miRNAs在肝纤维化中的作用机制

黄璐, 吴有斌, 倪毅然, 刘梦媛, 吴江锋, 张艳琼

黄璐, 吴有斌, 倪毅然, 刘梦媛, 吴江锋, 张艳琼. miRNAs在肝纤维化中的作用机制[J]. 协和医学杂志, 2023, 14(6): 1251-1257. DOI: 10.12290/xhyxzz.2023-0125
引用本文: 黄璐, 吴有斌, 倪毅然, 刘梦媛, 吴江锋, 张艳琼. miRNAs在肝纤维化中的作用机制[J]. 协和医学杂志, 2023, 14(6): 1251-1257. DOI: 10.12290/xhyxzz.2023-0125
HUANG Lu, WU Youbin, NI Yiran, LIU Mengyuan, WU Jiangfeng, ZHANG Yanqiong. The Mechanism of miRNAs in Liver Fibrosis[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1251-1257. DOI: 10.12290/xhyxzz.2023-0125
Citation: HUANG Lu, WU Youbin, NI Yiran, LIU Mengyuan, WU Jiangfeng, ZHANG Yanqiong. The Mechanism of miRNAs in Liver Fibrosis[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1251-1257. DOI: 10.12290/xhyxzz.2023-0125

miRNAs在肝纤维化中的作用机制

基金项目: 

国家自然科学基金 81670555

详细信息
    通讯作者:

    张艳琼, E-mail: 1512575383@qq.com

  • 中图分类号: Q527+.1; R34

The Mechanism of miRNAs in Liver Fibrosis

Funds: 

National Natural Science Foundation of China 81670555

More Information
  • 摘要: 微RNA(microRNAs,miRNAs)可稳定存在于细胞、组织及血液中,参与多种疾病的病理过程,成为多种疾病诊断的潜在生物标志物。已有研究表明,其在各种慢性肝病所致的肝纤维化中发挥重要作用,可通过调节肝纤维化相关基因的表达,干预肝纤维化发展进程。本文就miRNA在肝纤维化中的作用机制作一综述,以期为肝纤维化的诊断及分子靶向治疗提供借鉴。
    Abstract: MicroRNAs(miRNAs) are involved in the pathophysiological processes of many diseases. Stably present in cells, tissues and blood, they can be used as potential markers of many diseases. They play an important role in the pathogenesis of liver fibrosis caused by various chronic liver diseases. It has been shown that miRNAs can participate in the process of liver fibrosis by targeting the down-regulation of liver fibrosis-related gene expression. In this review, we discuss the research progress on the role of miRNAs in liver fibrosis, with the hope of providing reference for diagnosis and molecularly targeted treatment.
  • 丝氨酸蛋白酶是一类以丝氨酸为活性中心的蛋白水解酶,在胚胎发育、组织重构、细胞分化、血管形成等多种生理过程中均发挥重要作用。丝氨酸蛋白酶抑制剂(serine proteinase inhibitors,serpins)超家族是一类大小相似、结构高度保守的蛋白质分子,几乎存在于所有生命体中,目前已发现超过1000个家族成员,serpins可作为自杀性底物与丝氨酸蛋白酶结合,通过形成共价抑制复合物而调节丝氨酸蛋白酶的活性,参与调控体内一系列蛋白水解级联反应,如补体激活、凝血、细胞凋亡等。根据系统进化研究,serpins被分为16个亚家族[1],其中人类基因组可编码9个亚家族(A~I族)serpins[2]。B族serpins被称为卵清蛋白样丝氨酸蛋白酶抑制剂,与其他大多数serpins为细胞外蛋白不同,B族serpins缺乏经典的N末端信号肽,主要存在于细胞质与细胞核中,保护细胞免受外源性和内源性蛋白酶介导的损伤[3]

    SerpinB9是B族serpins成员之一,是颗粒酶B(granzyme B,GrB)的生理性抑制剂,存在于多种免疫细胞中,参与人体内病毒感染、免疫应答、炎症反应、肿瘤发生等多种过程。已有研究发现SerpinB9与冠状动脉粥样硬化、糖尿病等疾病相关[4]。近年来,SerpinB9在肿瘤发生发展中的作用成为研究热点,并有望成为肿瘤治疗的潜在靶点之一。皮肤恶性肿瘤种类繁多,晚期进展迅速、预后差,尚无有效的治疗手段,研究SerpinB9在皮肤肿瘤发生中的作用并探索其作为治疗靶点的可能性具有重要临床意义。本文将对SerpinB9与肿瘤的关系及其在皮肤肿瘤领域的研究进展进行综述。

