Application of 21-gene Recurrence Score in Hormone Receptor Positive Breast Cancer Patients
-
摘要: 近10年来,随着精准医疗的发展,乳腺癌的治疗进入了一个新时代,即在不影响生存结果的前提下,趋向于治疗降级、方案个体化,在给患者带来最大获益的同时尽可能减少医源性毒性暴露。21基因复发风险评分(21-gene recurrence score, RS)能够评估乳腺癌患者复发风险和化疗获益,已被美国临床肿瘤学会、美国国家综合癌症网络及中国抗癌协会推荐用于指导激素受体阳性、人类表皮生长因子受体2阴性的早期乳腺癌患者辅助治疗,但其临床应用尚存有争议。目前的研究主要聚焦于RS的临床优化,以更加准确地识别可从辅助治疗中受益的患者,使乳腺癌患者的治疗方案更加个体化。本文主要就RS在激素受体阳性乳腺癌患者辅助治疗中的应用、RS对临床决策的影响、RS面临的争议与应用前景等方面进行综述,以期指导临床进一步扩展RS的应用范围,使乳腺癌患者的辅助治疗更加精准。
-
关键词:
- 乳腺癌 /
- 21基因复发风险评分 /
- 精准医疗 /
- 临床病理因素 /
- 辅助治疗
Abstract: In the past decade, with the introduction of precision medicine, the treatment of breast cancer has entered a new era. It now tends towards the de-escalation and individualization of treatment plans, aiming to minimize iatrogenic toxicity while maximizing benefits for patients without compromising survival outcomes. The 21-gene assay evaluates the expression levels of 21 genes associated with breast cancer recurrence and provides a 21-gene recurrence score (RS) to assess the risk of recurrence and potential benefit from chemotherapy in breast cancer patients. Currently, RS is recommended by multiple guidelines such as the American Society of Clinical Oncology (ASCO), National Comprehensive Cancer Network (NCCN), and Chinese Anti-Cancer Association(CACA) for guiding adjuvant therapy in hormone receptor-positive (HR+) and human epidermal growth factor receptor 2 negative (HER2-) early-stage breast cancer patients. However, there are still controversies surrounding its clinical application. Current research mainly focuses on optimizing RS to accurately identify patients who would benefit from adjuvant therapy, thus enabling more personalized treatment plans for breast cancer patients. This review provides an overview of the 21-gene assay, its application in HR+ breast cancer patients' adjuvant