兴奋-抑制失衡与孤独症谱系障碍:作用机制及治疗进展

石岳, 朱波, 黄宇光

石岳, 朱波, 黄宇光. 兴奋-抑制失衡与孤独症谱系障碍:作用机制及治疗进展[J]. 协和医学杂志, 2023, 14(4): 844-849. DOI: 10.12290/xhyxzz.2023-0174
引用本文: 石岳, 朱波, 黄宇光. 兴奋-抑制失衡与孤独症谱系障碍:作用机制及治疗进展[J]. 协和医学杂志, 2023, 14(4): 844-849. DOI: 10.12290/xhyxzz.2023-0174
SHI Yue, ZHU Bo, HUANG Yuguang. Excitatory-inhibitory Imbalance and Autism Spectrum Disorder: Mechanism and Treatment Progress[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 844-849. DOI: 10.12290/xhyxzz.2023-0174
Citation: SHI Yue, ZHU Bo, HUANG Yuguang. Excitatory-inhibitory Imbalance and Autism Spectrum Disorder: Mechanism and Treatment Progress[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 844-849. DOI: 10.12290/xhyxzz.2023-0174

兴奋-抑制失衡与孤独症谱系障碍:作用机制及治疗进展

基金项目: 

中央高水平医院临床科研业务费 2022-PUMCH-B-119

详细信息
    通讯作者:

    朱波, E-mail: zhubo@pumch.cn

  • 中图分类号: R338.8; Q954.52

Excitatory-inhibitory Imbalance and Autism Spectrum Disorder: Mechanism and Treatment Progress

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-119

More Information
  • 摘要: 孤独症谱系障碍(autism spectrum disorder, ASD)是世界上患病率增长最快的神经发育障碍,该病具有显著的遗传异质性,给临床治疗带来了巨大挑战。研究表明,中枢神经系统的兴奋-抑制(excitatory-inhibitory,E-I)失衡可能是ASD的重要发病机制之一,在多种ASD动物模型中进行神经环路E-I失衡调节,能够改善模型动物的孤独症样行为。相关临床试验将E-I失衡作为ASD的治疗靶点,恢复特定皮质区域原有的E-I平衡状态,能够对ASD患者起到一定的治疗作用。本文就E-I失衡在ASD中的作用机制及E-I失衡调节剂治疗ASD的研究进展作一综述,以期为ASD的临床诊疗提供新思路。
    Abstract: Autism spectrum disorder (ASD) is becoming one of the fastest growing neurodevelopmen-tal disorders around the world, yet its clinical treatment still faces challenge due to the heterogeneity in etiology and symptom phenotypes. It is believed that excitatory-inhibitory (E-I) imbalance in the central nervous system may play an important role in the pathogenic mechanisms of ASD. E-I imbalances in synaptic transmission and neural circuits are frequently observed in different animal models of ASD, and the corresponding reversion normalizes the autism-like behaviors in these animals. Some E-I modulators have been tested for their therapeutic potential on ASD patients with encouraging results. This article expounds the mechanism of E-I imbalance in ASD and E-I imbalance regulators treatment progress, to provide new insights on the therapeutic targets for ASD.
  • 特应性皮炎(atopic dermatitis,AD)是一种慢性复发性炎症性皮肤病,以反复发作的湿疹样皮损和剧烈瘙痒为主要特征[1]。超过6周的瘙痒称为慢性瘙痒,慢性瘙痒是AD的特征之一,且与AD的严重程度相关。重度瘙痒可导致患者睡眠障碍和生活质量下降,增加焦虑、抑郁甚至自杀倾向;在中重度儿童AD患者中,睡眠障碍可导致其注意力缺陷多动障碍、身材矮小等[2]

    AD瘙痒症状轻重不一,可为全身性、阵发性、间断性或持续性,亦可以局部症状为主;AD瘙痒形式多种多样,包括皮损所致的瘙痒,痒觉敏感和痒觉异常,夜间瘙痒伴睡眠障碍等。AD瘙痒机制复杂,涉及多种致痒介质及受体、神经通路、免疫调节、皮肤屏障功能和外界环境因素(图 1),本文就AD瘙痒机制及相关治疗研究进展进行综述,以期为临床诊疗提供借鉴和参考。