    通过死亡受体途径和细胞毒性颗粒诱导细胞凋亡是自然杀伤(natural killer,NK)细胞和细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)杀灭靶细胞的主要方式,细胞毒性颗粒内含有可溶解细胞膜的穿孔素及多种颗粒酶,其中GrB是诱导靶细胞凋亡的主要效应因子。GrB是一种外源性丝氨酸蛋白酶,可与靶细胞表面的磷酸甘露糖受体结合并进入细胞,激活含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,caspase)-3、caspase-7等,导致DNA裂解并启动细胞凋亡[5]

    Sun等[6]研究发现, SerpinB9是GrB的生理性抑制剂,通过与GrB结合形成共价复合物而抑制其功能,进而抑制穿孔素/颗粒酶途径介导的细胞凋亡,并发现SerpinB9主要存在于CTL及B细胞中,推测在免疫应答过程中,淋巴细胞通过产生SerpinB9灭活内源性或外源性GrB,从而抵抗GrB对自身的杀伤作用,其为淋巴细胞的自我保护机制之一。随后的多项研究均证实了这一观点[7-8]。Bird等[9]通过研究进一步证实, SerpinB9可特异性抑制GrB而不影响Fas介导的细胞凋亡,使CTL可通过Fas途径进行自我清除,从而维持免疫系统的稳态。近年来,一些研究表明SerpinB9同样可与活化的caspase-8、caspase-10相互作用,抑制下游caspase的激活,进而抑制肿瘤坏死因子(tumor necrosis factor,TNF)、TNF相关凋亡诱导配体(TNF related apoptosis-inducing ligand,TRAIL)、Fas等死亡受体途径介导的细胞凋亡[10-11]

    SerpinB9分布广泛,除在CTL中发挥自我保护作用外,在树突状细胞、调节性T淋巴细胞、脾边缘区B淋巴细胞、肥大细胞等免疫细胞,以及血管内皮细胞、间皮细胞中同样可检测到SerpinB9的表达。通过抑制其在免疫应答过程中可能接触到的内源性或外源性GrB而避免了异常自身凋亡,从而发挥抗原交叉提呈、启动免疫反应、保持血管完整性等生理作用[12-16]。此外,免疫豁免部位的细胞,如胎盘组织的中间滋养细胞、睾丸支持细胞、卵巢颗粒细胞和晶状体细胞也可产生SerpinB9以保护自身免受免疫系统攻击,维持免疫系统稳态[12]

    CTL的杀伤作用是机体实现抗肿瘤免疫的主要途径,而肿瘤细胞可通过多种途径逃脱免疫监视以促进肿瘤细胞增殖与转移,如下调主要组织相容性复合体(major histocompatibility complex,MHC)-Ⅰ类分子的表达、产生凋亡抑制蛋白c-FLIP进而抑制死亡受体途径介导的细胞凋亡等[5, 17]。近年来,SerpinB9在肿瘤发生发展中的作用成为研究的热点。Medema等[5]在人和小鼠的乳腺癌细胞、宫颈癌细胞、结肠癌细胞中均检测到SerpinB9表达,而在正常乳腺上皮细胞、宫颈上皮细胞、结肠上皮细胞中未发现SerpinB9表达,且SerpinB9高表达可显著抑制CTL通过穿孔素/颗粒酶途径介导的肿瘤细胞凋亡,表明SerpinB9的表达是肿瘤细胞抵抗CTL介导的细胞凋亡从而实现免疫逃逸的机制之一,而SerpinB9的表达水平可用于评估CTL介导的肿瘤免疫治疗可行性。