therapy, its impact on clinical decision-making, existing controversies regarding RS, and prospects for integrating RS with clinical pathological information. The aim is to guide further expansion of RS's application in clinical practice and achieve more precise adjuvant therapy for breast cancer patients. -
丝氨酸蛋白酶是一类以丝氨酸为活性中心的蛋白水解酶,在胚胎发育、组织重构、细胞分化、血管形成等多种生理过程中均发挥重要作用。丝氨酸蛋白酶抑制剂(serine proteinase inhibitors,serpins)超家族是一类大小相似、结构高度保守的蛋白质分子,几乎存在于所有生命体中,目前已发现超过1000个家族成员,serpins可作为自杀性底物与丝氨酸蛋白酶结合,通过形成共价抑制复合物而调节丝氨酸蛋白酶的活性,参与调控体内一系列蛋白水解级联反应,如补体激活、凝血、细胞凋亡等。根据系统进化研究,serpins被分为16个亚家族[1],其中人类基因组可编码9个亚家族(A~I族)serpins[2]。B族serpins被称为卵清蛋白样丝氨酸蛋白酶抑制剂,与其他大多数serpins为细胞外蛋白不同,B族serpins缺乏经典的N末端信号肽,主要存在于细胞质与细胞核中,保护细胞免受外源性和内源性蛋白酶介导的损伤[3]。
SerpinB9是B族serpins成员之一,是颗粒酶B(granzyme B,GrB)的生理性抑制剂,存在于多种免疫细胞中,参与人体内病毒感染、免疫应答、炎症反应、肿瘤发生等多种过程。已有研究发现SerpinB9与冠状动脉粥样硬化、糖尿病等疾病相关[4]。近年来,SerpinB9在肿瘤发生发展中的作用成为研究热点,并有望成为肿瘤治疗的潜在靶点之一。皮肤恶性肿瘤种类繁多,晚期进展迅速、预后差,尚无有效的治疗手段,研究SerpinB9在皮肤肿瘤发生中的作用并探索其作为治疗靶点的可能性具有重要临床意义。本文将对SerpinB9与肿瘤的关系及其在皮肤肿瘤领域的研究进展进行综述。
1. SerpinB9功能
通过死亡受体途径和细胞毒性颗粒诱导细胞凋亡是自然杀伤(natural killer,NK)细胞和细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)杀灭靶细胞的主要方式,细胞毒性颗粒内含有可溶解细胞膜的穿孔素及多种颗粒酶,其中GrB是诱导靶细胞凋亡的主要效应因子。GrB是一种外源性丝氨酸蛋白酶,可与靶细胞表面的磷酸甘露糖受体结合并进入细胞,激活含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,caspase)-3、caspase-7等,导致DNA裂解并启动细胞凋亡[5]。
Sun等[6]研究发现, SerpinB9是GrB的生理性抑制剂,通过与GrB结合形成共价复合物而抑制其功能,进而抑制穿孔素/颗粒酶途径介导的细胞凋亡,并发现SerpinB9主要存在于CTL及B细胞中,推测在免疫应答过程中,淋巴细胞通过产生SerpinB9灭活内源性或外源性GrB,从而抵抗GrB对自身的杀伤作用,其为淋巴细胞的自我保护机制之一。随后的多项研究均证实了这一观点[7-8]。Bird等[9]通过研究进一步证实, SerpinB9可特异性抑制GrB而不影响Fas介导的细胞凋亡,使CTL可通过Fas途径进行自我清除,从而维持免疫系统的稳态。近年来,一些研究表明SerpinB9同样可与活化的caspase-8、caspase-10相互作用,抑制下游caspase的激活,进而抑制肿瘤坏死因子(tumor necrosis factor,TNF)、TNF相关凋亡诱导配体(TNF related apoptosis-inducing ligand,TRAIL)、Fas等死亡受体途径介导的细胞凋亡[10-11]。
2. SerpinB9分布