    图  1  特应性皮炎瘙痒机制示意图
    KC:角质形成细胞;CGRP:降钙素基因相关肽;SP:P物质;Th2 cell: 2型辅助性T细胞;TRPV1:瞬时受体电位香草酸亚型1;IL:白细胞介素;CysLTR2:半胱氨酸白三烯受体2;LTC4:白三烯C4;H1R:H1受体;PAR2:激活蛋白酶活化受体2;TRPA1:瞬时受体电位锚蛋白1;TSLPR:胸腺基质淋巴细胞生成素受体;TSLP:胸腺基质淋巴细胞生成素;MrgprC11:Mas相关G蛋白偶联受体C11

    组胺为最重要的致痒介质之一,也是抗瘙痒治疗的主要靶点。组胺主要与急性瘙痒有关,在AD慢性瘙痒形成中的作用尚存在争议,且AD患者使用抗组胺药止痒效果并不理想。组胺在肥大细胞活化脱颗粒后被释放至周围区域,通过神经纤维上的H1受体诱发瘙痒。除H1受体外,组胺也可通过H4受体调节瘙痒。研究发现,AD皮损中肥大细胞、嗜酸性粒细胞等炎症细胞表面不仅存在H1受体,而且广泛存在H4受体,H1和H4受体均可激活介导瘙痒的瞬时受体电位香草酸亚型1(transient receptor potential vanilloid 1,TRPV1),TRPV1被认为是治疗瘙痒的靶点之一[3]

    神经肽包括P物质(substance P,SP)、降钙素基因相关肽(calcitonin gene-related peptide,CGRP)和神经营养因子等,在AD瘙痒形成过程中发挥重要作用。SP是广泛分布于神经纤维内的一种神经肽,通过与其受体结合激活肥大细胞,引起组胺和其他致痒介质的释放而导致瘙痒。痒觉神经元的激活使SP和CGRP释放增多,进一步促进组胺和类胰蛋白酶等内源性致痒原的释放,CGRP则可调控角质形成细胞(keratinocyte,KC)异常增殖,经神经免疫调控进一步加剧瘙痒-搔抓循环[4]。AD患者存在痒觉异化(alloknesis),轻微压力、摩擦等刺激即可引起剧烈瘙痒。研究表明,AD皮损区存在神经过度支配,感觉神经纤维延长,瘙痒相关外周介质增加,这种过度支配主要由神经延长因子(如神经生长因子)与神经排斥因子(如信号素3A)间平衡失调所致,AD皮损中神经生长因子表达上调而信号素3A减少[3]。因此,神经肽类物质也可作为AD瘙痒的潜在治疗靶点。

    一些细胞因子不仅参与AD炎症的发生,还参与瘙痒的形成,包括多种白细胞介素(interleukin,IL)、胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin,TSLP),其中IL-31、IL-4、IL-13和TSLP在AD瘙痒的形成中受到广泛关注。IL-31是最早被发现直接作用于感觉神经元的细胞因子,通过TRPV1激活感觉神经元中的IL-31受体A,直接引起瘙痒[5]。过表达IL-4或IL-13的小鼠可出现AD样皮损和剧烈瘙痒,其机制包括抑制KC分化,影响皮肤屏障功能[6]。IL-4受体α特异性缺失的小鼠FLG基因表达增加,经皮过敏原摄取及搔抓行为减少[7]。IL-4通过JAK-STAT通路使细胞内受体磷酸化,其瘙痒主要与JAK1、JAK3及STAT3、STAT5和STAT6相关。TSLP主要由KC、肥大细胞和树突状细胞分泌,在AD皮损中表达上调,通过痒觉神经元上的TSLP受体直接引发瘙痒[8]。上述细胞因子均是目前AD瘙痒治疗的重要靶点。