    Rousalova等[18]研究证实非小细胞肺癌细胞和组织表达SerpinB9,且可抑制GrB的活性。Soriano等[19]研究发现,与正常支气管上皮细胞相比,肺癌细胞中SerpinB9表达升高,而肿瘤相关CD8+T细胞中GrB的表达水平下调; 且在非小细胞肺癌中,随着肿瘤进展SerpinB9的表达逐渐上升,表明SerpinB9表达升高与预后不良相关。Zhou等[20]在肝癌细胞中发现了类似结果,肝癌细胞中SerpinB9的表达水平显著高于正常肝组织,SerpinB9的表达水平与肿瘤分化程度、TNM分期、肿瘤体积呈正相关,且是肝细胞癌患者预后的独立预测因子,SerpinB9高表达组患者的生存时间显著短于SerpinB9低表达组。Vycital等[21]发现结直肠癌患者的肿瘤组织和正常结肠组织中均可检测到SerpinB9的表达,且正常结肠组织中SerpinB9表达升高的患者总生存期更长,推测该结果体现了抗肿瘤免疫反应与肿瘤细胞的相互作用对预后的影响,但其具体机制仍需进一步研究。Ray等[22]发现早期前列腺癌细胞中SerpinB9表达升高,并可抑制NK细胞释放的GrB介导的细胞凋亡,表明SerpinB9表达上调可能是促进早期前列腺癌进展的机制之一。

    除实体肿瘤外,一些血液系统肿瘤细胞同样也表达SerpinB9。Fritsch等[23]发现淋巴细胞白血病、急性髓系白血病的肿瘤细胞表达SerpinB9,且SerpinB9表达水平与GrB活性呈负相关。随着SerpinB9表达水平升高,其对GrB的抑制程度增加,肿瘤细胞的凋亡水平降低,推测SerpinB9可通过抑制GrB减少肿瘤细胞凋亡,进而促进肿瘤免疫逃逸。Chen等[24]研究发现在对硼替佐米抵抗的复发难治性多发性骨髓瘤患者中,其骨髓单个核细胞的SerpinB9表达水平显著高于多发性骨髓瘤的新诊初治患者,功能富集分析提示SerpinB9参与调节细胞凋亡、程序性细胞死亡和免疫应答等过程,推测SerpinB9有望成为复发难治性多发性骨髓瘤的潜在治疗靶点和生物标志物。

    在皮肤肿瘤领域关于SerpinB9的研究中,恶性黑色素瘤是报道最多、研究较为广泛的疾病。Medema等[5]发现在恶性黑色素瘤细胞中可检测到SerpinB9表达,SerpinB9通过灭活GrB抵抗CTL对肿瘤细胞的杀伤作用,而在正常黑色素细胞中SerpinB9表达阴性,表明恶性黑色素瘤细胞可能通过表达SerpinB9逃脱免疫系统的攻击与杀伤作用。

    在恶性黑色素瘤治疗方面,免疫治疗是近年来的研究热点之一。多项研究表明,SerpinB9的表达水平与恶性黑色素瘤对免疫治疗的反应相关。在接受特异性主动免疫治疗的转移性恶性黑色素瘤患者中,肿瘤细胞表达SerpinB9的患者对免疫治疗反应较差,且预后不良,提示肿瘤细胞表达SerpinB9可能为一种重要的免疫逃逸机制,调控SerpinB9的表达水平可能是增强免疫治疗疗效的途径之一[25]。在使用免疫检查点抑制剂抗CTLA-4单克隆抗体易普利姆玛(ipilimumab)治疗恶性黑色素瘤的临床研究中发现,治疗有效组患者的SerpinB9表达水平较无应答组更低,SerpinB9表达水平升高与患者预后不良显著相关[26-27]。Jiang等[27]进一步研究发现,SerpinB9高表达与恶性黑色素瘤对免疫检查点抑制剂治疗抵抗相关,而恶性黑色素瘤细胞对免疫检查点抑制剂的治疗反应与CTL介导的肿瘤细胞凋亡密切相关。实验表明,敲除SERPINB9基因的B16F10细胞(小鼠皮肤黑色素瘤细胞)对CTL介导的细胞杀伤作用更敏感;而SERPINB9基因过表达的B16F10细胞对T细胞介导的细胞杀伤作用表现出抵抗。

    SerpinB9除在肿瘤细胞中表达增高以促进免疫逃逸、免疫治疗抵抗外,还可通过影响肿瘤微环境(tumor microenvironment,TME),进而促进肿瘤发展。

    TME包括肿瘤细胞周围的免疫细胞、成纤维细胞、血管、信号分子和细胞外基质等,TME与肿瘤细胞不断相互作用,进而影响肿瘤的生长、进展、转移、免疫逃逸等生物学行为[28]。TME中的髓源性抑制细胞(myeloid-derived suppressor cell,MDSC)、肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)及调节性T(regulatory T,Treg)细胞等免疫细胞构成了免疫抑制性TME,促进肿瘤细胞的生长与侵袭。而TME中的间质细胞,如肿瘤相关成纤维细胞(tumor-associated fibroblast,CAF)可分泌多种细胞因子、趋化因子、基质蛋白等,阻碍效应T细胞对肿瘤细胞的杀伤作用,进而促进肿瘤发展[29-30]