SerpinB9分布广泛,除在CTL中发挥自我保护作用外,在树突状细胞、调节性T淋巴细胞、脾边缘区B淋巴细胞、肥大细胞等免疫细胞,以及血管内皮细胞、间皮细胞中同样可检测到SerpinB9的表达。通过抑制其在免疫应答过程中可能接触到的内源性或外源性GrB而避免了异常自身凋亡,从而发挥抗原交叉提呈、启动免疫反应、保持血管完整性等生理作用[12-16]。此外,免疫豁免部位的细胞,如胎盘组织的中间滋养细胞、睾丸支持细胞、卵巢颗粒细胞和晶状体细胞也可产生SerpinB9以保护自身免受免疫系统攻击,维持免疫系统稳态[12]。
3. SerpinB9与肿瘤发生发展及预后的关系
CTL的杀伤作用是机体实现抗肿瘤免疫的主要途径,而肿瘤细胞可通过多种途径逃脱免疫监视以促进肿瘤细胞增殖与转移,如下调主要组织相容性复合体(major histocompatibility complex,MHC)-Ⅰ类分子的表达、产生凋亡抑制蛋白c-FLIP进而抑制死亡受体途径介导的细胞凋亡等[5, 17]。近年来,SerpinB9在肿瘤发生发展中的作用成为研究的热点。Medema等[5]在人和小鼠的乳腺癌细胞、宫颈癌细胞、结肠癌细胞中均检测到SerpinB9表达,而在正常乳腺上皮细胞、宫颈上皮细胞、结肠上皮细胞中未发现SerpinB9表达,且SerpinB9高表达可显著抑制CTL通过穿孔素/颗粒酶途径介导的肿瘤细胞凋亡,表明SerpinB9的表达是肿瘤细胞抵抗CTL介导的细胞凋亡从而实现免疫逃逸的机制之一,而SerpinB9的表达水平可用于评估CTL介导的肿瘤免疫治疗可行性。
Rousalova等[18]研究证实非小细胞肺癌细胞和组织表达SerpinB9,且可抑制GrB的活性。Soriano等[19]研究发现,与正常支气管上皮细胞相比,肺癌细胞中SerpinB9表达升高,而肿瘤相关CD8+T细胞中GrB的表达水平下调; 且在非小细胞肺癌中,随着肿瘤进展SerpinB9的表达逐渐上升,表明SerpinB9表达升高与预后不良相关。Zhou等[20]在肝癌细胞中发现了类似结果,肝癌细胞中SerpinB9的表达水平显著高于正常肝组织,SerpinB9的表达水平与肿瘤分化程度、TNM分期、肿瘤体积呈正相关,且是肝细胞癌患者预后的独立预测因子,SerpinB9高表达组患者的生存时间显著短于SerpinB9低表达组。Vycital等[21]发现结直肠癌患者的肿瘤组织和正常结肠组织中均可检测到SerpinB9的表达,且正常结肠组织中SerpinB9表达升高的患者总生存期更长,推测该结果体现了抗肿瘤免疫反应与肿瘤细胞的相互作用对预后的影响,但其具体机制仍需进一步研究。Ray等[22]发现早期前列腺癌细胞中SerpinB9表达升高,并可抑制NK细胞释放的GrB介导的细胞凋亡,表明SerpinB9表达上调可能是促进早期前列腺癌进展的机制之一。
除实体肿瘤外,一些血液系统肿瘤细胞同样也表达SerpinB9。Fritsch等[23]发现淋巴细胞白血病、急性髓系白血病的肿瘤细胞表达SerpinB9,且SerpinB9表达水平与GrB活性呈负相关。随着SerpinB9表达水平升高,其对GrB的抑制程度增加,肿瘤细胞的凋亡水平降低,推测SerpinB9可通过抑制GrB减少肿瘤细胞凋亡,进而促进肿瘤免疫逃逸。Chen等[24]研究发现在对硼替佐米抵抗的复发难治性多发性骨髓瘤患者中,其骨髓单个核细胞的SerpinB9表达水平显著高于多发性骨髓瘤的新诊初治患者,功能富集分析提示SerpinB9参与调节细胞凋亡、程序性细胞死亡和免疫应答等过程,推测SerpinB9有望成为复发难治性多发性骨髓瘤的潜在治疗靶点和生物标志物。
4. SerpinB9与皮肤肿瘤
4.1 SerpinB9与恶性黑色素瘤
4.1.1 促进恶性黑色素瘤细胞免疫逃逸
在皮肤肿瘤领域关于SerpinB9的研究中,恶性黑色素瘤是报道最多、研究较为广泛的疾病。Medema等[5]发现在恶性黑色素瘤细胞中可检测到SerpinB9表达,SerpinB9通过灭活GrB抵抗CTL对肿瘤细胞的杀伤作用,而在正常黑色素细胞中SerpinB9表达阴性,表明恶性黑色素瘤细胞可能通过表达SerpinB9逃脱免疫系统的攻击与杀伤作用。