    研究证实,乙酰胆碱、白三烯(leukotriene,LT)、血小板活化因子等也参与AD瘙痒的发生。AD患者皮损处的乙酰胆碱水平升高,其可激活KC的毒蕈碱受体,并能够激活汗腺,促使汗液分泌增加,解释了AD患者出汗时瘙痒加重的原因[9]。AD患者接触变应原后,嗜碱性粒细胞通过释放LTC4,与感觉神经元上的半胱氨酸LT受体2结合,传递瘙痒信号[10]。血小板活化因子可促进肥大细胞释放组胺进而引起瘙痒[11]

    目前,已发现至少两种不同类型的痒觉神经元,即组胺依赖型和非组胺依赖型,AD瘙痒主要由非组胺依赖型痒觉信号通路介导,因此抗组胺类药物对于AD的治疗作用有限。非组胺依赖型致痒原与皮肤接触后,激活神经元上的瞬时受体电位锚蛋白1 (transient receptor potential ankyrin 1,TRPA1)或TRPV1传递冲动信号[12]。此外,Mas相关G蛋白偶联受体(Mas-related G protein coupled-receptor,Mrgpr) 家族也是瘙痒信号传导的重要受体,MrgprX1可被内源性前脑啡肽原8-22激活产生痒感[13]。当周围感觉神经纤维受损时,一方面将释放IL-31、IL-33、溶血磷脂酸和组织蛋白酶S等炎症介质,选择性激活痒觉神经元;另一方面产生自发动作电位,模仿非受损部位电位特征,激活痒觉神经元[14]

    AD患者普遍存在皮肤屏障功能受损,其机制主要包括丝聚蛋白(filaggrin,FLG)基因突变、表皮终末分化失败、表皮脂质异常等。31.4%的中国汉族AD患者存在FLG基因突变[15],而20%~50%的中重度AD患者携带FLG基因突变,最常见的突变位点是3321delA[16],其突变可影响KC分化及皮肤屏障功能,促使经皮水分丢失增加、角质层pH值升高,表现为皮肤干燥,从而导致致痒原渗透增加,诱发炎症并促进瘙痒。角质层pH值升高还可增强激肽释放酶5和7的活性,通过激活蛋白酶活化受体2(protease activated receptor 2,PAR2) 和MrgprC11触发瘙痒[17]。表皮脂质填充于KC之间,主要包括神经酰胺、游离脂肪酸和胆固醇,AD患者非皮损区的长链神经酰胺明显减少,与皮肤屏障功能破坏相关[18]。遗传易感性及反复搔抓刺激KC释放TSLP、IL-25和IL-33等细胞因子,促进2型辅助性T细胞(type 2 helper T cell,Th2细胞)诱导免疫反应;IL-33通过其受体激活感觉神经元,触发搔抓行为。综上所述,上皮细胞来源的细胞因子和蛋白酶激活痒觉神经元调控搔抓行为,提示AD患者的皮肤屏障功能受损直接参与瘙痒的发生。

    固有免疫系统包括固有免疫细胞、细胞受体和皮肤微生物群等。AD患者体内嗜碱性粒细胞数量增高,嗜碱性粒细胞分泌的Th2型细胞因子和组胺与AD样皮损的发展密切相关[19]。研究表明,肥大细胞可通过分泌类胰蛋白酶,裂解小鼠感觉神经元表面的PAR2引发瘙痒[20]。模式识别受体位于免疫细胞及KC表面,负责识别病原体,包括Toll样受体和脂多糖等,可触发促炎因子释放,募集Th2细胞并促进Th2型细胞因子的释放,激活痒觉神经元[21]

    AD急性期表现为Th2、Th22和Th17细胞过度活化;而过渡至慢性期表现为Th1细胞开始活化及Th2细胞持续活化[22]。机械损伤或炎症刺激促使上皮细胞来源的细胞因子分泌增加,激活2型固有淋巴细胞(type 2 innate lymphoid cell,ILC2),并募集Th2细胞进入皮肤[23]。ILC2、Th2细胞及嗜碱性粒细胞分泌的IL-4、IL-5、IL-13和IL-31等细胞因子募集嗜酸性粒细胞,促进免疫球蛋白转变为IgE,诱发皮肤炎症持续[24],并作为内源性致痒原直接激活痒觉神经元引起瘙痒。