    Luo等[31]对葡萄膜黑色素瘤TME中的免疫细胞和基质细胞的基因表达进行对比分析,发现了包括SERPINB9基因在内的21个与预后相关的基因。Jiang等[29]研究发现,恶性黑色素瘤TME中的MDSC、TAM、Treg细胞等抑制性免疫细胞同样表达SerpinB9,并通过抑制杀伤性淋巴细胞(CTL、NK细胞)分泌的或内源性GrB而发挥自我保护作用,进而形成有利于肿瘤生长、转移的TME,促进肿瘤发展。该团队还通过实验证实在SERPINB9基因缺陷的恶性黑色素瘤小鼠中,Treg、MDSC、TAM的比例及CAF的数目较对照组明显减少,提示抑制SerpinB9可逆转免疫抑制性TME,增强宿主的抗肿瘤免疫活性,并通过抑制肿瘤间质细胞的功能阻碍肿瘤的发展。

    器官移植后继发皮肤鳞状细胞癌是其严重并发症之一,Peters等[32]对肾移植患者的循环T细胞进行了全基因组甲基化分析,发现肾移植后继发皮肤鳞状细胞癌患者的T细胞中SERPINB9基因的甲基化水平显著高于非鳞状细胞癌,且外周T细胞中SerpinB9的表达水平低于对照组。推测T细胞中SERPINB9基因的表观遗传调控紊乱可能与皮肤鳞状细胞癌的发病相关,但其机制仍需进一步研究,通过表观修饰降低SERPINB9基因甲基化水平或许是预防移植后鳞状细胞癌的靶点之一。

    皮肤淋巴瘤是一组异质性疾病,原发性皮肤淋巴瘤的发生率在结外非霍奇金淋巴瘤中占第2位,同时原发结内的淋巴瘤也可出现皮肤受累。已有研究证实,在系统性间变性大细胞淋巴瘤,结外NK/T细胞淋巴瘤,鼻型、弥漫性大B细胞淋巴瘤和霍奇金淋巴瘤中均可检测到SerpinB9表达阳性的瘤细胞[33-34]。ten Berge等[34]研究发现,在系统性间变性大细胞淋巴瘤患者中,SerpinB9表达阳性的肿瘤细胞数目升高是预后不良的标志。Bossard等[35]对48例结外NK/T细胞淋巴瘤,鼻型患者的肿瘤细胞的SerpinB9表达水平与预后情况的分析表明,SerpinB9表达缺失是预后不良的标志,推测由于NK细胞固有表达GrB和SerpinB9,SerpinB9的“丢失”提示肿瘤细胞去分化,因此此类患者进展较快且预后差。

    基于SerpinB9在肿瘤发生发展中的作用,通过抑制SerpinB9发挥抗肿瘤作用成为近年来研究的热点。SerpinB9可抑制CTL通过穿孔素/颗粒酶途径介导的肿瘤细胞凋亡,因此SerpinB9的表达水平是预测肿瘤细胞对CTL介导的杀伤作用的敏感性参数之一[25]。如前所述,复发性难治性多发性骨髓瘤患者的肿瘤细胞中SerpinB9表达水平较对照组显著增高,且SerpinB9在免疫应答、细胞凋亡等多种生理过程中发挥调控作用,提示SerpinB9有望成为复发难治性多发性骨髓瘤的潜在治疗靶点[24]

    Jiang等[29]筛选出了一种SerpinB9特异性抑制剂——小分子化合物3034(1,3-苯并恶唑-6-羧酸),并通过实验证实了1,3-苯并恶唑-6-羧酸作用于恶性黑色素瘤细胞后可显著提高其凋亡率,降低黑色素瘤的生长速度,且在乳腺癌、肾癌、肺癌小鼠模型中均被证实具有类似的抗肿瘤效果。上述结论表明SerpinB9抑制剂具有潜在的抗肿瘤作用,可能成为多种恶性肿瘤治疗的新靶点。