在恶性黑色素瘤治疗方面,免疫治疗是近年来的研究热点之一。多项研究表明,SerpinB9的表达水平与恶性黑色素瘤对免疫治疗的反应相关。在接受特异性主动免疫治疗的转移性恶性黑色素瘤患者中,肿瘤细胞表达SerpinB9的患者对免疫治疗反应较差,且预后不良,提示肿瘤细胞表达SerpinB9可能为一种重要的免疫逃逸机制,调控SerpinB9的表达水平可能是增强免疫治疗疗效的途径之一[25]。在使用免疫检查点抑制剂抗CTLA-4单克隆抗体易普利姆玛(ipilimumab)治疗恶性黑色素瘤的临床研究中发现,治疗有效组患者的SerpinB9表达水平较无应答组更低,SerpinB9表达水平升高与患者预后不良显著相关[26-27]。Jiang等[27]进一步研究发现,SerpinB9高表达与恶性黑色素瘤对免疫检查点抑制剂治疗抵抗相关,而恶性黑色素瘤细胞对免疫检查点抑制剂的治疗反应与CTL介导的肿瘤细胞凋亡密切相关。实验表明,敲除SERPINB9基因的B16F10细胞(小鼠皮肤黑色素瘤细胞)对CTL介导的细胞杀伤作用更敏感;而SERPINB9基因过表达的B16F10细胞对T细胞介导的细胞杀伤作用表现出抵抗。
4.1.2 通过影响肿瘤微环境促进恶性黑色素瘤发展
SerpinB9除在肿瘤细胞中表达增高以促进免疫逃逸、免疫治疗抵抗外,还可通过影响肿瘤微环境(tumor microenvironment,TME),进而促进肿瘤发展。
TME包括肿瘤细胞周围的免疫细胞、成纤维细胞、血管、信号分子和细胞外基质等,TME与肿瘤细胞不断相互作用,进而影响肿瘤的生长、进展、转移、免疫逃逸等生物学行为[28]。TME中的髓源性抑制细胞(myeloid-derived suppressor cell,MDSC)、肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)及调节性T(regulatory T,Treg)细胞等免疫细胞构成了免疫抑制性TME,促进肿瘤细胞的生长与侵袭。而TME中的间质细胞,如肿瘤相关成纤维细胞(tumor-associated fibroblast,CAF)可分泌多种细胞因子、趋化因子、基质蛋白等,阻碍效应T细胞对肿瘤细胞的杀伤作用,进而促进肿瘤发展[29-30]。
Luo等[31]对葡萄膜黑色素瘤TME中的免疫细胞和基质细胞的基因表达进行对比分析,发现了包括SERPINB9基因在内的21个与预后相关的基因。Jiang等[29]研究发现,恶性黑色素瘤TME中的MDSC、TAM、Treg细胞等抑制性免疫细胞同样表达SerpinB9,并通过抑制杀伤性淋巴细胞(CTL、NK细胞)分泌的或内源性GrB而发挥自我保护作用,进而形成有利于肿瘤生长、转移的TME,促进肿瘤发展。该团队还通过实验证实在SERPINB9基因缺陷的恶性黑色素瘤小鼠中,Treg、MDSC、TAM的比例及CAF的数目较对照组明显减少,提示抑制SerpinB9可逆转免疫抑制性TME,增强宿主的抗肿瘤免疫活性,并通过抑制肿瘤间质细胞的功能阻碍肿瘤的发展。
4.2 SerpinB9与皮肤鳞状细胞癌
器官移植后继发皮肤鳞状细胞癌是其严重并发症之一,Peters等[32]对肾移植患者的循环T细胞进行了全基因组甲基化分析,发现肾移植后继发皮肤鳞状细胞癌患者的T细胞中SERPINB9基因的甲基化水平显著高于非鳞状细胞癌,且外周T细胞中SerpinB9的表达水平低于对照组。推测T细胞中SERPINB9基因的表观遗传调控紊乱可能与皮肤鳞状细胞癌的发病相关,但其机制仍需进一步研究,通过表观修饰降低SERPINB9基因甲基化水平或许是预防移植后鳞状细胞癌的靶点之一。
4.3 SerpinB9与皮肤淋巴瘤
皮肤淋巴瘤是一组异质性疾病,原发性皮肤淋巴瘤的发生率在结外非霍奇金淋巴瘤中占第2位,同时原发结内的淋巴瘤也可出现皮肤受累。已有研究证实,在系统性间变性大细胞淋巴瘤,结外NK/T细胞淋巴瘤,鼻型、弥漫性大B细胞淋巴瘤和霍奇金淋巴瘤中均可检测到SerpinB9表达阳性的瘤细胞[33-34]。ten Berge等[34]研究发现,在系统性间变性大细胞淋巴瘤患者中,SerpinB9表达阳性的肿瘤细胞数目升高是预后不良的标志。Bossard等[35]对48例结外NK/T细胞淋巴瘤,鼻型患者的肿瘤细胞的SerpinB9表达水平与预后情况的分析表明,SerpinB9表达缺失是预后不良的标志,推测由于NK细胞固有表达GrB和SerpinB9,SerpinB9的“丢失”提示肿瘤细胞去分化,因此此类患者进展较快且预后差。
5. SerpinB9可能成为肿瘤治疗的潜在靶点