    对瘙痒特异性通路的深入研究揭示了免疫细胞释放的细胞因子可直接激活感觉神经元,引起瘙痒,由此产生了新的研究领域——神经免疫。肥大细胞-组胺通路是目前公认经典的瘙痒神经免疫学通路。活化的肥大细胞释放组胺等多种炎症介质,组胺通过激活感觉神经元上的H1受体使TRPV1开放,传递瘙痒信号[25]。最新研究发现,在AD状态下皮肤中存在嗜碱性粒细胞浸润,当接触过敏原后,嗜碱性粒细胞活性增强,与感觉神经末梢密切接触,并释放LTC4;LTC4作为比组胺更为强大的炎症介质,与瘙痒相关的非肽能神经元上的半胱氨酰LT受体2结合,通过TRPV1和TRPA1介导瘙痒,促使AD瘙痒急性加重[26]

    众多环境因素均可诱发AD患者产生瘙痒,内源性因素如出汗、干皮病、情绪波动等,外源性因素如紫外线、温度、湿度、空气污染等。紫外线照射可刺激炎症介质分泌增加,介导瘙痒;高温和空气干燥可加重瘙痒;环境中的细颗粒浓度增加与学龄前儿童的瘙痒程度成正相关[27]。此外,搔抓、毛料制品等物理刺激,尘螨、花粉、真菌、皮屑等过敏原,皮肤表面定殖的金黄色葡萄球菌、马拉色菌等微生物,辛辣刺激性食物或饮酒等均与AD瘙痒相关[28]。超过30%的中重度AD患儿存在一种或多种食入及吸入性过敏原致敏,接触过敏原可诱发IgE介导的过敏反应,加重病情及瘙痒-搔抓循环。精神因素、出汗、金黄色葡萄球菌定植及接触过敏原是AD瘙痒的重要诱发因素。

    在AD患者中,慢性瘙痒可唤起患者的搔抓欲望,搔抓促使KC释放IL-33和TSLP等细胞因子,同时诱导Th2细胞免疫反应,产生IL-31,上述介质均可直接激活痒觉神经元[29];痒觉神经元被激活后释放CGRP、SP等神经肽,引起神经源性炎症,加剧并使瘙痒持续或反复发作[3],呈现“瘙痒-搔抓循环”。相较于其他伴有瘙痒症状的皮肤病,AD患者更易出现瘙痒-搔抓循环[30]

    有效避免AD瘙痒的诱因可减少瘙痒的发生,包括内源性因素、外源性刺激、过敏原、微生物和食物等。搔抓行为诱发瘙痒-搔抓循环,改变搔抓习惯可缓解瘙痒症状。润肤剂可减少表皮水分流失和致痒原渗透,促进皮肤屏障功能恢复并减轻局部炎症反应。研究显示,含神经酰胺的润肤剂可改善AD患者的SCORAD(scoring atopic dermatitis index)评分,有助于恢复皮肤屏障功能[31]

    常用的止痒及抗炎药物可控制皮肤炎症反应,缓解瘙痒症状,外用药物包括外用糖皮质激素(topical corticosteroids,TCS)、外用钙调神经磷酸酶抑制剂(topical calcineurin inhibitor,TCI)等,系统药物包括抗组胺药、抗癫痫药、免疫抑制剂等。TCS是AD的一线治疗药物,通过抑制局部炎症反应,打破瘙痒-搔抓循环间接止痒,但由于其存在皮肤萎缩、多毛等副作用,应避免长期过度使用。TCI可缓解AD患者的皮损严重程度及瘙痒症状,其作用机制包括调节T细胞活性并抑制炎症细胞因子释放[32],目前已被批准用于2岁以上儿童。口服抗组胺类药物对AD瘙痒缓解效果欠佳,短期使用第一代抗组胺类药物可发挥其镇静作用进而缓解夜间瘙痒,但使用4~7 d后镇静作用逐渐降低,患者可产生耐受性[33]。抗癫痫类药物如加巴喷丁、普瑞巴林等可降低神经元兴奋性,同时减少兴奋性神经递质的释放,缓解瘙痒症状。重度AD患者可使用免疫抑制剂如硫唑嘌呤、甲氨蝶呤、环孢素A、吗替麦考酚酯等,对控制瘙痒症状有效,但起效缓慢,同时需密切监测骨髓抑制、肝损害等副作用。