    综上所述,SerpinB9已被证实与非小细胞肺癌、肝癌、多发性骨髓瘤等多种恶性肿瘤相关,并通过促进免疫逃逸、影响TME等途径促进肿瘤的发生发展。在皮肤肿瘤方面,目前关于SerpinB9的研究主要集中于恶性黑色素瘤,而在其他皮肤恶性肿瘤中的表达及作用机制仍需进一步研究探索。目前研究数据显示,SerpinB9在肿瘤治疗方面具有较大潜力,为恶性黑色素瘤、鳞状细胞癌及皮肤淋巴瘤等难治性皮肤肿瘤的治疗提供了新的思路和方向。

    作者贡献:黄璐、吴有斌、刘梦媛负责论文撰写;倪毅然负责论文构思;吴江锋、张艳琼负责论文修订。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1   肝纤维化相关miRNAs作用靶点

    TGF:转化生长因子;Gramlin:骨形态形成蛋白拮抗家族;LOX:赖氨酰氧化酶;Itga:整合素家族;Acot 4:酰基辅酶A硫酯酶4;Menin:MEN1基因的表达产物;COL:胶原蛋白;PDGFC:血小板衍生生长因子C;P4HA1:脯氨酰4-羟化酶亚基α-1;FN1:纤连蛋白1;c-Abl:非受体酪氨酸激酶Abelson超家族成员;SHIP1:含SH2结构域的肌醇5-磷酸酶;PPAR:过氧化物酶体增殖物激活受体;Twist:转录因子蛋白;ACSL:酰基辅酶A合成酶长链蛋白;SIRT1:NAD+依赖的蛋白去乙酰化酶;TGIF2:TGF-β诱导因子同源异构体2;CAV:小窝蛋白;CDKN:细胞周期蛋白依赖性激酶抑制剂;TIMP:组织基质金属蛋白酶抑制剂;PTEN:抑癌基因;E-cad:上皮细胞钙粘素

    表  1   肝纤维化相关miRNAs

    miRNAs 类别 染色体定位 种子序列 细胞类型 疾病模型 表达水平
    miR-23[9, 46-47] 抗肝纤维化 19p13.12;
    9q22.32
    UCACAUU;
    UCACAGU;
    GGCUCAG
    HSCs;肝细胞;
    胆管上皮细胞
    CCl4引起的肝纤维化、NASH;硬化性胆管炎 CHC患者血清中下降
    miR-29[12-14] 抗肝纤维化 7q32.3;
    1q32.2
    AGCACCA HSCs; CCl4等多种肝纤维化模型 CHC患者血清中上升,与肝纤维化程度呈正相关
    miR-122[17-24] 抗肝纤维化 18q21.31 GGAGUGU 肝细胞;HSCs NAFLD CHC患者血清中上升,与肝纤维化程度呈正相关
    miR-34[24-29, 48-51] 促肝纤维化 1p36.22;
    11q23.1
    GGCAGUG HSCs;肝细胞;
    胆管上皮细胞
    CCl4等多种肝纤维化模型;原发性胆管炎;NASH CHC患者血清中上升,与肝纤维化程度呈正相关
    miR-199[30-32] 促肝纤维化 19p13.2;
    1q24.3;
    9q34.11
    CCAGUGU;
    CAGUAGU
    HSCs CCl4等多种肝纤维化模型 CHC患者血清中上升,与肝纤维化程度呈正相关
    miR-221/222[34-40] 促肝纤维化 Xp11.3 GCUACAU HSCs;肝细胞;
    巨噬细胞
    CCl4等多种肝纤维化模型 多种肝纤维化模型组织表达上升
    miR-155[41-45] 双向作用 21q21.3 UAAUGCU 巨噬细胞;淋巴细
    胞;HSCs;肝细胞
    酒精性脂肪性肝炎和多种肝纤维化模型; 血清中上升,与肝纤维化程度呈正相关
    HSCs:肝星状细胞;CCl4: 四氯化碳;NASH:非酒精性脂肪性肝炎;CHC:慢性丙型肝炎;NAFLD:非酒精性脂肪性肝病;AGTR:血管紧张素Ⅱ受体;TCF4:T细胞因子4
    下载: 导出CSV
  • [1]

    Wang H, Wang Z, Wang Y, et al. miRNA-130b-5p promotes hepatic stellate cell activation and the development of liver fibrosis by suppressing SIRT4 expression[J]. J Cell Mol Med, 2021, 25: 7381-7394. DOI: 10.1111/jcmm.16766

    [2]

    Szabo G, Bala S. MicroRNAs in liver disease[J]. Nat Rev Gastroenterol Hepatol, 2013, 10: 542-552. DOI: 10.1038/nrgastro.2013.87

    [3]

    Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease[J]. Vet Pathol, 2014, 51: 759-774. DOI: 10.1177/0300985813502820

    [4]

    Michlewski G, Caceres JF. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25: 1-16. DOI: 10.1261/rna.068692.118

    [5]

    Li M, Yu B, Recent advances in the regulation of plant miRNA biogenesis[J]. RNA Biol, 2021, 18: 2087-2096. DOI: 10.1080/15476286.2021.1899491

    [6]

    Suzuki HI, Young RA, Sharp PA. Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis[J]. Cell, 2017, 168: 1000-1014. DOI: 10.1016/j.cell.2017.02.015

    [7]

    Nguyen TA, Park J, Dang TL, et al. Microprocessor depends on hemin to recognize the apical loop of primary microRNA[J]. Nucleic Acids Res, 2018, 46: 5726-5736. DOI: 10.1093/nar/gky248

    [8]

    Alarcon CR, Lee H, Goodarzi H, et al. N6-methyl-adenosine marks primary microRNAs for processing[J]. Nature, 2015, 519: 482-485. DOI: 10.1038/nature14281

    [9]

    Li H, Li X, Yu S, et al. miR-23b Ameliorates nonalco-holic steatohepatitis by targeting Acyl-CoA thioesterases 4[J]. Exp Cell Res, 2021, 407: 112787. DOI: 10.1016/j.yexcr.2021.112787

    [10]

    El-Hefny M, Fouad S, Hussein T, et al. Circulating microRNAs as predictive biomarkers for liver disease progres-sion of chronic hepatitis C (genotype-4) Egyptian patients[J]. J Med Virol, 2019, 91: 93-101. DOI: 10.1002/jmv.25294

    [11]

    Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs[J]. Elife, 2015, 4: e05005. DOI: 10.7554/eLife.05005

    [12]

    Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis[J]. Hepatology, 2011, 53: 209-218. DOI: 10.1002/hep.23922

    [13]

    Yu X, Elfimova N, Muller M, et al. Autophagy-Related Activation of Hepatic Stellate Cells Reduces Cellular miR-29a by Promoting Its Vesicular Secretion[J]. Cell Mol Gastroenterol Hepatol, 2022, 13: 1701-1716. DOI: 10.1016/j.jcmgh.2022.02.013

    [14]

    Matsumoto Y, Itami S, Kuroda M, et al. MiR-29a Assists in Preventing the Activation of Human Stellate Cells and Promotes Recovery From Liver Fibrosis in Mice[J]. Mol Ther, 2016, 24: 1848-1859. DOI: 10.1038/mt.2016.127

    [15]

    Girard M, Jacquemin E, Munnich A, et al. miR-122, a paradigm for the role of microRNAs in the liver[J]. J Hepatol, 2008, 48: 648-656. DOI: 10.1016/j.jhep.2008.01.019

    [16]

    Sendi H, Mead I, Wan M, et al. miR-122 inhibition in a human liver organoid model leads to liver inflammation, necrosis, steatofibrosis and dysregulated insulin signaling[J]. PLoS One, 2018, 13: e200847.

    [17]

    Satishchandran A, Ambade A, Rao S, et al. MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice and Patients From Ethanol-Induced Liver Disease[J]. Gastroenterology, 2018, 154: 238-252. DOI: 10.1053/j.gastro.2017.09.022

    [18]

    Zeng C, Wang YL, Xie C, et al. Identification of a novel TGF-beta-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis[J]. Oncotarget, 2015, 6: 12224-12233. DOI: 10.18632/oncotarget.3652

    [19]

    Li J, Ghazwani M, Zhang Y, et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression[J]. J Hepatol, 2013, 58: 522-528. DOI: 10.1016/j.jhep.2012.11.011

    [20]

    Wu Z, Wang J, Feng J, et al. MicroRNA-122-5p prevents proliferation and promotes apoptosis of hepatic stellate cells by suppressing the cellular-Abelsongene/histone deacetylases 2 pathway[J]. Hum Exp Toxicol, 2022, 41: 774864384.

    [21]

    Omran AA, Osman KS, Kamel HM, et al. MicroRNA-122 as a Novel Non-Invasive Marker of Liver Fibrosis in Hepatitis C Virus Patients[J]. Clin Lab, 2016, 62: 1329-1337.