基于SerpinB9在肿瘤发生发展中的作用,通过抑制SerpinB9发挥抗肿瘤作用成为近年来研究的热点。SerpinB9可抑制CTL通过穿孔素/颗粒酶途径介导的肿瘤细胞凋亡,因此SerpinB9的表达水平是预测肿瘤细胞对CTL介导的杀伤作用的敏感性参数之一[25]。如前所述,复发性难治性多发性骨髓瘤患者的肿瘤细胞中SerpinB9表达水平较对照组显著增高,且SerpinB9在免疫应答、细胞凋亡等多种生理过程中发挥调控作用,提示SerpinB9有望成为复发难治性多发性骨髓瘤的潜在治疗靶点[24]。
Jiang等[29]筛选出了一种SerpinB9特异性抑制剂——小分子化合物3034(1,3-苯并恶唑-6-羧酸),并通过实验证实了1,3-苯并恶唑-6-羧酸作用于恶性黑色素瘤细胞后可显著提高其凋亡率,降低黑色素瘤的生长速度,且在乳腺癌、肾癌、肺癌小鼠模型中均被证实具有类似的抗肿瘤效果。上述结论表明SerpinB9抑制剂具有潜在的抗肿瘤作用,可能成为多种恶性肿瘤治疗的新靶点。
6. 小结
综上所述,SerpinB9已被证实与非小细胞肺癌、肝癌、多发性骨髓瘤等多种恶性肿瘤相关,并通过促进免疫逃逸、影响TME等途径促进肿瘤的发生发展。在皮肤肿瘤方面,目前关于SerpinB9的研究主要集中于恶性黑色素瘤,而在其他皮肤恶性肿瘤中的表达及作用机制仍需进一步研究探索。目前研究数据显示,SerpinB9在肿瘤治疗方面具有较大潜力,为恶性黑色素瘤、鳞状细胞癌及皮肤淋巴瘤等难治性皮肤肿瘤的治疗提供了新的思路和方向。
作者贡献:屈洋负责论文撰写、收集资料及论文构思;张燕娜负责收集资料及论文构思;周易冬、孙强负责论文构思及论文修订。利益冲突:所有作者均声明不存在利益冲突 -
表 1 RS指导HR+乳腺癌患者治疗的相关研究
分类 第一作者 发表时间
(年)试验名称/样本来源 患者例数
(例)患者类型 研究类型 RS分层标准 研究结论 RS在HR+/N0患者中的研究 Paik 2004[10] NSAPB-14 668 HR+、N0 回顾性研究 RS<18、18≤RS<31、RS≥31 RS可量化接受他莫昔芬治疗的HR+、N0乳腺癌患者远处复发的可能性 2006[22] NSAPB-20 651 HR+、N0 回顾性研究 RS<18、18≤RS<31、RS≥31 RS高危组从化疗中获益更多,低危组获益很小,中危组获益不明确 Sparano 2015[11] TAILORx 10 273 HR+/HER2-、N0 前瞻性研究 RS≤10、11≤RS<25、RS≥26 RS≤10的HR+/HER2-、N0乳腺癌患者可安全豁免化疗 2018[6] 在RS中危组中,单独内分泌治疗与化疗联合内分泌治疗具有相似的疗效;仅RS为16~25且年龄≤50岁的年轻女性患者可从化疗中获益 2019[20] 临床风险分层提供了预后信息,当添加到RS中时,可更准确识别出能从化疗中受益的绝经前女性患者 RS在HR+/N+ 患者中的研究 Albain 2010[14] SWOG-8814 367 绝经后、HR+、N1~N2 回顾性研究 RS<18、18≤RS<31、RS≥31 腋窝淋巴结受累的RS低危组患者无法从蒽环类药物化疗中获益 Dowsett 2010[16] TransATAC 1372 绝经后、HR+、N0~N1 回顾性分研究 RS<18、18≤RS<31、RS≥31 在接受阿那曲唑和他莫昔芬治疗的HR+/N0~N1患者中,RS对于远处复发的预后价值相似 Gluz 2016[17] WGS PlanB 3198 HR+/HER2-、N0~N1 前瞻性研究 RS≤11、11<RS≤25、RS>25 对于RS低危组患者,即使通过传统临床病理因素被判定为高风险,豁免化疗后仍有5年无病生存期 Kalinsky 2021[18] RxPONDER 5018 HR+/HER2-、N1 前瞻性研究 RS≤25 RS≤25、HR+、N1绝经后女性患者可豁免化疗;而在绝经前女性患者中,辅助化疗可改善预后,且绝对获益随RS评分的增加而增加 RS:21基因复发风险评分;HR+:激素受体阳性;HER2-:人类表皮生长因子受体2阴性 -
[1] Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world[J]. Breast Cancer, 2019, 11: 151-164.