    目前许多细胞因子及其相关信号转导通路被作为AD瘙痒的治疗靶点,包括TRPV1、IL-4Rα、IL-13、IL-31Rα、JAK和磷酸二酯酶4(phosphodiesterase 4,PDE 4)、IL-33、TSLP等。

    辣椒素可使TRPV1阳性神经元脱敏,并破坏感觉神经末梢、消耗神经末梢的SP[34],适用于局部瘙痒的治疗,但可产生灼烧感,不适宜大面积使用。PAC-14028为选择性的TRPV1拮抗剂,PAC-14028乳膏的Ⅱb期临床试验结果显示,轻中度AD患者接受1.0 %的PAC-14028乳膏治疗3周后,瘙痒评分及睡眠障碍评分均明显下降,皮损严重程度得到显著改善[35]。抗IL-4Rα单克隆抗体Dupilumab通过抑制IL-4/IL-13信号通路,可减轻皮肤炎症并缓解瘙痒症状[36]。在多项随机双盲安慰剂对照试验中,中重度AD患者接受Dupilumab联合TCS治疗16周后,其临床症状和体征均显著改善;治疗4周后瘙痒症状即可明显缓解[37-38],目前已被写入《中国特应性皮炎诊疗指南(2020版)》[39]。在抗IL-31Rα单克隆抗体Nemolizumab的Ⅱ期临床试验中,用药12周后中重度AD患者的瘙痒评分较基线水平显著下降[40]。非选择性JAK拮抗剂托法替尼可改善AD患者的疾病活动性和瘙痒症状[41],一项随机双盲安慰剂对照Ⅱ期临床试验显示,中重度AD患者接受巴瑞替尼联合TCS治疗2 d后,其瘙痒评分较安慰剂组显著下降[42]。选择性JAK1抑制剂Abrocitinib的Ⅲ期临床试验结果显示,成人及青少年中重度AD患者用药第2天瘙痒即得到显著改善[43]。2021年9月,英国药品和健康产品管理局批准该药用于治疗12岁及以上成人和青少年中重度AD患者。研究显示,应用选择性JAK1抑制剂Upadacitinib治疗中重度AD患者,在其他临床症状改善之前,患者的瘙痒症状即得到显著缓解[44]。Ruxolitinib是JAK1和JAK2的选择性抑制剂,其Ⅲ期临床试验结果显示,外用1.5%的Ruxolitinib乳膏可使瘙痒迅速缓解,用药12 h后瘙痒评分显著下降[45]。2% Crisaborole软膏可改善AD患者的病情严重程度和瘙痒[46],2016年美国食品药品监督管理局批准PDE 4抑制剂Crisaborole软膏用于成人和2岁以上儿童轻中度AD患者,2020年批准该药用于3个月龄以上的AD患者。2020年,该药在我国批准上市,目前用于2岁及以上轻中度AD患者。抗IL-33单克隆抗体Etokimab的Ⅱa期临床试验结果显示,300 mg单剂量皮下注射,29 d后中重度AD患者的疾病严重程度及瘙痒均得到显著改善[47];但在Ⅱb期临床试验中,300例中重度AD患者接受该药治疗16周后其皮损面积及疾病严重程度与安慰剂组相比无显著差异[48]。TLSP单克隆抗体Tezepelumab的Ⅱa期临床试验结果显示,每2周皮下注射Tezepelumab 280 mg联合TCS治疗12周后,患者瘙痒几乎无改善,皮损严重程度稍有下降,与安慰剂组相比差异无统计学意义[49]