    [22]

    Lou G, Yang Y, Liu F, et al. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis[J]. J Cell Mol Med, 2017, 21: 2963-2973. DOI: 10.1111/jcmm.13208

    [23]

    Kim K, Lee JI, Kim O, et al. Ameliorating liver fibrosis in an animal model using the secretome released from miR-122-transfected adipose-derived stem cells[J]. World J Stem Cells, 2019, 11: 990-1004. DOI: 10.4252/wjsc.v11.i11.990

    [24]

    Yan G, Li B, Xin X, et al. MicroRNA-34a Promotes Hepatic Stellate Cell Activation via Targeting ACSL1[J]. Med Sci Monit, 2015, 21: 3008-3015. DOI: 10.12659/MSM.894000

    [25]

    Li X, Chen Y, Wu S, et al. microRNA-34a and microRNA-34c promote the activation of human hepatic stellate cells by targeting peroxisome proliferator-activated receptor gamma[J]. Mol Med Rep, 2015, 11: 1017-1024. DOI: 10.3892/mmr.2014.2846

    [26]

    Song L, Chen TY, Zhao XJ, et al. Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-beta1/Smads signalling[J]. Br J Pharmacol, 2019, 176: 1619-1634. DOI: 10.1111/bph.14573

    [27]

    Tian XF, Ji FJ, Zang HL, et al. Activation of the miR-34a/SIRT1/p53 Signaling Pathway Contributes to the Progress of Liver Fibrosis via Inducing Apoptosis in Hepatocytes but Not in HSCs[J]. PLoS One, 2016, 11: e158657.

    [28]

    Liu Q, Zhang Y, Yang S, et al. PU. 1-deficient mice are resistant to thioacetamide-induced hepatic fibrosis: PU. 1 finely regulates Sirt1 expression via transcriptional promotion of miR-34a and miR-29c in hepatic stellate cells[J]. Biosci Rep, 2017, 37: BSR20170926. DOI: 10.1042/BSR20170926

    [29]

    Li X, Zhang W, Xu K, et al. miR-34a promotes liver fibrosis in patients with chronic hepatitis via mediating Sirt1/p53 signaling pathway[J]. Pathol Res Pract, 2020, 216: 152876. DOI: 10.1016/j.prp.2020.152876

    [30]

    Messner CJ, Schmidt S, Ozkul D, et al. Identification of miR-199a-5p, miR-214-3p and miR-99b-5p as Fibrosis-Specific Extracellular Biomarkers and Promoters of HSC Activation[J]. Int J Mol Sci, 2021, 22: 9799. DOI: 10.3390/ijms22189799

    [31]

    Murakami Y, Toyoda H, Tanaka M, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families[J]. PLoS One, 2011, 6: e16081. DOI: 10.1371/journal.pone.0016081

    [32]

    Lino CC, Henaoui IS, Courcot E, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1[J]. PLoS Genet, 2013, 9: e1003291. DOI: 10.1371/journal.pgen.1003291

    [33]

    Yang X, Ma L, Wei R, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-beta pathway[J]. Signal Transduct Target Ther, 2020, 5: 75. DOI: 10.1038/s41392-020-0169-z

    [34]

    Pineau P, Volinia S, Mcjunkin K, et al. miR-221 overexpression contributes to liver tumorigenesis[J]. Proc Natl Acad Sci USA, 2010, 107: 264-269. DOI: 10.1073/pnas.0907904107

    [35]

    Ogawa T, Enomoto M, Fujii H, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis[J]. Gut, 2012, 61: 1600-1609. DOI: 10.1136/gutjnl-2011-300717

    [36]

    Galardi S, Mercatelli N, Farace M G, et al. NF-κB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells[J]. Nucleic Acids Res, 2011, 39: 3892-3902. DOI: 10.1093/nar/gkr006

    [37]

    Sehgal M, Zeremski M, Talal AH, et al. IFN-alpha-Induced Downregulation of miR-221 in Dendritic Cells: Implications for HCV Pathogenesis and Treatment[J]. J Interferon Cytokine Res, 2015, 35: 698-709. DOI: 10.1089/jir.2014.0211

    [38]

    Mafanda EK, Kandhi R, Bobbala D, et al. Essential role of suppressor of cytokine signaling 1 (SOCS1) in hepatocytes and macrophages in the regulation of liver fibrosis[J]. Cytokine, 2019, 124: 154501. DOI: 10.1016/j.cyto.2018.07.032

    [39]

    Jiang X, Jiang L, Shan A, et al. Targeting hepatic miR-221/222 for therapeutic intervention of nonalcoholic steatohepatitis in mice[J]. EBioMedicine, 2018, 37: 307-321. DOI: 10.1016/j.ebiom.2018.09.051

    [40]

    Markovic J, Sharma AD, Balakrishnan A. MicroRNA-221: A Fine Tuner and Potential Biomarker of Chronic Liver Injury[J]. Cells, 2020, 9: 1767. DOI: 10.3390/cells9081767

    [41]

    Blaya D, Aguilar-Bravo B, Hao F, et al. Expression of microRNA-155 in inflammatory cells modulates liver injury[J]. Hepatology, 2018, 68: 691-706.