[2] Kamal AH, Loprinzi CL, Reynolds C, et al. Breast medical oncologists' use of standard prognostic factors to predict a 21-gene recurrence score[J]. Oncologist, 2011, 16: 1359-1366. DOI: 10.1634/theoncologist.2011-0048
[3] Fisher B, Jeong JH, Bryant J, et al. Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials[J]. Lancet, 2004, 364: 858-868. DOI: 10.1016/S0140-6736(04)16981-X
[4] Fisher B, Costantino J, Redmond C, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors[J]. N Engl J Med, 1989, 320: 479-484. DOI: 10.1056/NEJM198902233200802
[5] Chia SK, Speers CH, Bryce CJ, et al. Ten-year outcomes in a population-based cohort of node-negative, lymphatic, and vascular invasion-negative early breast cancers without adjuvant systemic therapies[J]. J Clin Oncol, 2004, 22: 1630-1637. DOI: 10.1200/JCO.2004.09.070
[6] Sparano JA, Gray RJ, Makower DF, et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer[J]. N Engl J Med, 2018, 379: 111-121. DOI: 10.1056/NEJMoa1804710
[7] Fisher B, Dignam J, Wolmark N, et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer[J]. J Natl Cancer Inst, 1997, 89: 1673-1682. DOI: 10.1093/jnci/89.22.1673
[8] Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials[J]. Lancet, 2005, 365: 1687-1717. DOI: 10.1016/S0140-6736(05)66544-0
[9] Gianni L, Zambetti M, Clark K, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer[J]. J Clin Oncol, 2005, 23: 7265-7277. DOI: 10.1200/JCO.2005.02.0818
[10] Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer[J]. N Engl J Med, 2004, 351: 2817-2826. DOI: 10.1056/NEJMoa041588
[11] Sparano JA, Gray RJ, Makower DF, et al. Prospective Validation of a 21-Gene Expression Assay in Breast Cancer[J]. N Engl J Med, 2015, 373: 2005-2014. DOI: 10.1056/NEJMoa1510764
[12] Telli ML, Gradishar WJ, Ward JH. NCCN Guidelines Updates: Breast Cancer[J]. J Natl Compr Canc Netw, 2019, 17: 552-555.