    AD瘙痒机制复杂,上皮细胞、免疫系统和神经系统均参与其中,瘙痒-搔抓恶性循环可进一步加重皮肤炎症反应,导致瘙痒难以控制。近年来,随着对AD瘙痒相关神经免疫环路研究的深入,抗IL-4Rα单抗、抗IL-31Rα单抗、JAK拮抗剂等生物制剂及小分子化合物PDE4抑制剂已为部分AD患者带来福音。该领域尚存在诸多奥秘亟待研究人员进一步探索,新治疗靶点的发现有望为AD乃至其他炎症性皮肤病提供更精准有效的治疗方案。

    作者贡献:石岳负责文献检索及论文撰写;朱波、黄宇光负责论文设计及修订。
    利益冲突:所有作者均声明不存在利益冲突
  • [1]

    Lord C, Elsabbagh M, Baird G, et al. Autism spectrum disorder[J]. Lancet, 2018, 392: 508-520. DOI: 10.1016/S0140-6736(18)31129-2

    [2]

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5[M]. Washington, DC: American Psychiatric Association Publishing, 2013.

    [3]

    Zablotsky B, Black LI, Maenner MJ, et al. Prevalence and Trends of Developmental Disabilities among Children in the United States: 2009-2017[J]. Pediatrics, 2019, 144: e20190811. DOI: 10.1542/peds.2019-0811

    [4]

    Zhou H, Xu X, Yan W, et al. Prevalence of Autism Spectrum Disorder in China: A Nationwide Multi-center Population-based Study Among Children Aged 6 to 12 Years[J]. Neurosci Bull, 2020, 36: 961-971. DOI: 10.1007/s12264-020-00530-6

    [5]

    Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems[J]. Genes Brain Behav, 2003, 2: 255-267. DOI: 10.1034/j.1601-183X.2003.00037.x

    [6]

    Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics[J]. World J Biol Psychiatry, 2016, 17: 174-186. DOI: 10.3109/15622975.2015.1085597

    [7]

    Lee E, Lee J, Kim E. Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders[J]. Biol Psychiatry, 2017, 81: 838-847.

    [8]

    Radyushkin K, Hammerschmidt K, Boretius S, et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit[J]. Genes Brain Behav, 2009, 8: 416-425. DOI: 10.1111/j.1601-183X.2009.00487.x

    [9]

    Esclassan F, Francois J, Phillips KG, et al. Phenotypic characterization of nonsocial behavioral impairment in neurexin 1α knockout rats[J]. Behav Neurosci, 2015, 129: 74-85. DOI: 10.1037/bne0000024

    [10]

    Peca J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction[J]. Nature, 2011, 472: 437-442. DOI: 10.1038/nature09965

    [11]

    Guy J, Hendrich B, Holmes M, et al. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome[J]. Nat Genet, 2001, 27: 322-326. DOI: 10.1038/85899

    [12]

    Mcfarlane HG, Kusek GK, Yang M, et al. Autism-like behavioral phenotypes in BTBR T+tf/J mice[J]. Genes Brain Behav, 2008, 7: 152-163.

    [13]

    Bromley RL, Mawer G, Clayton-Smith J, et al. Autism spectrum disorders following in utero exposure to antiepile-ptic drugs[J]. Neurology, 2008, 71: 1923-1924. DOI: 10.1212/01.wnl.0000339399.64213.1a

    [14]

    Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism[J]. Exp Neurol, 2018, 299: 217-227. DOI: 10.1016/j.expneurol.2017.04.017

    [15]

    Hengen KB, Lambo ME, Van Hooser SD, et al. Firing rate homeostasis in visual cortex of freely behaving rodents[J]. Neuron, 2013, 80: 335-342. DOI: 10.1016/j.neuron.2013.08.038

    [16]

    Sohal VS, Rubenstein JL. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders[J]. Mol Psychiatry, 2019, 24: 1248-1257. DOI: 10.1038/s41380-019-0426-0

