痛中的应用[J]. 中国现代医生, 2022, 60(23): 68-72. DOI: 10.3969/j.issn.1673-9701.2022.23.zwkjzlml-yyws202223017 Wang M, Cao Y F, Mei Y L, et al. Application of rhomboid intercostal and sub-serratus plane block for postoperative analgesia after lung cancer surgery[J]. Chin Mod Doct, 2022, 60(23): 68-72. DOI: 10.3969/j.issn.1673-9701.2022.23.zwkjzlml-yyws202223017