[13] Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Peto R, Davies C, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100, 000 women in 123 randomised trials[J]. Lancet, 2012, 379: 432-444. DOI: 10.1016/S0140-6736(11)61625-5
[14] Albain KS, Barlow WE, Shak S, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial[J]. Lancet Oncol, 2010, 11: 55-65. DOI: 10.1016/S1470-2045(09)70314-6
[15] Albain KS, Barlow WE, Ravdin PM, et al. Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial[J]. Lancet, 2009, 374: 2055-2063. DOI: 10.1016/S0140-6736(09)61523-3
[16] Dowsett M, Cuzick J, Wale C, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study[J]. J Clin Oncol, 2010, 28: 1829-1834. DOI: 10.1200/JCO.2009.24.4798
[17] Gluz O, Nitz UA, Christgen M, et al. West German Study Group Phase Ⅲ PlanB Trial: First Prospective Outcome Data for the 21-Gene Recurrence Score Assay and Concordance of Prognostic Markers by Central and Local Pathology Assessment[J]. J Clin Oncol, 2016, 34: 2341-2349. DOI: 10.1200/JCO.2015.63.5383
[18] Kalinsky K, Barlow WE, Gralow JR, et al. 21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer[J]. N Engl J Med, 2021, 385: 2336-2347. DOI: 10.1056/NEJMoa2108873
[19] Walshe JM, Denduluri N, Swain SM. Amenorrhea in premenopausal women after adjuvant chemotherapy for breast cancer[J]. J Clin Oncol, 2006, 24: 5769-5779. DOI: 10.1200/JCO.2006.07.2793
[20] Sparano JA, Gray RJ, Ravdin PM, et al. Clinical and Genomic Risk to Guide the Use of Adjuvant Therapy for Breast Cancer[J]. N Engl J Med, 2019, 380: 2395-2405. DOI: 10.1056/NEJMoa1904819
[21] Gradishar WJ, Moran MS, Abraham J, et al. NCCN GuidelinesⓇ Insights: Breast Cancer, Version 4.2023[J]. J Natl Compr Canc Netw, 2023, 21: 594-608. DOI: 10.6004/jnccn.2023.0031
[22] Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer[J]. J Clin Oncol, 2006, 24: 3726-3734. DOI: 10.1200/JCO.2005.04.7985
[23] Gradishar WJ, Moran MS, Abraham J, et al. NCCN GuidelinesⓇ Insights: Breast Cancer, Version 4.2021[J]. J Natl Compr Canc Netw, 2021, 19: 484-493. DOI: 10.6004/jnccn.2021.0023
[24] Cardoso F, Kyriakides S, Ohno S, et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2019, 30: 1194-1220. DOI: 10.1093/annonc/mdz173
[25] Curigliano G, Burstein HJ, Winer EP, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017[J]. Ann Oncol, 2017, 28: 1700-1712. DOI: 10.1093/annonc/mdx308
[26] 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31: 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013 [27] Weldon CB, Trosman JR, Gradishar WJ, et al. Barriers to the use of personalized medicine in breast cancer[J]. J Oncol Pract, 2012, 8: e24-e31. DOI: 10.1200/JOP.2011.000448
[28] Lyman GH, Cosler LE, Kuderer NM, et al. Impact of a 21-gene RT-PCR assay on treatment decisions in early-stage breast cancer: an economic analysis based on prognostic and predictive validation studies[J]. Cancer, 2007, 109: 1011-1018. DOI: 10.1002/cncr.22506
[29] Gagliato Dde M, Gonzalez-Angulo AM, Lei X, et al. Clinical impact of delaying initiation of adjuvant chemother-apy in patients with breast cancer[J]. J Clin Oncol, 2014, 32: 735-744. DOI: 10.1200/JCO.2013.49.7693
[30] Cuzick J, Dowsett M, Pineda S, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer[J]. J Clin Oncol, 2011, 29: 4273-4278. DOI: 10.1200/JCO.2010.31.2835
[31] Turner BM, Skinner KA, Tang P, et al. Use of modified Magee equations and histologic criteria to predict the Oncotype DX recurrence score[J]. Mod Pathol, 2015, 28: 921-931. DOI: 10.1038/modpathol.2015.50
[32] Kim HS, Umbricht CB, Illei PB, et al. Optimizing the Use of Gene Expression Profiling in Early-Stage Breast Cancer[J]. J Clin Oncol, 2016, 34: 4390-4397. DOI: 10.1200/JCO.2016.67.7195
[33] Lee SB, Kim J, Sohn G, et al. A Nomogram for Predicting the Oncotype DX Recurrence Score in Women with T1-3N0-1miM0 Hormone Receptor-Positive, Human Epidermal Growth Factor 2 (HER2)-Negative Breast Cancer[J]. Cancer Res Treat, 2019, 51: 1073-1085. DOI: 10.4143/crt.2018.357
[34] Olivotto IA, Bajdik CD, Ravdin PM, et al. Population-based validation of the prognostic model ADJUVANT! for early breast cancer[J]. J Clin Oncol, 2005, 23: 2716-2725. DOI: 10.1200/JCO.2005.06.178
[35] Mook S, Schmidt MK, Rutgers EJ, et al. Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study[J]. Lancet Oncol, 2009, 10: 1070-1076. DOI: 10.1016/S1470-2045(09)70254-2
[36] Zhang Y, Zhou Y, Mao F, et al. Ki-67 index, progesterone receptor expression, histologic grade and tumor size in predicting breast cancer recurrence risk: A consecutive cohort study[J]. Cancer Commun, 2020, 40: 181-193. DOI: 10.1002/cac2.12024
[37] Yoo SH, Kim TY, Kim M, et al. Development of a Nomogram to Predict the Recurrence Score of 21-Gene Prediction Assay in Hormone Receptor-Positive Early Breast Cancer[J]. Clin Breast Cancer, 2020, 20: 98-107. e1. DOI: 10.1016/j.clbc.2019.07.010
[38] Orucevic A, Bell JL, McNabb AP, et al. Oncotype DX breast cancer recurrence score can be predicted with a novel nomogram using clinicopathologic data[J]. Breast Cancer Res Treat, 2017, 163: 51-61. DOI: 10.1007/s10549-017-4170-3
[39] Lee MH, Han W, Lee JE, et al. The clinical impact of 21-gene recurrence score on treatment decisions for patients with hormone receptor-positive early breast cancer in Korea[J]. Cancer Res Treat, 2015, 47: 208-214.