    [17]

    Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction[J]. Nature, 2011, 477: 171-178. DOI: 10.1038/nature10360

    [18]

    Adesnik H, Scanziani M. Lateral competition for cortical space by layer-specific horizontal circuits[J]. Nature, 2010, 464: 1155-1160. DOI: 10.1038/nature08935

    [19]

    Lee AT, Gee SM, Vogt D, et al. Pyramidal neurons in prefrontal cortex receive subtype-specific forms of excitation and inhibition[J]. Neuron, 2014, 81: 61-68. DOI: 10.1016/j.neuron.2013.10.031

    [20]

    Pfeffer CK, Xue M, He M, et al. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons[J]. Nat Neurosci, 2013, 16: 1068-1076. DOI: 10.1038/nn.3446

    [21]

    Pi HJ, Hangya B, Kvitsiani D, et al. Cortical interneurons that specialize in disinhibitory control[J]. Nature, 2013, 503: 521-524. DOI: 10.1038/nature12676

    [22]

    Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome[J]. Nat Rev Neurosci, 2015, 16: 595-605. DOI: 10.1038/nrn4001

    [23]

    Tabuchi K, Blundell J, Etherton MR, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice[J]. Science, 2007, 318: 71-76. DOI: 10.1126/science.1146221

    [24]

    Földy C, Malenka RC, Südhof TC. Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling[J]. Neuron, 2013, 78: 498-509. DOI: 10.1016/j.neuron.2013.02.036

    [25]

    Rothwell PE, Fuccillo MV, Maxeiner S, et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors[J]. Cell, 2014, 158: 198-212. DOI: 10.1016/j.cell.2014.04.045

    [26]

    Baudouin SJ, Gaudias J, Gerharz S, et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism[J]. Science, 2012, 338: 128-132. DOI: 10.1126/science.1224159

    [27]

    Jaramillo TC, Speed HE, Xuan Z, et al. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism[J]. Autism Res, 2016, 9: 350-375. DOI: 10.1002/aur.1529

    [28]

    Duffney LJ, Zhong P, Wei J, et al. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators[J]. Cell Rep, 2015, 11: 1400-1413. DOI: 10.1016/j.celrep.2015.04.064

    [29]

    Han K, Holder JL Jr, Schaaf CP, et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties[J]. Nature, 2013, 503: 72-77. DOI: 10.1038/nature12630

    [30]

    Kouser M, Speed HE, Dewey CM, et al. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission[J]. J Neurosci, 2013, 33: 18448-18468. DOI: 10.1523/JNEUROSCI.3017-13.2013

    [31]

    Speed HE, Kouser M, Xuan Z, et al. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits[J]. J Neurosci, 2015, 35: 9648-9665. DOI: 10.1523/JNEUROSCI.3125-14.2015

    [32]

    Lee J, Chung C, Ha S, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit[J]. Front Cell Neurosci, 2015, 9: 94.

    [33]

    Han S, Tai C, Jones CJ, et al. Enhancement of inhibitory neurotransmission by GABAA receptors having α2, 3-subunits ameliorates behavioral deficits in a mouse model of autism[J]. Neuron, 2014, 81: 1282-1289. DOI: 10.1016/j.neuron.2014.01.016

    [34]

    Cellot G, Maggi L, Di Castro MA, et al. Premature changes in neuronal excitability account for hippocampal network impairment and autistic-like behavior in neonatal BTBR T+tf/J mice[J]. Sci Rep, 2016, 6: 31696. DOI: 10.1038/srep31696

    [35]

    Cui J, Park J, Ju X, et al. General Anesthesia During Neurodevelopment Reduces Autistic Behavior in Adult BTBR Mice, a Murine Model of Autism[J]. Front Cell Neurosci, 2021, 15: 772047. DOI: 10.3389/fncel.2021.772047

    [36]

    Banerjee A, García-Oscos F, Roychowdhury S, et al. Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism[J]. Int J Neuropsychopharmacol, 2013, 16: 1309-1318. DOI: 10.1017/S1461145712001216

    [37]

    Kang J, Kim E. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors[J]. Front Mol Neurosci, 2015, 8: 17.