    [42]

    Bala S, Csak T, Saha B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis[J]. J Hepatol, 2016, 64: 1378-1387.

    [43]

    Bala S, Ganz M, Babuta M, et al. Steatosis, inflamma-some upregulation, and fibrosis are attenuated in miR-155 deficient mice in a high fat-cholesterol-sugar diet-induced model of NASH[J]. Lab Invest, 2021, 101: 1540-1549. DOI: 10.1038/s41374-021-00626-1

    [44]

    Dai W, Zhao J, Tang N, et al. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously prevent-ing EMT process and ERK1 signalling pathway[J]. Liver Int, 2015, 35: 1234-1243. DOI: 10.1111/liv.12660

    [45]

    Niu LJ, Zhang YM, Huang T, et al. Exosomal microRNA-155 as a biomarker for hepatic fibrosis diagnosis and progression[J]. Ann Transl Med, 2021, 9: 137. DOI: 10.21037/atm-20-7787

    [46]

    Wang Y, Luo J, Zhang H, et al. microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes[J]. Mol Biol Evol, 2016, 33: 2232-2247. DOI: 10.1093/molbev/msw089

    [47]

    Wan LY, Peng H, Ni YR, et al. The miR-23b/27b/24-1 Cluster Inhibits Hepatic Fibrosis by Inactivating Hepatic Stellate Cells[J]. Cell Mol Gastroenterol Hepatol, 2022, 13: 1393-1412. DOI: 10.1016/j.jcmgh.2022.01.016

    [48]

    Hong SW, Jung KH, Zheng HM, et al. The protective effect of resveratrol on dimethylnitrosamine-induced liver fibrosis in rats[J]. Arch Pharm Res, 2010, 33: 601-609. DOI: 10.1007/s12272-010-0415-y

    [49]

    Pan Y, Wang J, He L, et al. MicroRNA-34a Promotes EMT and Liver Fibrosis in Primary Biliary Cholangitis by Regulating TGF-beta1/smad Pathway[J]. J Immunol Res, 2021, 2021: 6890423.

    [50]

    Harrison SA, Ratziu V, Boursier J, et al. A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: a prospective derivation and global validation study[J]. Lancet Gastroenterol Hepatol, 2020, 5: 970-985. DOI: 10.1016/S2468-1253(20)30252-1

    [51]

    Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours[J]. Br J Cancer, 2020, 122: 1630-1637. DOI: 10.1038/s41416-020-0802-1

    [52] 陆伦根, 尤红, 谢渭芬, 等. 肝纤维化诊断及治疗共识(2019年)[J]. 实用肝脏病杂志, 2019, 22: 793-803. https://www.cnki.com.cn/Article/CJFDTOTAL-GBSY201906006.htm
    [53]

    Hassan S, Syed S, Kehar SI. Review of diagnostic techniques of hepatic fibrosis[J]. J Pak Med Assoc, 2014, 64: 941-945.

    [54]

    Dana J, Venkatasamy A, Saviano A, et al. Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease[J]. Hepatol Int, 2022, 16: 509-522. DOI: 10.1007/s12072-022-10303-0

    [55]

    Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility[J]. Nat Biotechnol, 2017, 35: 238-248. DOI: 10.1038/nbt.3765

    [56]

    Yamamoto T, Mukai Y, Wada F, et al. Highly Potent GalNAc-Conjugated Tiny LNA Anti-miRNA-122 Antisense Oligonucleotides[J]. Pharmaceutics, 2021, 13: 817. DOI: 10.3390/pharmaceutics13060817

图(1)  /  表(1)
计量
  • 文章访问数:  438
  • HTML全文浏览量:  77
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-12
  • 录用日期:  2023-04-02
  • 网络出版日期:  2023-05-03
  • 刊出日期:  2023-11-29

目录

/

返回文章
返回
x 关闭 永久关闭