[40] Leong SP, Shen ZZ, Liu TJ, et al. Is breast cancer the same disease in Asian and Western countries?[J]. World J Surg, 2010, 34: 2308-2324. DOI: 10.1007/s00268-010-0683-1
[41] Polley MY, Leung SC, Gao D, et al. An international study to increase concordance in Ki67 scoring[J]. Modern Pathol, 2015, 28: 778-786. DOI: 10.1038/modpathol.2015.38
[42] Tang G, Cuzick J, Costantino JP, et al. Risk of recurrence and chemotherapy benefit for patients with node-negative, estrogen receptor-positive breast cancer: recurrence score alone and integrated with pathologic and clinical factors[J]. J Clin Oncol, 2011, 29: 4365-4372. DOI: 10.1200/JCO.2011.35.3714
[43] Sparano JA, Crager MR, Tang G, et al. Development and Validation of a Tool Integrating the 21-Gene Recurrence Score and Clinical-Pathological Features to Individualize Prognosis and Prediction of Chemotherapy Benefit in Early Breast Cancer[J]. J Clin Oncol, 2021, 39: 557-564. DOI: 10.1200/JCO.20.03007
[44] Boland MR, Al-Maksoud A, Ryan ÉJ, et al. Value of a 21-gene expression assay on core biopsy to predict neoadjuvant chemotherapy response in breast cancer: systematic review and meta-analysis[J]. Br J Surg, 2021, 108: 24-31. DOI: 10.1093/bjs/znaa048
[45] Iwata H, Masuda N, Yamamoto Y, et al. Validation of the 21-gene test as a predictor of clinical response to neoadjuvant hormonal therapy for ER+, HER2-negative breast cancer: the TransNEOS study[J]. Breast Cancer Res Treat, 2019, 173: 123-133. DOI: 10.1007/s10549-018-4964-y
[46] Davey MG, Ryan ÉJ, Boland MR, et al. Clinical utility of the 21-gene assay in predicting response to neoadjuvant endocrine therapy in breast cancer: A systematic review and meta-analysis[J]. Breast, 2021, 58: 113-120. DOI: 10.1016/j.breast.2021.04.010
[47] Slodkowska EA, Ross JS. MammaPrint 70-gene signature: another milestone in personalized medical care for breast cancer patients[J]. Expert Rev Mol Diagn, 2009, 9: 417-422. DOI: 10.1586/erm.09.32
[48] Cardoso F, van't Veer LJ, Bogaerts J, et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer[J]. N Engl J Med, 2016, 375: 717-729. DOI: 10.1056/NEJMoa1602253
[49] Henry NL, Somerfield MR, Abramson VG, et al. Role of Patient and Disease Factors in Adjuvant Systemic Therapy Decision Making for Early-Stage, Operable Breast Cancer: Update of the ASCO Endorsement of the Cancer Care Ontario Guideline[J]. J Clin Oncol, 2019, 37: 1965-1977. DOI: 10.1200/JCO.19.00948