    [38]

    Rinaldi T, Kulangara K, Antoniello K, et al. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid[J]. Proc Natl Acad Sci U S A, 2007, 104: 13501-13506. DOI: 10.1073/pnas.0704391104

    [39]

    Walcott EC, Higgins EA, Desai NS. Synaptic and intrinsic balancing during postnatal development in rat pups exposed to valproic acid in utero[J]. J Neurosci, 2011, 31: 13097-13109. DOI: 10.1523/JNEUROSCI.1341-11.2011

    [40]

    Martin HG, Manzoni OJ. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism[J]. Front Cell Neurosci, 2014, 8: 23.

    [41]

    Chez MG, Burton Q, Dowling T, et al. Memantine as Adjunctive Therapy in Children Diagnosed With Autistic Spectrum Disorders: An Observation of Initial Clinical Response and Maintenance Tolerability[J]. J Child Neurol, 2007, 22: 574-579. DOI: 10.1177/0883073807302611

    [42]

    Ghaleiha A, Asadabadi M, Mohammadi MR, et al. Memantine as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial[J]. Int J Neuropsychopharmacol, 2013, 16: 783-789. DOI: 10.1017/S1461145712000880

    [43]

    Aman MG, Findling RL, Hardan AY, et al. Safety and Efficacy of Memantine in Children with Autism: Randomized, Placebo-Controlled Study and Open-Label Extension[J]. J Child Adolesc Psychopharmacol, 2017, 27: 403-412. DOI: 10.1089/cap.2015.0146

    [44]

    Hardan AY, Fung LK, Libove RA, et al. A randomized controlled pilot trial of oral N-acetylcysteine in children with autism[J]. Biol Psychiatry, 2012, 71: 956-961. DOI: 10.1016/j.biopsych.2012.01.014

    [45]

    Wink LK, Adams R, Wang Z, et al. A randomized placebo-controlled pilot study of N-acetylcysteine in youth with autism spectrum disorder[J]. Mol Autism, 2016, 7: 26. DOI: 10.1186/s13229-016-0088-6

    [46]

    Dean OM, Gray KM, Villagonzalo KA, et al. A rando-mised, double blind, placebo-controlled trial of a fixed dose of N-acetyl cysteine in children with autistic disorder[J]. Aust N Z J Psychiatry, 2017, 51: 241-249. DOI: 10.1177/0004867416652735

    [47]

    Berry-Kravis EM, Hessl D, Rathmell B, et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial[J]. Sci Transl Med, 2012, 4: 152ra27.

    [48]

    Erickson CA, Veenstra-Vanderweele JM, Melmed RD, et al. STX209 (arbaclofen) for autism spectrum disorders: an 8-week open-label study[J]. J Autism Dev Disord, 2014, 44: 958-964. DOI: 10.1007/s10803-013-1963-z

    [49]

    Veenstra-Vanderweele J, Cook EH, King BH, et al. Arbaclofen in Children and Adolescents with Autism Spectrum Disorder: A Randomized, Controlled, Phase 2 Trial[J]. Neuropsychopharmacology, 2017, 42: 1390-1398. DOI: 10.1038/npp.2016.237

    [50]

    Parellada M, San José Cáceres A, Palmer M, et al. A Phase Ⅱ Randomized, Double-Blind, Placebo-Controlled Study of the Efficacy, Safety, and Tolerability of Arbaclofen Administered for the Treatment of Social Function in Children and Adolescents With Autism Spectrum Disorders: Study Protocol for AIMS-2-TRIALS-CT1[J]. Front Psychiatry, 2021, 12: 701729. DOI: 10.3389/fpsyt.2021.701729

计量
  • 文章访问数:  529
  • HTML全文浏览量:  83
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 录用日期:  2023-05-30
  • 刊出日期:  2023-07-29

目录

/

返回文章
返回
x 关闭 永久关闭